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Jean-Arcady Meyer
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Abstract— In robotics, appearance-based topological map
building consists in infering the topology of the environment
explored by a robot from its sensor measurements. In this paper,
we propose a vision-based framework that considers this data
association problem from a loop-closure detection perspective
in order to correctly assign each measurement to its location.
Our approach relies on the visual bag of words paradigm to
represent the images and on a discrete Bayes filter to compute
the probability of loop-closure. We demonstrate the efficiency
of our solution by incremental and real-time consistent map
building in an indoor environment and under strong perceptual
aliasing conditions using a single monocular wide-angle camera.

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM, [1]) is

today one of the most active research area in robotics. The

SLAM problem consists in localizing a robot while simul-

taneously building a map of the environment. Two different

approaches exist to address the SLAM problem. The first

one models the environment using a metric map, enabling

accurate estimation of the robot’s position. It provides a

dense representation of the environment and is particularly

well suited to precise trajectory planning. In the second ap-

proach, the environment is segmented into distinctive places

that form the nodes of a graph (or topological map) and

whose neighboring relations (i.e. whether or not a place is

accessible from another one) are modeled using the edges of

this graph. Topological mapping relies on a higher level of

representation than metric mapping, allowing for symbolic

goal-directed planning and navigation. It also provides a

more compact representation that scales better with the size

of the environment.

Of particular interest when addressing the SLAM prob-

lem is the ability of detecting loop-closures: it consists in

correctly associating current measurements with information

stored in the map when the robot is coming back to an

already mapped part of the environment. Defined more pre-

cisly in the topological mapping case, loop-closure detection

entails finding the node to which current measurements

pertain when the robot enters a previously visited place.

Accordingly, loop-closure detection is a data association

problem. In [2], we proposed a vision-based framework to

overcome this difficulty so as to reinitialize a metric SLAM

algorithm when a loop has been closed: at each new image

acquisition, the loop-closure probability is computed, making

it possible to detect those images that come from the same

location in real-time and in an incremental fashion, even

under strong perceptual aliasing conditions. In addition, we

proposed in more recent work [3] an extension of [2] that

enables the use of several image representations and that has

been validated on both indoor and outdoor image sequences.

In this paper, we present a real-time, online, appearance-

based topological SLAM algorithm relying on [2] to ef-

ficiently handle loop-closures with a monocular handheld

wide-angle camera. When a new image is acquired, local-

ization is attempted by searching for loop-closures among

the nodes of the topological map. In case of success, the

loop-closing node is updated with the information coming

from the current view. Otherwise, a new node containing

this information is added to the map. Loop-closure detection

is done according to the method detailed in [2]: images are

quantized based on the visual bag of words scheme [4], with

a discrete Bayes filter used to estimate the probability of

loop-closure. Epipolar geometry [5] helps discarding outliers

in an ultimate validation step when this probability is above

some threshold.

In section 2, we give a review of related work on topo-

logical SLAM. Our approach is detailed in the 3 following

sections. Experimental results are reported in section 6 and

discussed in section 7, before the conclusions of the last

section.

II. RELATED WORK

In an early work on topological SLAM [6], a Partially

Observable Markov Decision Process (POMDP) model is

used to estimate the position of a robot as a probability

distribution. More recently, the authors of [7] adapted this

approach to perform hybrid topological-metric SLAM using

a 360◦ laser scanner, also enabling loop-closure detection

capabilities. However, POMDP models are generally not

suited to adaptative online map building since they need to be

learned in an offline process ([8]) or set manually from prior

information about the environment’s geometry, appearance

and topology (e.g. the environment is made of corridors and

rooms, corridors’ junctions are at right angles and the robot

is expected to be in a corridor most of the time, [6], [7]).

Inference has been investigated by the authors of [9] and

[10] to address the topological SLAM problem: topologies

are sampled over the space of topological maps and matched



with measurements ([10]) or actions ([9]) in order to accept

or discard each individual sampled map. This process can be

run online along with information acquisition but the com-

plexity involved by the sampling step only allows mapping

of environments with few distinct places (i.e. map size is

limited to 15 nodes).

Most of the recently developped approaches to the topo-

logical SLAM problem are based on appearance and rely on

omnidirectional vision ([11], [12], [13], [14]). A similarity

distance between images is defined to set the edges of the

map, with very similar images considered as originating from

the same place and thus as corresponding to the same node.

Appearance-based approaches provide an efficient segmenta-

tion of the environment, since omnidirectional images make

it possible to recognize a place from distant points of view.

However, none of the approaches listed above meet both the

online and real-time requirements: either input information

is processed in a previous offline step ([11], [12], [14]) or the

complexity of the image similarity computation is untractable

in real-time conditions ([13]).

The authors of [15] present a real-time vision-based frame-

work to perform topological SLAM using a single monocular

camera. The approach relies on the bag of words paradigm

[16]: images are quantized as a set of unordered elementary

features (the visual words) taken from a dictionary (or

codebook). The dictionary is built by clustering similar

visual features extracted from the images into visual words.

