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Abstract— This paper introduces an expectation-maximization for its practical implementations. This complexity is nigin
(EM) algorithm within a wavelet domain Bayesian framework for  dominated by the number of estimated parameters for channel
semi-blind channel estimation of multiband OFDM based UWB ,,qating and the decoding algorithm within each iteration.
communications. A prior distribution is chosen for the wavdet . . e e .
coefficients of the unknown channel impulse response in ordéo In this work, we consider a semi-blind joint channel esti-
model a sparseness property of the wavelet representatiohis ~Mation and data detection scheme based on the EM algorithm,
prior yields, in maximum a posteriori estimation, a thresholding with the objective of minimizing the number of estimated
rule within the EM algorithm. We particularly focus on reduc ing  parameters and enhancing the estimation accuracy. This is
the number of estimated parameters by iteratively discardlg - hieved by expressing the unknown channel impulse respons

“unsignificant” wavelet coefficients from the estimation process. CIR) i fits di | . hich has b
Simulation results using UWB channels issued from both mods  (CIR) in terms of its discrete wavelet series, which has been

and measurements show that under sparsity conditions, the Shown to provide g@arsimonious representation [8], [9]. Thus,
proposed algorithm outperforms pilot based channel estimégon we choose a particular prior distribution for the channel
in terms of mean square error and bit error rate and enhances \yavelet coefficients that renders the maximum a posteriori
the estimation accuracy with less computational complextthan — (\1ap) channel estimation equivalent to a hard thresholding
traditional semi-blind methods. : . . .
rule at each iteration of the EM algorithm. The latter is
then exploited to reduce the estimator computational load
|. INTRODUCTION by discarding “unsignificant” wavelet coefficients from the
A UWB radio signal is defined as any signal whose ban@stimation process. Moreover, since the probability obeled
width is larger than 20% of its center frequency or greatdits are involved in the EM computation, we naturally congbin
than 500 MHz [1]. In recent years, UWB system design hdle iterative process of channel estimation with the dewpdi
experienced a shift from the traditional “single-band” icad operation of encoded data.
that occupies the whole 7.5 GHz allocated spectrum to aThis paper is organized as follows. SectiEh Il introduces
“multiband” design approach [2]. That consists in dividindB-OFDM and its wavelet domain channel estimation obser-
the available UWB spectrum into several subbands, each amgion model. In sectiop |II, we first describe a MAP versidn o
occupying approximately 500 MHz. the EM algorithm for channel estimation and then show how
Multiband Orthogonal Frequency Division Multiplexingthe number of estimated parameters can be reduced through
(MB-OFDM) [3] is a strong candidate for multiband UWBthe EM iterations. The combination of the channel estinmatio
which enables high data rate UWB transmission to inhepart with the decoding operation and implementation issues
all the strength of OFDM that has already been shown fare also discussed. SectiEh V illustrates, via simulafitims
wireless communications (ADSL, DVB, 802.11a, 802.16.performance of the proposed receiver over a realistic UWB
etc.). This approach uses a conventional coded OFDM systehannel environment and sectipr] VI concludes the paper.
[4] together with bit interleaved coded modulation (BICM) Notational conventions are as follow®, is a diagonal
and frequency hopping over different subbands to improweatrix with diagonal elements = [z, ...,z x|", Ex[.] refers
diversity and to enable multiple access. to expectation with respect t®, I, denotes anN x N)
Basic receivers proposed for MB-OFDM [3], estimate thiglentity matrix; |||/, (.)*, ()7 and (.)"* denote Frobenious
channel by using pilots (known training symbols) transeditt norm, matrix or vector conjugation, transpose and Hermitia
at the beginning of the information frame, implicitly assnm transpose, respectively.
a time invariant channel within a single frame. Thus, for
an accurate channel acquisition, one must send several pilo
patterns resulting in a significant loss in spectral efficien
Recent works [5], [6] have reported promising results on the
combination of channel estimation and data decoding psocesMB-OFDM system divides the spectrum between 3.1 to
by using the Expectation-Maximization (EM) algorithm [7] .10.6 GHz into several non-overlapping subbands each one
Though the latter scheme outperforms pilot based receivasscupying 528 MHz of bandwidth [3]. The transmitter archi-
it has a higher complexity that may be of a critical concenecture for the MB-OFDM system is very similar to that of a

