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Singular trajectories of driftless and control-affine systems

Yacine Chitour, Frédéric Jean, and Emmanuel Trélat

Abstract— We establish generic properties for singular tra-
jectories, first for driftless, and then for control-affine systems,
extending results of [17], [16]. We show that, generically –
for the Whitney topology – nontrivial singular trajectories are
of minimal order and of corank one. As a consequence, if
the number of vector fields of the system is greater than or
equal to 3, then there exists generically no singular minimizing
trajectory.

I. INTRODUCTION
Let M be a smooth (i.e. C∞) manifold of dimension n,

x0 ∈ M and T a positive real number. Consider the control
system (Σ) defined on M by

ẋ(t) = f(x(t), u(t)), (1)

where the mapping f , defined on M×U , is smooth, and U is
an open subset of R

m, m ≥ 1. A control u ∈ L∞([0, T ], U)
is said to be admissible if the trajectory x(·, x0, u) of (Σ)
solution of (1), associated to the control u, and such that
x(0, x0, u) = x0, is well defined on [0, T ]. Let U denote
the set of admissible controls; it is an open subset of
L∞([0, T ], U). Define on U the end-point mapping by

Ex0,T (u) := x(T, x0, u).

With the assumptions made previously, Ex0,T is a smooth
map.

Definition 1.1: A control u ∈ U is said to be singular
on [0, T ] if u is a critical point of the end-point mapping
Ex0,T , i.e. its differential at u, DEx0,T (u), is not surjective.
A trajectory x(t, x0, u) is said to be singular on [0, T ] if u
is singular and of corank one if the codimension in TxM of
the range of Ex0,T (u) is equal to one.

Let x ∈ M . Consider the following optimal control
problem: among all the trajectories of (Σ) steering x0 to
x, determine a trajectory minimizing the cost

CT (u) =

∫ T

0

f0(x, u)dt,

where f0 : M × U → R is smooth. Then the value
function ST at the point x is defined as the infimum over the
costs of the trajectories of (Σ) steering x0 to x in time T .
The Pontryagin Maximum Principle (see [26]) provides the
following necessary condition for optimality. If the trajectory
x(·) associated to u ∈ U is optimal on [0, T ], then there

Y. Chitour is with LSS Supélec, Univ. Paris Sud, Orsay
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exists a nonzero pair (λ(·), λ0), where λ0 is a nonpositive
real number and λ(·) is an absolutely continuous covector
function on [0, T ] called the adjoint vector, such that λ(t) ∈
T ∗

x(t)M and the following equations are satisfied for almost
all t ∈ [0, T ]:

ẋ(t) =
∂H

∂λ
(x(t), λ(t), λ0, u(t)),

λ̇(t) = −
∂H

∂x
(x(t), λ(t), λ0, u(t)),

∂H

∂u
(x(t), λ(t), λ0, u(t)) = 0,

(2)

where

H(x, λ, λ0, u) := 〈λ, f(x, u)〉 + λ0f0(x, u)

is the hamiltonian of the system.
An extremal is a 4-tuple (x(·), λ(·), λ0, u(·)) solution of

the system of equations (2). The extremal is said to be normal
if λ0 6= 0 and abnormal if λ0 = 0.

In particular a trajectory is singular if and only if it is the
projection of an abnormal extremal. A singular trajectory is
said to be strictly abnormal if it is not the projection of a
normal extremal.

Note that a singular trajectory is of corank one if and only
if it admits a unique abnormal extremal lift. It is strictly
abnormal and of corank one if and only if it admits a unique
extremal lift which is abnormal.

