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Abstract— We present a topological navigation system that is
able to visually recognize the different rooms of an apartment
and guide a robot between them. Specifically tailored for small
entertainment robots, the system relies on vision only and learns
its navigation capabilities incrementally by interacting with
a user. This continuous learning strategy makes the system
particularly adaptable to environmental lighting and structure
modifications. From the computer vision point of view, the
system uses a purely appearance-based image representation
called bag of visual words, without any metric information.
This representation was adapted to the incremental context
of robotics and supplemented by active perception to enhance
performances. Empirical validation on real robots and on the
publicly available INDECS image database are presented.

I. INTRODUCTION

Navigation is a fundamental capacity for mobile robots

and numerous solutions have been proposed, adapted to

different kind of robots. In this paper, we are specifically

interested in small entertainment robots of humanoid or

animal shape. Vision is the best suited sensor for these

platforms due to its low cost, wide availability, low power

consumption and highly informative output.

Vision-based navigation systems may use either topolog-

ical or metrical maps [1]. In topological maps, only places

such as rooms and their relations are learned and recognized

[2], whereas in metrical maps, the precise positions of

environment features and of the robot are estimated (e.g. [3]).

In realistic scenarios for entertainment robotics, the robot is

often moved directly by the user from one place to another,

can fall or be blocked in places where sensors will have

difficulty to find useful information (e.g. under tables, in

corners...). In these situations, a metrical approach, that usu-

ally requires a continuous tracking of features, will probably

fail, whereas a topological approach, able to recognize the

rooms and guide the robot between them is more adapted.

Moreover, topological approaches may be purely appearance

based, thus avoiding the need for camera calibration.

In vision-based topological approaches, the use of a

panoramic camera is common (e.g. [4], [5], [6]): this kind

of sensor provides 360 information about the surroundings

of the robot at one time, thereby making place recognition

easier for example. In a humanoid or animal-like robot con-

text, however, the use of a standard gaze-controlled camera

is more natural, even if potentially more difficult to use. The

introduction of active perception strategies [7], which are a

key difference between computer vision and vision applied

to robotics, is a natural way to compensate these difficulties.

The learning process should also be adapted to the context,

where the user is usually eager to interact with his robot and

is waiting for biologically plausible behaviours of the robot.

It is therefore possible to take advantage of discontinuous

user supervision to incrementally and progressively learn

the navigation capabilities needed by the platform, instead

of relying on a separate learning phase. As an interesting

consequence, the space representation used by the robot

will correspond to the concepts used by humans for nav-

igation, thereby facilitating human-robot interactions. Such

incremental training is also important to adapt the robot’s

spatial knowledge to the evolution of the environment such as

varying lighting conditions and minor structure modifications

(e.g. objects that are moved).

To provide a complete topological navigation system

without using metric information, the system presented

here integrates two components: a qualitative localization

and mapping system and a visual homing method. The

localization system (previously presented in [8]) is able to

incrementally learn to recognize different rooms, while the

visual homing method learns to guide the robot between

rooms. Visual homing is a closed-loop strategy that iterates

local goal direction prediction from an image and fixed

length movement in the predicted direction. In this paper,

we present a new evaluation of our qualitative localization

method on the publicly available INDECS image database

[9], and empirical evaluation of the visual homing method

on real robots.

II. RELATED WORK

Using a standard camera, the authors of [9] perform qual-

itative localization by training a Support Vector Machine to

predict the current room. Images are characterized by global

histograms and the approach is shown to be robust over time

to lighting and environment evolution. The approach has

been adapted to incremental learning in [10]. The method

proposed in [11] is based on scale-invariant visual keypoints

to localize the robot through an image database representing

the environment. Localization is performed by finding the

image in the database that best match the current image.

Robustness to lighting modifications is obtained by using

temporal coherency of localizations. The system presented in

[12] is using similar information in a two stage approach to

enhance localization precision. These two systems rely on an

a priori database describing the environment. However, the

authors of [13] and [14] use similar approaches with online



acquisition of the image database, but localizing at the image

level and not segmenting the environment at a higher level

such as the rooms.