Il. SYSTEM MODEL AND WAVELET DOMAIN PROBLEM
FORMULATION



conventional wireless OFDM system. The main difference Bénary Data unctu.re Bit QPSK
that MB-OFDM system uses a time-frequency code (TFC) to Colg\r’]cét’;'grna Interleave Mapping

select the center frequency of different subbands whickésiu

not only to provide frequency diversity but also to distirgiu
between multiple users (see figufes 1 fnd 2). Here, we canside L IFFT
MB-OFDM in its basic modeie. employing the three first ¢ cP ?‘,G'
subbands. _Addition_
)27 fot
95 Guard Interval for xp (j 7ch )
. =M1 TXIRX switching (TFC: Subband Selecti(}n—,
%) N 3168
i I
% Band # 1= Fig. 2. TX architecture of the multiband OFDM system.
Qo
re) <. 3696
=] [8)
O {Band#2 . . .
o S 4204 the subbands, at the receiver side we gather three received
% g OFDM symbols for estimating the wavelet coefficients of the
o [ P e,  CIR, taken over all of the subbands (1.584 GHz bandwidth).
This is motivated by the fact that estimating the channel ove

Time (0s) 3 wider bandwidth leads to a sparser wavelet representation
Fig. 1. Example of time-frequency coding for the multibanBOM system:  Besides, this approach simplifies the receiver architectince
TFC=1,3,2,1,3,2, 4. there is no need to change the central frequency for down

) ) o ) converting different subbands.
We consider the multiband OFDM transmission of fig[Jre 2

using N data subcarriers. At the receiver, assuming a cycliq|| T Hg EM-MAP ALGORITHM FOR WAVELET DOMAIN
prefix (CP) longer than the channel maximum delay spread and CHANNEL ESTIMATION
perfect synchronization, OFDM converts a frequency siefect

channel intoN parallel flat fading subchannels [4] for each The EM algorithm proposed in this sectl_on IS ablg to mte_—
subband as grate the advantages of wavelet based estimation via tbe pri

choosen for channel wavelet coefficients. Next, we see how
Yin =Ds, , hin+2in 1€{1,2,3}, n=1,...,Ngym the MAP estimator leads to a thresholding procedure which is
(1) used for reducing the number of estimated coefficients dt eac
where (1 x N) vectorsy; ,, s;» andh;, denote received iteration of the EM algorithm.
and transmitted symbols, and the channel frequency respons
respectively; the noise block ,, is assumed to be a zero mean,  aAn equivalent model and the EM principle

\./vh|_te complex Gau§3|an noise with distribution/(0, "L ) Our first step consists in decomposing the AWGN fh (3)
; 4 is the subband index and refers to the OFDM symbol . . . :
into the sum of two different Gaussian noise terms as

index inside the frame. The observation model correspandin

to all three subbands can be written in frequency domain as Z=D,7,+7Z 4)
Yn=Ds Hn+%Z, m=1,... Mymn (2) whereZ, andZ, are (M x 1) independent Gaussian noise
Where Yo = [Y1m Yo YanlTs Sm =[Sm0 857, vectors such thap(Z;) = CN(0,02Iy) and p(Z2) =

