Variational discretization for rotating stratified fluids - Département de mécanique Accéder directement au contenu
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2014

Variational discretization for rotating stratified fluids

Résumé

In this paper we develop and test a structure-preserving discretization scheme for rotating and/or stratified fluid dynamics. The numerical scheme is based on a finite dimensional approximation of the group of volume preserving diffeomorphisms recently proposed in [25, 9] and is derived via a discrete version of the Euler-Poincare variational formulation of rotating stratified fluids. The resulting variational integrator allows for a discrete version of Kelvin circulation theorem, is applicable to irregular meshes and, being symplectic, exhibits excellent long term energy behavior. We then report a series of preliminary tests for rotating stratified flows in configurations that are symmetric with respect to translation along one of the spatial directions. In the benchmark processes of hydrostatic and/or geostrophic adjustments, these tests show that the slow and fast component of the flow are correctly reproduced. The harder test of inertial instability is in full agreement with the common knowledge of the process of development and saturation of this instability, while preserving energy nearly perfectly and respecting conservation laws.

Dates et versions

hal-01088890 , version 1 (28-11-2014)

Identifiants

Citer

Mathieu Desbrun, Evan S. Gawlik, Francois Gay-Balmaz, Vladimir Zeitlin. Variational discretization for rotating stratified fluids. Discrete and Continuous Dynamical Systems - Series A, 2014, 34 (2), pp.477-509. ⟨10.3934/dcds.2014.34.477⟩. ⟨hal-01088890⟩
124 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More