Singular trajectories play a major role in optimal control
theory. They appear as singularities in the set of solutions of a
control system; as a result, they are not dependent on the spe-
cific minimization problem. In particular, the consideration
of abnormal extremals with null hamiltonian is crucial. The
issue of such singular trajectories was already well-known in
the classical theory of calculus of variations (see for instance
[10]) and proved to be a major focus, during the forties,
when the whole issue eventually developed into optimal
control theory. Their role in the nonlinear control theory is
reviewed in [11] and [29]. For a long time, there had been a
suspicion that such minimizing singular trajectories actually
existed: Carathéodory and Hilbert were already familiar with
the rigidity phenomenon (see [31]), while Bismut provides
clear evidence of their existence in [9]. Attempts have been
made, however, to ignore singular trajectories, on the (false)
grounds that they are never optimal. In [23], Montgomery
offers both an example of a minimizing strictly abnormal
extremal in sub-Riemannian geometry and a list of false
demonstrations (by several authors) allegedly showing that
an abnormal extremal cannot be optimal. These findings gave



impetus to wide-ranging research with view to identifying the
role of abnormal extremals in sub-Riemannian geometry.

The optimality status of singular trajectories was chiefly
investigated by [13], [30] in relation to control-affine sys-
tems, by [2], [22], [30] regarding driftless systems and by
[4], [27] more generally, as these singularities are addressed
in a generic context. This research leads to results showing
the rigidity (see also [15]) of singular trajectories, which
means that they are locally isolated from trajectories having
the same boundary conditions; thus they are locally optimal.

Besides, the existence of minimizing singular trajectories
is closely related to the regularity of the value function, see
[29]. First, in terms of sub-Riemannian geometry, in [5], [6],
the authors are showing that, in the absence of a nontrivial
minimizing singular trajectory, the sub-Riemannian distance
dSR(0, .) to zero is subanalytic in a pointed neighborhood of
zero and that, consequently, the spheres with small positive
radius are subanalytic. In [7], the authors are showing that
this situation is valid for a dense set of distributions (for
the Whitney topology) of rank superior or equal to three.
In terms of control-affine systems, it is proved in [28] that
the absence of a minimizing singular trajectory implies the
subanalyticity of the value function.

In this paper, we investigate generic properties for singular
trajectories, both for driftless and for control-affine systems.
We first adapt techniques and ideas of [17] to driftless
systems, and then, extend them to control-affine systems.
The results we obtain generalize those of [22] and [14],
which are dealing respectively with driftless systems with
two vector fields and single-input control-affine systems; we
also improve some results of [7] and finally we list several
consequences of these properties.

II. SINGULAR TRAJECTORIES FOR DRIFTLESS
CONTROL SYSTEMS

A. Definitions
Let M be a smooth, n-dimensional manifold, and T be a

positive real number. Consider the driftless control system

ẋ(t) =

m∑

i=1

ui(t)fi(x(t)), (3)

where (f1, . . . , fm) is an m-tuple of smooth vector fields on
M , and the set of admissible controls u = (u1, . . . , um) is
an open subset of L∞([0, T ], U).

Note that the set of trajectories of (3) is not in general
a manifold: its singularities correspond exactly to singular
trajectories.

Following the Pontryagin Maximum Principle [26], every
singular trajectory x(·) is the projection of an abnormal
extremal. Let λ(·) be an adjoint vector associated to x(·).

For every t ∈ [0, T ] and i, j ∈ {1, . . . ,m}, we define

hi(t) := 〈λ(t), fi(x(t)〉,

hij(t) := 〈λ(t), [fi, fj ](x(t))〉,

where [·, ·] stands for the Lie bracket between vector fields.
Hence, along abnormal extremals, the following relations
hold:

hi ≡ 0, i = 1, . . . ,m. (4)

By differentiating (4), one gets for i = 1, . . . ,m,
m∑

j=1

hij(t)uj(t) = 0, for almost all t ∈ [0, T ]. (5)

Definition 2.1: Along an abnormal extremal
(x(·), λ(·), 0, u(·)), the Goh matrix at time t ∈ [0, T ]
is the m × m skew-symmetric matrix given by

G(t) :=
(
hij(t)

)
1≤i,j≤m

. (6)

It is clear that the rank r(t) of G(t) is even. If moreover m
is even, the determinant of G(t) is the square of a polynomial
P (t) in the hij(t) with degree m/2, called the Pfaffian.
Along the abnormal extremal, there holds P (t) = 0, and,
after differentiation, one gets

m∑

i=1

uj(t){P, hj}(t) = 0. (7)

Define the (m+1)×m matrix G̃(t) as G(t) augmented with
the row ({P, hj}(t))1≤j≤m.