CN(0,0°Iy — o*D,DIY). Since we are using normalized
QPSK symbolsD, D;f = Iy and the covariance matrix @,
— (52 _ a2 1 iti i

remainder, unless otherwise mentioned, we will not write tHreduces t022A_ (20 5 o)Ly We define the_ positive deglgn

parameterp = a®/c?, (0 < p < 1) and notice that setting

time indexm for notational convenience. _ 1 leads t0Z- — 0 which i valent t Ki ith
In order to take advantage of the wavelet based estimatiéh, . eads 1oz, = b which Is equivaient 1o working wi

the channel impulse response is expressed in terms of {18 initial "Pde' KB)' Howev_er, fob SP< 1, the ‘?‘bo"e noise
orthogonal discrete wavelet coefficients. LBt ; be the ecomposition allows the introduction of a hidden channel

truncated fast Fourier transform (FFT) matrix construdteth vectorH defined as

the (M x M) FFT matrix by keeping the firdt columns where { H = Tg+7Z,

L is the length of the CIR over a group of three subbands. We Y =D ,H+2Z,.

defineW as the(L x L) orthogonal discrete wavelet transform "

(ODWT) matrix. The unknown channel can be expressed &ke hidden vectoH provides a direct relation between true

H = F);, Whg, whereg is the (L x 1) vector of the CIR and estimated wavelet coefficients corrupted by an additive

wavelet coefficients. The Observation moﬂel 2 is rewritten awhite Gaussian noise, allowing the two-stage observation
Y - D, Tg+2 3) model (%) which is equivalent td](3). However, the differenc

with a standard denoising problem is thdt and H are
whereT = Fy, [W™. unknown. Hence, the observation model has missing datas and
Although at the transmitter, the channel is practicallyduséhidden variables and the MAP solution gf has no closed
by slices of 528 MHz bandwidth that corresponds to one &rm. In such situations, the EM algorithm [7] is often used

Hm - [hl,nth,nvhS,n]T and Zm - [Zl,naZQ,nvz&,n]T are
(M x 1) vectors, withA = 3N andMgym = Ngym/3. In the

(5)



to maximize the expectation of the posterior distributimero where the last equation results from the independence batwe
all possible missing and hidden variables. S andH belonging respectively to the sets and.7Z which
Let X = {Y,S,H} be the complete data set in the contain all of their possible values.
EM algorithm terminology. Note that the observation 3t  In order to evaIuate{H(t)) we first have to evaluate the
determines only a subset of the spa@é of which X is conditional mearu~ of H as
an outcome. We seargh that maximizeslog p(g|X). After
initialization by a short pilot sequence at the beginninghaf H(E) = / H p(ﬁ|Y, g(t)) dH (11)
frame, the EM algorithm alternates between the following tw H Hesr
steps (until some stopping criterion) to produce a sequehcegjnce bothp(Y|H) and p( Hig(t) are Gaussian densities,
estimates{g"), t = 0,1,..., fmax}- p(H|Y,g®) « p(Y[H) p(H|g®) is also Gaussian. By
. Expectatmn Step(E-step). The conditional expectationstandard manipulation of Gaussmn densities, we obtain
of the complete log-likelihood given the observed vector

and the current estimatel® is calculated. This quantity ! = Tg® + pD (Y - DsTg(t))- (12)
is called theauxiliary or Q-function By using (12) in [1p) and after some simplifications we get
Qle ") = Eg s | logp(Y. 8. Hig)y.g® | (©) (H") = (1-p) Tg® + p DY (13)

« Maximization Step (M-step): The estimated parameter/\/hereﬁS = Zse% Dy p(S|Y,g(t)).
is updated according to The E-step is then completed by insertiffi()) into

®) i
g(t+1) — argmaX{Q(g’g(t)) " logw(g)} Ko Q(g,g), equation [(9).
g

. : o - C. M-step: Wavelet Based MAP Estimation
wherer(g) is aprior distribution for the wavelet coefficients. . . ]
Next, we derive the specific formulas of each step, according!n this step the estimate of the paramegeis updated as

to (§). given in () whereQ(9,0") is given by [D)
HOY _ Tg |
(t+1) _ _HY) - Tg]|
B. E-step: Computation of the Q-function g = arg;nax{ G +logn(g) o (14)

The complete likelihood is Due to the orthonormality of both Fourier and wavelet trans-

- - . - 2
p(Y,S, Hig) = p(Y|S, H,g) p(S|H, ) p(Hlg). forms, TT = I, and we can replacg (H")) — Tg||" b

_ IEY —g |, where
According to [b), conditioned oI, Y is independent of.

