Anomalous diffusion in random media of any dimensionality - Université Pierre et Marie Curie Access content directly
Journal Articles Journal de Physique Year : 1987

Anomalous diffusion in random media of any dimensionality


We show, through physical arguments and a renormalization group analysis, that in the presence of long-range correlated random forces, diffusions is anomalous in any dimension. We obtain in general surdiffusive behaviours, except when the random force is the gradient of a potential. In this last situation, with either short or long-range correlations, a subdiffusive behaviour with a disorder dependent exponent is found in the upper critical case (D = 2 for short-range correlations). This is because the β-function vanishes, which is explicitly proven at all orders of the perturbation theory. Apart from this case, a potential force is expected to lead to logarithmic diffusion (1/f noise), as suggested by simple arguments.
Fichier principal
Vignette du fichier
ajp-jphys_1987_48_9_1445_0.pdf (969.4 Ko) Télécharger le fichier
Origin : Explicit agreement for this submission

Dates and versions

jpa-00210574 , version 1 (04-02-2008)



J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal. Anomalous diffusion in random media of any dimensionality. Journal de Physique, 1987, 48 (9), pp.1445-1450. ⟨10.1051/jphys:019870048090144500⟩. ⟨jpa-00210574⟩
202 View
448 Download



Gmail Facebook X LinkedIn More