As a consequence of (5), one gets that, along an abnormal
extremal, at almost all t ∈ [0, T ], the corresponding singular
control u = (u1, . . . , um) is in the kernel of the Goh matrix,
i.e.

G(t)u(t) = 0.

If m is even, using (7) there holds moreover

G̃(t)u(t) = 0.

Thus, if m is odd and r(t) = m − 1 (resp. if m is even
and r̃(t) = m − 1), one can deduce from that relation an
expression for u(t), up to the sign. This fact motivates the
following definition.

Definition 2.2: With the notations above, if m is odd
(resp. even), a singular trajectory is said to be of minimal
order if it admits an abnormal extremal lift along which
the set of times t ∈ [0, T ] where r(t) = m − 1 (resp.
r̃(t) = m − 1) is of full Lebesgue measure in [0, T ].

Remark 1: This set is moreover open. Note that this
definition is stronger than the corresponding one of [14],
in which the set is assumed to be dense only.

On the opposite, for arbitrary m, a singular trajectory is
said to be a Goh trajectory if it admits an abnormal extremal
lift along which the Goh matrix is identically equal to zero.

B. Main result
For singular trajectories of driftless systems, we have the

following result, which follows readily from [17].
Theorem 2.3: Let m be a positive integer such that 2 ≤

m < n and let Fm be the set of m-tuples of independent
vector fields on M endowed with the C∞ Whitney topology.
There exists an open set Om dense in Fm so that, for



every m-tuple (f1, . . . , fm) in Om, every nontrivial singular
trajectory of (3) is of minimal order and of corank one.

In addition, for every integer k, the set Om can be chosen
so that its complement has codimension greater than k. Let
O∞

m be the intersection over all k of the latter subsets;
then O∞

m shares the same properties as the set Om with
the following differences: O∞

m may fail to be open, but its
complement has infinite codimension.

Corollary 2.4: With the notations of Theorem 2.3, if m ≥
3 then there exists an open set Om dense in Fm so that, for
every m-tuple (f1, . . . , fm) in Om, the system (3) has no
nontrivial Goh singular trajectory.

Remark 2: If m is odd, there exists an open dense subset
of M such that through every point of this subset passes a
nontrivial singular trajectory (see also [24]).

III. SINGULAR TRAJECTORIES FOR
CONTROL-AFFINE SYSTEMS

A. Definitions
Let M be a smooth, n-dimensional manifold and let T be

a positive real number. Consider the control-affine system
given by

ẋ(t) = f0(x(t)) +
m∑

i=1

ui(t)fi(x(t)), (8)

where (f0, . . . , fm) is an (m + 1)-tuple of smooth vec-
tor fields on M and the set of admissible controls u =
(u1, . . . , um) is an open subset of L∞([0, T ], U).

Recall that a singular trajectory x(·) is the projection of
an abnormal extremal (x(·), λ(·)). Similarly to the previous
section, we define, for t ∈ [0, T ] and i, j ∈ {0, . . . ,m},

hi(t) := 〈λ(t), fi(x(t)〉,

hij(t) := 〈λ(t), [fi, fj ](x(t))〉.