Furthermore,S which results from coding and interleaving g =T"HY)
of bit sequence is independent Bf and g. SinceZ; is a =1-pg®+pD,T)"Y (15)
complex white Gaussian noise, the complete log-likelihood
can be simplified to The M-step can be written as
- ~ ~ S _ o[
logp(Y,S,Hlg) = log [p(Y[S,H) p(S) p(H|g)] gt = argmax {—u + log w(g)} . (16)
~ «
= logp(H|g) + cst. &
g"THTg — 26" THH Actually g+ in ([L4) is no more than the MAP estimate
= - o2 + ¢St of g from the observation model
8 ~
& g =g+7 (17)

where cst. are different constant terms that do not depend\gﬂerezl THZ; ~ CN(0,a?11). From the Bayes theorem
g. According to [f) we have the posterior distribution of is given by

HH _ 9oHTHE ~ ~
Qg g") =Fg | - & T Te—2a"TH cst.‘Y,g@} p(gl8?) x p(8g) 7 (g) (18)
’ «
| (H®) — Tg H2 wherep(g®)|g) is the Gaussian likelihoo@ ~ CN (g, a?1).
Y + cst. 9 In this approach, we adopt the Bernoulli-Gaussian prior dis
- tribution 7 (g) for the wavelet coefficientg of the unknown
where (H®Y) £ Eg - [H[Y,g®)]. CIR described by
From @) it is. obV|ous that the E-step involves only the )
computation of(H")), we have m(g;) = A d(g5) + (1= X) CN, (0,77) (19)
for j = 1,...,L, which allows us to model a sparseness

HO)=>" ([ H p(ﬁ|Y7g(t))dﬁ)p(S|Y7g(t)) property of UWB channels in wavelet domain. This amounts
sew \/HEA considering that the wavelet coefficients have a probgbilib
(10)  pe zero and a probability— ) to be distributed as (0, 72).



In order to deal with that particular model, we introduce awhere the truncation operatd®(.) gathers in gEtH) the

additional state variable (or indicatofy € {0,1} such that components og*+!) that must be kept and the operaf:)
we can express this prior conditionally as constructsT, from T by keeping the rows corresponding to
. . kept indexes. During the first iteration £ 0), the algorithm

(95185 =0) ~ d(gs) with probability A, does not perform any truncation and the EM algorithm esti-

mates all coefficients. However, after each M-step, the raimb

of unknown parameters to be estimated in the next iteration i

reduced accordind (25) by usig’™" and T, in the update

formula of the E-step[(13).

(9j13; =1) ~ CNg, (0,7%) with probabilityl — X

This prior model, conditionally on that state variable,dea
to a Gaussian posterior fay; which makes the estimation

explicit; from the direct observation modéjt) =g;+ 271

we can express these posterior probabilitiegphs IV. DECODING METHOD AND IMPLEMENTATION ISSUES
—0lE®) = AN (0.a2 According to equatior] (}0), we make use of the information
p (65 = 0lg; - (0,0%) /e (21) ©on transmitted symbols, obtained from the decoder, to epdat

p(B = 1|§J(,t> = 1-NN(0,0*+7%)/c the channel estimate at each iteration. Besides, the decode
requires an estimate of the channel in order to provide the

where the constant= AN (0,a%) + (1-A) N (0,a? + 72).  probability of encoded bits. Hence, the semi-blind channel
From this set of equations, we easily notice that the indicastimation algorithm is naturally combined with the praces
tor variable3; allows us to discriminate between the noisef data decoding. Tha posteriori probability of the unknown
coefficients (forg; = 0) and the effective channel Wavelesymbolsk,p(5k|yk,flét)), is calculated using the posteriori
coefficients (forg; = 1), eventually corrupted by noise. Theprobabilities provided by the decoder at the end of th
indicator variables3; are estimated, in the MAP sense, by iteration as