All these systems perform localization in a passive way,

localizing the robot for each acquired image. However, in

topological navigation, the current position is not modified

by rotating the robot’s camera. Conversely multiple images

taken by moving the camera could be used for the estimation

of the current position, as done in the work reported here.

Active perception exploiting this property has been used with

metric localization systems (e.g. [15]) but is not common in

topological systems. To our knowledge, only [16] presents

such an active localization scheme that searches for infor-

mative images to localize the robot, with a method similar

to the one presented in this paper.

As in vision-based topological localization approaches,

panoramic vision is often used to achieve visual hom-

ing ([17], [5]). However, in [18], while originally using

panoramic vision, the authors report an adaptation with a

standard camera without loss of performance, but requires

an estimate of the robot’s absolute direction by an external

mean. Using a standard camera, most authors rely on metric

information: for example, the system presented in [13] uses

an estimation of geometric transformation between images

to guide the robot. The research field of visual servoing also

provides homing methods when applied to mobile robotics:

using feature tracking and local 3D reconstruction between

images, the authors of [19] control a robot to reproduce

a path only specified by the image sequence acquired on

this path. Few approaches however are not using metric

information: [20] use a qualitative approach relying on

feature tracking and qualitative control and [14] rely on

image matching to choose the robot direction.

Finally, most of these methods either rely on supervised

learning through an initial data acquisition phase ([9], [11],

[12], [18], [16], [5]) or on autonomous segmentation of the

environment ([14], [19], [13]). However, in a dynamic world,

this initial or autonomous training cannot be guaranteed to

provide robustness to environment and lighting modifica-

tions, and the ability to update the underlying model on-line,

as proposed in this paper, is crucial. Some of these systems

were therefore adapted to incremental learning with user su-

pervision ([10]), by integrating small databases of new data.

Our system integrates new user labelled data at a finer scale,

requiring new data only when navigation is not possible.

This is more similar to the concept of Human Augmented

Mapping ([21], where only range sensing was used), where

the robot incrementally discovers its environment guided by

a human supervisor.

The main contribution of our work is therefore the inte-

gration of a purely appearance-based approach to qualitative

localization at the level of rooms and visual homing to

guide the robot between the recognized rooms. This is made

possible using a standard perspective camera and without

using any metric information by the coupling of active

perception and incremental learning with user interaction.

Fig. 1. Illustration of the tree structure with k = 3. Left: The crosses
illustrate the node centres, the circles illustrate the words. Right: Only the
word centres are stored in the leaves of the tree.

III. INCREMENTAL BAG OF WORDS METHOD FOR

ROBOTICS

We adopted the popular “bag of visual words” approach

to represent images in our system. Our contribution is an

adaptation of this method in a purely incremental setup well

suited for robotics, including the construction of a fast search

structure for the visual words.

Bags of visual words is a popular method for image cate-

gorization [22] that relies on a representation of images as a

set of unordered elementary visual features (the words) taken

from a dictionary (or codebook). Using a given dictionary,

a classifier is simply based on the frequencies of the words

in an image, thus ignoring any global image structure. The

term “bag of words” refers to document classification tech-

niques that inspired these approaches where documents are

considered as unordered sets of words. Several applications

also exist for robotics (e.g. [12], [23]).

The words used in image processing are local image

features such as SIFT keypoints (Scale Invariant Feature

Transform) [24]. As these features are sensitive to noise

and are represented in high dimension spaces, they are not

directly used as words, but are categorized using vector

quantization techniques such as k-means. The output of

this discretization is the dictionary. Instead of building the

dictionary off-line on an image database as is performed in

most applications, we introduce an incremental dictionary

construction ([8]) that makes it possible to start with an

empty dictionary and build it as the robot discovers its

surroundings. Our system therefore makes no a priori hy-

pothesis on the type of environment it will face. The words

in our system are balls of fixed radius in the feature space.

