Communication Dans Un Congrès Année : 2024

Interval-based validation of a nonlinear estimator

Validation par intervalles d'un estimateur non linéaire

Résumé

In engineering, models are often used to represent the behavior of a system. Estimators are then needed to approximate the values of the model's parameters based on observations. This approximation implies a difference between the values predicted by the model and the observations that have been made. It creates an uncertainty that can lead to dangerous decision making. Interval analysis tools can be used to guarantee some properties of an estimator, even when the estimator itself doesn't rely on interval analysis (Adam, 2019) (Adam, 2015). This paper contributes to this dynamic by proposing an interval-based and guaranteed method to validate a nonlinear estimator. It is based on the Moore-Skelboe algorithm (van Emden, 2004). This method returns a guaranteed maximum error that the estimator will never exceed. We will show that we can guarantee properties even when working with non-guaranteed estimators such as neural networks.
Fichier principal
Vignette du fichier
REC2024_GODARD-1.pdf (581.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04795673 , version 1 (25-11-2024)

Identifiants

  • HAL Id : hal-04795673 , version 1

Citer

Maël Godard, Luc Jaulin, Damien Massé. Interval-based validation of a nonlinear estimator. REC 2024, Oct 2024, Beijing, China. ⟨hal-04795673⟩
40 Consultations
7 Téléchargements

Partager

More