' =05 >
5(”” - 0, if p (ﬁg 0lg; ) > 0.5 (22) Sk|Yk7 HPdCC Ck.i) (26)
: =

1, elsewhere

3

where Pyec(ck ;) is thea posteriori probability corresponding
Therefore, the MAP estimates of the channel wavelet coeffe the i-th bit of Sy, ¢ ;. At the first iteration, where na
cients are obtained by a simple denoising/thresholding asl priori information is available on bits ;, Paec(ck ;) are set

1) to 1/2.
if 5; =
e _ )0, % ’ (23)
9 T Ut g ﬁ(_“rl) -1 o Observed Frame
2+ .29 J EM-MAP Estimation ©
of Channel Wavelet g
Coefficients P (cy) =5
1) 7 and X updating: The prior parameters and A\ stand
respectively for the (significant)-wavelet coefficientseryy
and unsignificant coefficient probability. The update rutas PO (e )
these two parameters are MAP based rules derived from Soft Demappin
assigning conjugate priors to these parameters [10]: Observed T Uncoded Bits Probabilities Decoded
. - Fram SISO Decoder — ‘@—> Bits
A — (L _ 1/2)/(L _ 1)’ (24) at last iteration
= n/(L - L) Fig. 3. EM-MAP channel estimation combined with the decgdimocess.

where L = Card{j | B = 0} andp = > 5=1 ‘gg('Hl)’Q;

¢ foa Among several possible ways to practically implement a
Card{.} denoting the set cardinality.

joint channel estimation and decoding receiver, we adapt th
following global procedure (see figuﬂa 3).

2) Reduction of the number of estimated parameters: . Initialization ¢ = 0)

The thresholding procedure derived in this section, presid

an easy framework for reducing the number of estimated ~ — Set all probabilities of coded bitByec(ck,i) to 1/2
coefficients. This can be done by discarding at each iteratio and derivep(S|Y, g'”)) according to 0?)' _
the elements og“*1) that are replaced by zero ifi [23). The — Initialize the unknown vectog by g™ obtained
underlying assumption is as follows: whenever the estimato from pilot symbols.
attributes an unknown wavelet coefficient to noise (repiaice o for t =1,... tmax
by zero), this coefficient will always be considered as noise — Use the current estimatg(Y) to calculateg(**+")
and so will not be estimated in future iterations. according to [(23).
This operation is shown in figuf¢ 3 and can be modeled as:  — Discard the wavelet coefficients that are replaced by

zero for the next iteration by evaluati@? and T,
gl =0(gt*Y), Tu=2(T) (25) from (£3).



— if t # tmax: Use the current estimag{f) to update that wavelet based semi-blind methods perform closely éo th
the probability of encoded bitB4..(c ;) and derive perfect CSI case. For example, at BER=*, the EM-MAP

p(S[Y,g®) from @6). and EM-Wav method have respectively about 0.2 dB and 0.5
else Decode the information data by thresholdinglB of SNR degradation from the performance obtained with
the uncoded bit probabilities with 1/2. perfect CSI.

V. SIMULATION RESULTS

In this section we present a comparative performance stu
of the proposed EM-MAP algorithm. The binary information
data are encoded by a non-recursive non-systematic con
lutional encoder with rate? = 1/2 and constraint length 3.
Each frame has a payload of 1 KB along with 3 pilot symbol
at the beginning for initializing the channel of each suliban
The interleaver is random and operates over the entire fran
Among different wavelet families, “symmetric” wavelet lms
functions [11] providing the sparser representation [9feha

been considered.Unless otherwise mentioned, the curees 5| | T Pilot-ML
. . . - =V— Pilot-MMSE

obtglned aftetmax = 4 iterations. —&— EM-Freq

First, a sparse channel model where only 20 wavelet coe —+— EM-Wav
ficients out of total 96 have non zero values, is considere T EM-MAP