Dictionary construction entails adding a new word centred

on any feature that does not belong to an already existing

word. The size of the balls is called the dictionary radius and

influences the dictionary size, the algorithm performances

and computation time (see [8]).

When using bag of words techniques with large vocab-

ularies as is done in our system, searching for the word

corresponding to a feature is a time consuming process. We

therefore developed a tree dictionary structure to accelerate

this operation. This structure is similar to that of [25], but

built incrementally (figure 1). Each internal node of the tree

has a set of k children, each defined by a centre in the feature



Fig. 2. Search algorithm pseudo code. dist(f, g) computes the distance
between two features f and g. word radius is the size of the words in the
dictionary. s, d = sort children(f) returns the list s of children sorted
according to the distance of their frontier to feature f and the corresponding
list of distances d. p is the maximum number of children to consider. See
text for details.

space. Each child stores the word centres that are the closest

to its centre, thus partitioning the feature space of the parent

node by the Voronoi diagram of the k children centres.

The building process is fully incremental and simply

begins with an empty root node. Any new word that should

be added to the dictionary is directly added to the leaf

node to which its centre belongs. If the number of words

stored in this leaf is above a threshold nw, the leaf is

split in k children. The centres of the children leaves are

defined by applying k-means to the nw words centres. We

applied this procedure in the experiments of this paper with

nw = 500 and k = 10. Although this procedure does not

enforce a balanced structure to the tree1, therefore potentially

penalizing the search efficiency, experimental results show

that the trees are always nearly balanced with a depth

variation among branches of less than 2 and a limited impact

on search speed.

As shown by Beis and Lowe [26], searching for words

in these structures in high dimension (e.g. 128 for SIFT

descriptors) leads to a complexity similar or even worse than

that of naive linear search because a large number of nodes

is examined, thus compromising any interest in the use of a

tree structure. This scaling problem was solved in [26] in the

case of kd-trees by the design of a fast approximate search

procedure. We use a similar method, by limiting the number

of children to be explored in each node to p < k and by

searching first in the children whose frontiers are the closest

to the searched feature (Figure 2). This procedure affords a

very fast search – at the cost of a low percentage of errors.

For example, in the experiments reported in this paper, the

search for the words corresponding to a SIFT feature in a

dictionary of 15000 words with p = 3 took in average 1.4

ms with an error rate of around 0.6%.

This search procedure rely on the use of L2 distance for

the calculation of the distance to the node frontier. However,

in some cases, the use of another distance is preferred. For

example, color histograms are better compared using the

diffusion distance [27] we use in this paper (see below).

As this distance does not stem from a dot product, rapidly

calculating the distance between a feature and a node frontier

is not possible. It is therefore not possible to estimate if

1as is usually required in kd-trees for example

a neighboring node has to be searched or not. For these

cases, we devised another approximate search strategy that

exhaustively explores a given number q < k of children for

each node, starting with the children whose centres are the

closest to the feature. Experiments with diffusion distance

and color histograms show that this procedure leads to a

small search time with very few errors. In the experiments

reported in this paper, the search for the words corresponding

to a H histogram feature, in a 15000 words dictionary with

q = 3 took around 2.0 ms with an error rate of 0.6%.

As shown in [8], performances can be improved by

integrating several feature spaces. To this end, a dictionary is

built for each feature space, and the classifiers integrate the

words taken from all the dictionaries (see next section). In

this paper, two feature spaces using complementary image

characteristics were used:

• SIFT keypoints [24]: interest points are detected as the

maximum over scale and space of the convolution by

differences of Gaussian. Keypoints are described by

histograms of gradient orientations around the detected

point and are invariant in scale and rotation. The de-

scriptor used are of dimension 128 and are compared

using L2 distance.