Along an abnormal extremal, we have for all t ∈ [0, T ],

h0(t) = constant, hi(t) = 0, i = 1, . . . ,m. (9)

Differentiating (9), one gets for i ∈ {0, . . . ,m},

hi0(t) +

m∑

j=1

hij(t)uj(t) = 0. (10)

Similarly to Definition 2.1, we set the following.
Definition 3.1: Along an abnormal extremal

(x(·), λ(·), u(·)) of the system (8), the Goh matrix
G(t) (resp. the augmented Goh matrix G(t)) at time
t ∈ [0, T ] is the m × m skew-symmetric matrix given by

G(t) :=
(
hij(t)

)
1≤i,j≤m

(11)

(resp. G(t) :=
(
hij(t)

)
0≤i,j≤m

).
If moreover m is odd, the determinant of G(t) is the square
of a polynomial P (t) in the hij(t) with degree (m + 1)/2,
called the Pfaffian. Along the extremal, P (t) = 0, and, after
differentiation, one gets

{P , h0}(t) +

m∑

i=1

uj(t){P , hj}(t) = 0. (12)

Define the (m+2)×(m+1) matrix G̃(t) as G(t) augmented
with the row ({P , hj}(t))0≤j≤m.

If m is even and the Goh matrix G(t) at time t is invertible
(resp. if m is odd and G̃(t) is of rank m), then, as done in
the driftless case, we can deduce from Equations (10) and
(12) the singular control u(t). Let us then set the following
definition.

Definition 3.2: If m is even (resp. odd), a singular trajec-
tory is said to be of minimal order if it admits an abnormal
extremal lift along which the set of times t ∈ [0, T ] where
rank G(t) = m (resp. rank G̃(t) = m) is of full Lebesgue
measure in [0, T ].

On the opposite, for arbitrary m, a singular trajectory is
said to be a Goh trajectory if it admits an abnormal extremal
lift along which the Goh matrix is identically equal to 0.

B. Main result
Theorem 3.3: Let m be a positive integer with 1 ≤ m < n

and Fm+1 be the set of (m+1)-tuples of linearly independent
smooth vector fields on M , endowed with the C∞ Whitney
topology. There exists an open set Om+1 dense in Fm+1

so that, for all (m + 1)-tuple (f0, . . . , fm) of Om+1, every
singular trajectory of the associated control-affine system

ẋ(t) = f0(x(t)) +
m∑

i=1

ui(t)fi(x(t)),

is of minimal order and of corank one. In addition, the
complementary of Om+1 in Fm+1 is of infinite codimension.

Corollary 3.4: With the notations of Theorem 3.3 and if
m ≥ 2, there exists an open set Om+1 dense in Fm+1 so that
every control-affine system defined with an (m+1)-tuple of
Om+1 does not admit Goh singular trajectories.

We next deduce another corollary but before doing so, we
need the following definition.

Definition 3.5: Let (f0, . . . , fm) be an (m + 1)-tuple of
smooth vector fields on M and its associated control-affine
system be defined by (8). A trajectory x(·) of (8) associated
to a control u(·) is said to be rigid on [0, T ] if there exists
ε > 0 such that, for every t ∈ [T − ε, T + ε] and for every
admissible control v ∈ L∞([0, t], U), we have

Ex0,t(v) 6= Ex0,T (u).

In other words, the point x(T ) is reachable for times t close
to T only with the control u. (For results regarding rigid
curves, see for instance [3], [15].)

We have the following result.
Corollary 3.6: With the notations of Theorem 3.3 and if

m ≥ 2, there exists an open set Om+1 dense in Fm+1 so that
every control-affine system, defined with an (m + 1)-tuple
of Om+1, does not admit rigid trajectories.

IV. CONSEQUENCES IN OPTIMAL CONTROL

We keep here the notations of the previous sections. Let
(Σ) be a control system, which is either driftless, of the
type (3), or control-affine, of the type (8). Consider the



optimal control problem associated to (Σ), corresponding to
the minimization of the quadratic cost given by

CT (u) =

∫ T

0

(
u(t)T Uu(t) + g(x(t))

)
dt, (13)

where U is a (m × m) real positive definite matrix,

u(t) =




u1(t)
...

um(t)


 ,

m is a positive integer, and g is a smooth function on M .
Let x0 ∈ M and T > 0 be fixed. Recall that the value

function associated to this optimal control problem is defined
by

Sx0,T (x) := inf{CT (u) | Ex0,T (u) = x} (14)

The regularity of the associated value function was studied
in [5], [7] for driftless systems, and in [28] for control-
affine systems. Its subanalyticity is intimately related to the
existence of nontrivial minimizing trajectories starting from
x0.