H H H H -4 I I I i I I

The second channel, referred to as Corridor, is a line oftsig 10 | 5 n 6 s m n "
(LOS) scenario issued from realistic UWB indoor channe EBINO (dB)
measurements [12] where the receive and transmit antennas
are located in a corridor separated by 9 meters. Fig. 4. Mean square error between the true and estimatedicieats for

Performance comparison is made with two pilot-only basée sparse channel model.
approach using ML and minimum mean square error (MMSE)
channel estimation, referred to as pilot-ML and pilot-MMSE
We also compare the proposed algorithm with two semi-blin 10°
channel estimation based on the EM algorithm, called respe
tively EM-Freq and EM-Wav. The first approach, consists o
estimating the channel over all of the three subbands, usi w0
the model [[3), similar to [5] while the second scheme is
wavelet domain EM based estimation of the channel whe
the prior model is set to have a uniform distribution. 107

Figurel}l depicts the mean square error (MSE) betwet¢ g
true and estimated channel as a functionFpf Ny. It can be ©
noticed that, although the pilot-MMSE approach improves th

estimation accuracy for low SNR values, the performance « —v— Pilot-ML

pilot based channel estimation methods are very far from tt B ) e

family of semi-blind methods. Comparing the wavelet domail 10 EM-MAP

semi-blind approach (EM-Wav) and the frequency domai | {-— Perfect S|

approach (EM-freq), shows that significant gain is achieve 10° ‘ ‘ , ‘

by the former method. As shown, the best performance 0 2 4 Eb/Ng - 8 10 12

achieved by the EM-MAP method. We see that by usin_
EM-MAP, a gain of almost 4 dB in SNR is achieved at 5 BER oert  the EM-MAP method o N
MSE=2 x 10~%, as compared to the EM-Wav method. Thi§J, > performance of the method over the spafemoe
clearly shows the adequacy of the EM-MAP method for the
case where the unknown channel has few non zero wavelewe now evaluate the performance of EM-MAP by con-
coefficients, which is in perfect agreement with the priasidering the Corridor channel. Figuﬂa 6, shows that wavelet
model. based methods again outperforms pilot based and EM-Freq
Figure[‘p' shows the BER results along with the BER famethods in terms of MSE and BER. However, the EM-MAP
the case of perfect channel state information (CSI). It caqerformance is how comparable to that of EM-Wav method.
be seen that at a BER d0—3, the pilot-ML and the EM- This can be explained by noting that when the channel is
Freq approaches are respectiv8ly and 2 dB of SNR far not sparse, small values are attributed\tdy the algorithm
from the BER obtained with the perfect channel. Furthermorgsee )). This leads to a gaussian prior model with a
the performance of the Pilot-MMSE approach is not showarge variance compared to the noise variance, which can be
since it was very close to that of Pilot-ML. Also, we observapproximated with a uniform prior. As a results, the prior



becomes less informative and the EM-MAP performs close

VI. CONCLUSION

to EM-Wav, as shown in figureﬂ 6. Thus, the proposed EM- Thjs paper proposed a semi-blind MAP channel estimation
MAP algorithm is able to adapt its prior model parameters f@figorithm that integrates the advantages of wavelet based

each propagation environment.

10°F

MSE

10°F

—%— Pilot-ML
- —0O— " Pilot-MMSE
—8— EM-Freq
—*— EM-Wav
—— EM-MAP

10°

2 4

6

8

10

12

14

estimation. The investigated method naturally combines th
EM iterations with the decoding process. We derived an equiv
alent data model for the multiband OFDM system involving
the channel over all 3 subbands expressed in the wavelet
domain. By choosing a Bernoulli-Gaussian prior distriboti

for the channel wavelet coefficients, the MAP estimatordgel

a thresholding procedure at the M-step of the EM algorithm
which we used to reduce the number of estimated coefficients.
With only few iterations, the EM-MAP method provides
significant reduction in the number of estimated parameters
and outperforms all considered pilot based and semi-blind
methods.
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