• Local color histograms: The image is decomposed in a

set of overlapping windows of several sizes in order to

provide some scale invariance. The histograms of the

H value in the HSV color space for each window are

used as features. The windows used are of size 40x40

pixels taken each 20 pixels and 20x20 pixels taken each

10 pixels. The descriptors are of dimension 16 and are

compared using diffusion distance [27].

IV. SYSTEM OVERVIEW

Fig. 3. Functional overview of the system.

Our navigation method uses the same bag of words image

representation for qualitative localization and visual homing

(figure 3). A module therefore transforms images coming

from the robot’s camera into their bag of words representa-

tions, incrementally building the corresponding dictionaries.

These representations are used by the localization module

to predict the room identity and by the visual homing

module to estimate the direction from the current room

(estimated by the localization module) to the room requested

by the user. In these two modules, the classifiers should

be trained incrementally, i.e. they should be able to process

new examples and add new categories without the need to

reprocess all the previous data. To achieve that, we used

voting methods in which training simply entails updating

word statistics, and classifying simply entails reading these

statistics.



As will be detailled in the next subsections, the localiza-

tion and visual homing modules both use active perception

strategies, potentially requesting new images with a different

camera orientation to perform their task. These two mod-

ules also perform learning incrementally using discontinuous

supervision from the user. The user can provide the room

identity to the localization module at any time, while the

correct goal direction is requested by the visual homing

module.

A. Localization and mapping module

The map in our approach is composed of statistics associ-

ated to the visual words, i.e. the rooms in which each word

has already been seen in the examples used for training.

Fig. 4. Illustration of the two stage voting method used for qualitative
localization.

A two stage voting method implementing the active per-

ception procedure is used to estimate the robot position

(figure 4). In a given position, a first picture is taken from the

current head direction. The words found in the image vote

at a first level for the rooms in which they have already been

seen. Each word votes using its normalized inverse document

frequency, giving more weight to the words that correspond

to fewer locations:

idf = log(N/ni)/log(N)

where N is the total number of rooms and ni the number of

rooms in which the word i has been seen.

A quality of the vote result is calculated as the relative

difference between the maximum and the second maximum:

quality =
vWinner − vSecond∑

j vj

where vj is the number of votes for room j.

In order to filter out non-informative images that bring

noise in the estimation, the winning room votes at the second

level (with its quality) only if the quality is above a threshold,

0.1 in this paper (see [8] for an evaluation of the threshold

influence).

This process is repeated with the other feature spaces and

with new images until the quality of the second level vote

(estimated with the same method) reaches a given threshold

(0.5 in all experiments) or a given number of images is

reached (5 in all experiments). The recognized room is then

the room with the highest score. The new images taken for

localization are taken with a new random head direction

without moving the robot’s body.

The associated mapping procedure is interactive and pro-

cesses images upon user feedback after the localization

procedure is performed. If the user declares the localization

incorrect, learning is performed using the room label given

by the user. Images that have been used for localization and

new images taken from random head directions are used

for learning (for a total of 10 images in the experiments

reported). Learning these images entails simply memorizing

that the corresponding words have been seen in the current

room. The succession of localization events in different

rooms, at different positions and under different lighting

condition, learning when errors are committed, eventually

converges to a correct representation of rooms and to

stabilization of the recognition performances (see Results

section).

B. Visual homing module

This module learns, for each room, several visual homing

strategies that can guide the robot to the different neighboring

rooms. A homing strategy makes it possible to infer the local

direction to take to reach the goal from any position in the

room. Goal reaching is performed by iterating predictions

of the goal direction from the current camera image and

movement of the robot in this direction for a fixed distance.

Fig. 5. Illustration of the visual homing learning procedure.

The learning procedure is triggered each time it is not

possible to predict the goal direction. The procedure first

asks the user for the local goal direction. Five images are

then captured by moving the robot head from one side to

the other. The visual words from each image are associated

with the relative direction between the robot head and the

goal (figure 5). A homing strategy is therefore memorized

as a list of angles for each word in the dictionaries. For

each word, the mean and standard deviation of the associated

angles are estimated.

