Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine braiding river reach - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (<b>anciennement Cemagref</b>)
Article Dans Une Revue Geomorphology Année : 2020

Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine braiding river reach

Alain Recking
Nathan Bodereau
Laurent Borgniet
Mathieu Cassel
Thomas Geay
Oldrich Navratil
Hervé Piégay
Sébastien Zanker
  • Fonction : Auteur
  • PersonId : 1185720

Résumé

Understanding the interactions between bedload transport and morpholdynamics in braided streams has important applications in river management and restoration. Direct field measurements addressing this question are however scarce as they are often challenging to perform. Here, we report an extensive two-month field campaign in an Alpine braided reach (La Séveraisse river, French Alps) that experienced predictable daily peak discharge (48 events observed) generating significant bedload transport and morphological changes during the melting season. We monitored these processes using a wide range of direct and indirect techniques (bedload sampling, continuous seismic measurements, pebbles tracking, topographic surveys, remote sensing using ground control cameras and drone flights). Doing so, surrogate measurements allowed to extend temporally discrete manual bedload sampling, and to extend spatially local riverbed cross section measurements. These measurements provide unique complementary constraints on the targeted physics, at various spatial and temporal scales which enabled us to draw robust conclusions. Data showed a progressive decrease in bedload transport for a given flow rate along the two months period. Simultaneously, river morphology in the braided sections changed from an incised to a more distributed configuration which led to a decrease of local maxima in dimensionless shear stresses in the braided reach for similar flow conditions. This control of bedload transport by maximum local shear stresses was in line with tracked pebble surveys indicating that coarse bedload particles were mostly transported in the main active channel. At the reach scale, this transport was found to be more efficient in laterally confined sections than in braided ones which has important implications in terms of bedload estimation in alternative confined and braided (unconfined) rivers. Finally, this study highlight the interest to combine a large variety of traditional and innovative measurements techniques to better understand complex sediment transport processes in the field.

Domaines

Géographie
Fichier principal
Vignette du fichier
1-s2.0-S0169555X1930368X-am.pdf (1.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-02399196 , version 1 (12-09-2024)

Identifiants

Citer

Clément Misset, Alain Recking, Cédric Legout, Maarten Bakker, Nathan Bodereau, et al.. Combining multi-physical measurements to quantify bedload transport and morphodynamics interactions in an Alpine braiding river reach. Geomorphology, 2020, 351, pp.106877. ⟨10.1016/j.geomorph.2019.106877⟩. ⟨hal-02399196⟩
397 Consultations
19 Téléchargements

Altmetric

Partager

More