Article Dans Une Revue Discrete Mathematics Année : 2025

A Generalization of the Tang-Ding Binary Cyclic Codes *

Sihui Tao
  • Fonction : Auteur
  • PersonId : 1494664
Zhonghua Sun
  • Fonction : Auteur
  • PersonId : 1494665
Shixin Zhu
  • Fonction : Auteur
  • PersonId : 1494666
Jon-Lark Kim
  • Fonction : Auteur
  • PersonId : 1109728
Patrick Solé

Résumé

Cyclic codes are an interesting family of linear codes since they have efficient decoding algorithms and contain optimal codes as subfamilies. Constructing infinite families of cyclic codes with good parameters is important in both theory and practice. Recently, Tang and Ding [IEEE Trans. Inf. Theory, vol. 68, no. 12, pp. 7842-7849, 2022] proposed an infinite family of binary cyclic codes with good parameters. Shi et al. [arXiv:2309.12003v1, 2023] extended the binary Tang-Ding codes to the 4-ary case. Inspired by these two works, we study 2 s -ary Tang-Ding codes, where s ≥ 2. Good lower bounds on the minimum distance of the 2 s -ary Tang-Ding codes are presented. As a by-product, an infinite family of 2 s -ary duadic codes with a square-root like lower bound is presented.

Fichier sous embargo
Fichier sous embargo
0 9 6
Année Mois Jours
Avant la publication
samedi 1 novembre 2025
Fichier sous embargo
samedi 1 novembre 2025
Connectez-vous pour demander l'accès au fichier

Dates et versions

hal-04904774 , version 1 (21-01-2025)

Identifiants

  • HAL Id : hal-04904774 , version 1

Citer

Ling Li, Minjia Shi, Sihui Tao, Zhonghua Sun, Shixin Zhu, et al.. A Generalization of the Tang-Ding Binary Cyclic Codes *. Discrete Mathematics, 2025, 348 (5), pp.114390. ⟨hal-04904774⟩
0 Consultations
0 Téléchargements

Partager

More