Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance - Université Pierre et Marie Curie Accéder directement au contenu
Article Dans Une Revue Applied optics Année : 2006

Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance

Résumé

Scattering phase functions derived from measured (volume-scattering meter, VSM) volume-scattering functions (VSFs) from Crimean coastal waters were found to have systematic differences in angular structure from Fournier-Forand (FF) functions with equivalent backscattering ratios. Hydrolight simulations demonstrated that differences in the angular structure of the VSF could result in variations in modeled subsurface radiance reflectances of up to +/- 20%. Furthermore, differences between VSM and FF simulated reflectances were found to be nonlinear as a function of scattering and could not be explained with the single-scattering approximation. Additional radiance transfer modeling demonstrated that the contribution of multiple scattering to radiance reflectance increased exponentially from a minimum of 16% for pure water to a maximum of similar to 94% for turbid waters. Monte Carlo simulations demonstrated that multiple forward-scattering events were the dominant contributors to the generation of radiance reflectance signals for turbid waters and that angular structures in the shape of the VSF at forward angles could have a significant influence in determining reflectance signals for turbid waters.

Domaines

Océanographie
Fichier non déposé

Dates et versions

hal-03494169 , version 1 (18-12-2021)

Identifiants

Citer

Malik Chami, David Mckee, Edouard Leymarie, Gueorgui Khomenko. Influence of the angular shape of the volume-scattering function and multiple scattering on remote sensing reflectance. Applied optics, 2006, 45 (36), pp.9210-9220. ⟨10.1364/AO.45.009210⟩. ⟨hal-03494169⟩
8 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More