Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment - LMBA-UBS
Article Dans Une Revue Frontiers of Mathematics in China Année : 2020

Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment

Résumé

Let {Zn, n ≥ 0} be a supercritical branching process in an independent and identically distributed random environment. We prove Cram´er moderate deviations and Berry-Esseen bounds for ln(Zn+n0/Zn0) uniformly in n0 ∈ N, which extend the corresponding results by Grama et al. (Stochastic Process. Appl. 2017) established for n0 = 0. The extension is interesting in theory, and is motivated by applications. A new method is developed for the proofs; some conditions of Grama et al. (2017) are relaxed in our present setting. An example of application is given in constructing confidence intervals to estimate the criticality parameter in terms of ln(Zn+n0/Zn0) and n
Fichier principal
Vignette du fichier
2002.00310.pdf (255.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03431894 , version 1 (05-02-2024)

Identifiants

Citer

Xiequan Fan, Haijuan Hu, Quansheng Liu. Uniform Cramér moderate deviations and Berry-Esseen bounds for a supercritical branching process in a random environment. Frontiers of Mathematics in China, 2020, 15 (5), pp.891-914. ⟨10.1007/s11464-020-0868-3⟩. ⟨hal-03431894⟩
57 Consultations
22 Téléchargements

Altmetric

Partager

More