A. Driftless control systems
The next result, adapted from [12], states the genericity of

the strictly abnormal property.
Proposition 4.1: There exists an open dense subset Om of

Fm such that every nontrivial singular trajectory of a driftless
system defined by a m-tuple (f1, . . . , fm) of Om is strictly
abnormal.

As a byproduct of the above proposition and Corollary 2.4,
we get the next result.

Corollary 4.2: Let m ≥ 3 be an integer. There exists an
open dense set Om of Fm such that every driftless system
defined with a m-tuple of Om does not admit nontrivial
minimizing singular trajectories.

This result implies the subanalyticity of the value function
in the analytic case (for a general definition of subanalyticity,
see e.g. [20]).

Corollary 4.3: In the context of Corollary 4.2, if in addi-
tion the function g and the vector fields of the m-tuple in
Om are analytic, then the associated value function ST is
continuous and subanalytic on its domain of definition.

Remark 3: The previous results may be interpreted in the
context of sub-Riemannian geometry, for U = Id and g = 0
(see [17]). In particular, the above value function is related to
the sub-Riemannian distance (and thus is always continuous).

Remark 4: If there exists a nontrivial minimizing singular
trajectory, then the value function may fail to be subanalytic
(see for instance the Martinet case in [1]).

B. Control-affine systems
The next three results correspond respectively to Propo-

sition 4.1, Corollary 4.2, and Corollary 4.3, in the control-
affine case.

Proposition 4.4: There exists an open dense subset Om+1

of Fm+1 such that every nontrivial singular trajectory of a

control-affine system defined by a (m+1)-tuple (f0, . . . , fm)
of Om+1 is strictly abnormal.

Corollary 3.4 together with Proposition 4.4 yield the next
corollary.

Corollary 4.5: Let m ≥ 2 be an integer. There exists an
open set Om+1 dense in Fm+1 so that every control-affine
system defined with a (m+1)-tuple of Om+1 does not admit
minimizing singular trajectories.

Corollary 4.6: In the context of Corollary 4.5, if in addi-
tion the function g and the vector fields of the (m+1)-tuple
in Om+1 are analytic, then the associated value function ST

is continuous and subanalytic on its domain of definition.
Remark 5: If there exists a nontrivial minimizing trajec-

tory, the value function may fail to be subanalytic, even
continuous. For example, consider the control-affine system
in R

2

ẋ(t) = 1 + y(t)2,

ẏ(t) = u(t),
(15)

and the cost
CT (u) =

∫ T

0

u(t)2dt. (16)

The trajectory (x(t) = t, y(t) = 0), associated to the control
u = 0, is a nontrivial minimizing singular trajectory, and the
value function S(0,0),T has the asymptotic expansion, near
the point (T, 0),

S(0,0),T (x, y) =
1

4

y4

x − T
+

y4

x − T
exp

(
−

y2

x − T

)

+ o

(
y4

x − T
exp

(
−

y2

x − T

)) (17)

(see [28], [29] for details). Hence, it is not continuous, nor
subanalytic, at the point (T, 0).

V. CONCLUSION
In this paper, we have shown that a large class of sys-

tems (generic in a strong sense) enjoys important properties
regarding their singular trajectories. Namely, the latter are
of minimal order and of corank one, and excluded from
optimality of many quadratic optimal control problems.
These properties should have further consequences for mo-
tion planning, stabilization, and in Hamilton-Jacobi-Bellman
theory.
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[10] G. A. Bliss, Lectures on the calculus of variations, U. of Chicago
Press, 1946.

[11] B. Bonnard, M. Chyba, The role of singular trajectories in control
theory, Math. Monograph, Springer-Verlag, 2004.

[12] B. Bonnard, H. Heutte, La propriété de stricte anormalité est
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