Predicting the goal direction from an image is performed

using a voting method. The directions around the robot are

discretized with a step of 20 degrees. Each word found in the

image vote for the bin corresponding to its mean associated

direction. Words which are found in different parts of the



Fig. 6. Example of localization results on INDECS database. For each position, 3 rectangles show the 3 successive localization experiments performed at
this point with different lighting conditions. A green rectangle corresponds to a successful localization, a red one corresponds to an error and the learning
of the position for this lighting condition. The diagrams at the bottom right show the temporal succession of correct and incorrect localization results
(bottom) and the evolution of the error rate on the last 25 localizations (top).

environment (e.g. words 1 and 4 in figure 5) are excluded

from the vote through a threshold on the standard deviation

of their associated directions. In our experiments, words

with a standard deviation of more than 20 degrees were

excluded. If the quality of the vote result (estimated as in

the localization module) is below a threshold (0.1 in the

experiments), an active perception procedure requests new

images by turning the robot head 45 degrees to the left

and to the right. If none of these images produce a vote

with a sufficient quality, the learning procedure is performed.

Otherwise, the robot is turned in the predicted goal direction,

and is moved forward by a fixed distance (50cm in our

experiments) before performing the procedure again.

V. EXPERIMENTAL RESULTS

A. Localization

In a previous article [8], we evaluated our localization

method on a Sony Aibo robot. We present here new valida-

tion results on the publicly available INDECS database [9].

This database contains images taken at 91 different points

and under three different lighting conditions (sunny, cloudy,

night) in an environment made of five different rooms (figure

6). For each of the 271 positions2 present in the database,

12 images were taken by rotating horizontally the camera of

30 degrees between images.

Evaluations were conducted by taking the 271 positions

in random order, thus mimicking the incremental discovery

2We will call position a point with an associated lighting condition,
thereby considering a point with different lighting as different positions
where our system can try to recognize the room

Fig. 7. Evolution of the error rate (red) and correct localization rate (green)
during the last 25 localizations. The graph shows the mean values on 100
random experiments similar to the one presented in figure 6, with minimum
and maximum values plotted as error bars.

of the environment by the robot at different positions and

different time. The localization algorithm was applied for

each position and learning was performed when an error

was made. Figure 6 gives an example of such an evaluation

sequence. In this example, 42 positions out of the 271 needed

to be learned. We can see that the positions where learning

was required are scattered across the whole environment,

thereby naturally covering the different viewpoints in the

environment. The fact that learning is most of the time per-

formed less than one time for each point in the environment

also demonstrates the robustness of our approach to lighting

conditions and to minor modifications such as the presence

or absence of people. The frequency of localization errors

also decreases to around 4% after the first 100 localizations.

Performing these evaluations 100 times with different ran-

dom position order shows that the mean number of learning



Fig. 8. Visual homing results in the main room of our laboratory, with and
without a central obstacle. The goal is the dashed rectangle on the right.

event is 52.3, meaning that globally, 80% of the positions

are correctly recognized. Figure 7 shows the evolution of the

local rate of correct localization, showing that the localization

accuracy continuously increases, reaching a level of 90%

after 180 localization event. The level of 80% of correct

recognition is reached after 100 localizations, with a mean

of 30 trainings, corresponding to 6 positions learned in each

room. Comparing these results with the ones presented in

[28] (where the best classification rate was 81% on the whole

dataset images with support vector machines) shows the

advantage of using an active perception strategy. By automat-

ically discarding uninformative images, and by recognizing

the positions instead of all the images, our system is able to

more efficiently recognize the different robot positions with

a simpler machine learning algorithm. Moreover, our system

only uses 20% of the images for learning instead of 33%

used in [28].

B. Visual homing

Visual homing was validated in the same environment

on a Sony Aibo3 and on a MobileRobots Pioneer 3 dx.

Performances were similar on the two robots. Figure 8 shows

3Video available at http://cogrob.ensta.fr/indoornavigation.html

two examples of training sessions in our lab with the Pioneer

3 dx robot. The first trial was made in an open environment,

with people working at their desks on the periphery. In

the second, we added a large obstacle in the centre of

the room to validate more complex homing strategies. In

both experiments, the goal was the exit door of the room.

The homing strategy was considered successful when the

robot reach a 40cmx1m rectangle in front of the door. The

robot was asked to reach this goal from 10 different starting

positions with different orientations. In the first setup, 11 user

supervisions were necessary for the robot to learn to reach

the goal from all positions. In the second, more complex,

setup, 15 were necessary.

In both experiments, the final homing strategy is able to

guide correctly the robot to the exit door of the room. During

learning, the precision obtained for the final point is low

when the starting points are varied, with an error between the

end-point and the rectangle centre reaching 50 cm in some

experiments, but is sufficient for the robot to exit the room.

The learning points are scattered in the environment, showing

that the homing strategies are correctly learned as the robot

is able to predict the goal direction for positions close to

previous learning points. After learning, when repeating a

trajectory from a given starting point, the error is smaller:

10 trials, starting from position 10 in the second environment

of figure 8 leads to a mean error of 15 cm, with a maximum

error of 30 cm.

VI. DISCUSSION

Thanks to the active perception strategy, the overall per-

formances obtained for localization are correct, using a

simple appearance-based model with a perspective camera

and simple learning algorithms. A limitation is the variance

of the obtained results (figure 7): results can be very good

(i.e. 95% of correct recognition after 100 localizations)

when the user chooses correctly the localization positions,

i.e. positions in open areas that rapidly covers the whole

environment. But results can be bad when positions are not

well chosen (i.e. less than 80% of correct recognition at the

end of the experiment). However, in a realistic scenario, users

have a natural tendency to guide the robot in central and open

areas of the rooms, where the performances of our method

are the best.

Compared to autonomous topological navigation in a

similar setup ([14]), labelling places and learning homing

behavior by interaction with the user has the advantage of

adapting the space segmentation on-line by asking supervi-

sion to the user when the robot encounters an ambiguous

viewpoint. This can be viewed as an active learning strategy,

where only relevant examples are used for learning. The

consequences are that less examples are required than in

supervised settings [29] and that the method is stable in the

long term as learning is not performed once performances

are correct. A potential problem arises when a user makes

errors in supervision, or tries to make the robot differentiate

very similar rooms or parts of a room. In our system, this

will lead to ever more requests for learning and an eventual



permanent confusion of the rooms. Statistics on the visual

words could be analysed to warn the user in such cases.

The end point precision of the visual homing strategy

is low, but is sufficient to reach a door in order to exit a

room. The poor precision is linked to the fact that, contrary

to more precise approaches ([13], [18], [19], [20]), only

the appearance of images are used, without any metric

information extraction. Our strategy also does not depend

on the robot’s odometry and does not require an external

estimate of the robot orientation. A positive consequence is

that this strategy can be used on simple platforms with low

quality camera such as the Aibo robot, even with a very weak

precision of movement execution. The question of when to

stop a homing strategy is also important. In the experiments

reported, the user stops the homing behavior when the robot

reaches the door. In a more autonomous setup, localization

should be attempted when homing is not possible so as to

stop homing behavior if the target room is reached, or ask

for user supervision otherwise.

From an implementation perspective, our system does not

currently integrate planning capabilities, meaning that it can

only guide the robot from one room to the neighboring ones.

Integration of a complete topological map and chaining of

homing strategies to go from one room to the other through

a third one is the subject of future work.

VII. CONCLUSION

We have presented a visual topological navigation sys-

tem adapted to small robots. The two modules designed

to recognize rooms and guide the robot between rooms

rely only on the appearance of images, without using any

metric information. This simple representation is built in a

fully incremental process, complemented by active percep-

tion strategies and user supervision for the learning of the

navigation capabilities, making it possible to achieve effi-

cient topological navigation on simple robots with standard

perspective cameras.
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