Using a given dictionary, images are simply represented by

the frequencies of the words they contain. In [15], images

are represented as vectors of visual words statistics taken

from an offline-built visual vocabulary and a vote procedure

makes it possible to efficiently find the past images that look

like the current one. This approach is in many points very

similar to our previous work ([2]) regarding loop-closure

detection. Still, the implementation of the visual bag of words

scheme proposed in [15] relies on an offline process for the

vocabulary construction.

The main contributions of the work reported here are

twofold. First, our method is based only on appearance

and uses a single monocular camera, whereas most of

the appearance-based approaches take omnidirectional or

panoramic images as input. Second, the framework proposed

here is fully incremental and processing is performed in real-

time.

III. TOPOLOGICAL SLAM

The topological map is a graph whose nodes correspond

to distinct locations in the environment and whose edges

model time neighboring relations between the nodes. The

challenge in this appearance-only approach is to decide

when to add a new node to the map when a new image

is provided by the camera. As stated by the authors of [10],

a topology is a set partition over the set of measurements (i.e.

multiple images may correspond to one and the same node

in the map). Therefore, in order to infer the correct topology

from the measurements, we must be able to detect when

an image comes from an already visited location and thus

Fig. 1. Overall process diagram (see text for details).

Fig. 2. Time neighboring relations between nodes: in the graph shown here,
node 9 is the last added node. When a new image is considered, either a
new node will be added (node 10) or an existing one will be updated (node
3). In both cases a new edge connected to node 9 will be added.

pertains to an existing node: this is the loop-closure detection

problem as defined for the topological mapping case. From

this observation, we add a new node to the map only when

no loop-closure has been detected.

The overall processing of our SLAM algorithm is illus-

trated in the diagram shown in figure 1. When a new image

is acquired, it is first compared to the last considered image

to determine if it has to be taken into account (e.g. when

the camera is standing still images can be skipped, see

section V). Then, Bayesian loop-closure detection following

the work detailed in [2] is attempted. If successfull, the loop-

closing node is updated with the visual information coming

from the current image. Otherwise, a new node containing

this information is added to the map. In both cases, a new

link with the last updated or added node is created: edges

model the time order in which locations are travelled by the

camera (see figure 2).

In order to efficiently and robustly detect loop-closures,

each node has to be characterized using a compact and

relevant representation of the corresponding location. More-

over, since a node may be characterized by multiple images

(e.g. in case of loop-closures), this representation must be

extendable so as to be augmented when the node is updated.

To this end, we choose to characterize a node using the

collection of visual words found in the images pertaining to

the corresponding location (see figure 3). In the visual bag

of words implementation [4] applied here, a visual word is



Fig. 3. Illustration of the characterization of the nodes: a node is
characterized using the visual words found in the images pertaining to the
corresponding location. Since node 3 in the map is a loop-closing node, the
visual words from two images are used for its characterization.

obtained by incrementally combining similar visual features

in an agglomerative manner: visual words are clusters of

similar visual features that are stored in a visual vocabulary.

In this paper, SIFT (Scale Invariant Feature Transform [17])

keypoints are used as visual features: interest points are

detected as maxima over scale and space in differences of

Gaussians convolutions. The keypoints are memorized as

histograms of gradient orientations around the detected point

at the detected scale. The corresponding descriptors are of

dimension 128 and are compared using L2 distance.

IV. BAYESIAN LOOP-CLOSURE DETECTION

As explained earlier, loop-closure detection helps deciding

if we should add a new node to the map or update a previous

one when considering a new image. The structure of the

map and its coherence regarding the distinct locations of the

environment thus strongly depends on the robustness of loop-

closure detection: if a loop-closure is missed or erroneously

detected, the overall topology will no longer be consistent.

However, there can be small divergences between the infered

map and the true topology as long as the true topology is

globally respected (e.g. a small time delay between a loop-

closure’s occurrence and its detection is acceptable).

The Bayesian loop-closure detection method introduced

in [2] is used here. The approach consists in detecting

loop-closures based on the similarity between images with

particular attention payed to the time coherence of the

detection. To this end, a discrete Bayes filter is employed

to compute the probability of loop-closure each time a

new image is considered. In this paper, the discrete Bayes

filter is adapted to find the node N j of the map whose

characterization is similar enough to the current image It
to consider that It comes from the location corresponding

to N j. In a probabilistic framework, and using the quantized

representation zt of It (i.e. zt is the collection of visual words

found in It ), this can be expressed as searching for the node

N j of the map Mt−1 = {N0, . . . ,Nn} whose index satisfies:

j = argmaxi=−1,...,n p(St = i|zt ,Mt−1) (1)

where St = i is the event that image It comes from the

location corresponding to node Ni, or put more simply it is

the event that It comes from Ni. We also introduce St = −1

to account for the no loop-closure event at time t. Note that

solving equation 1 relies on the map built until time t − 1

(i.e. Mt−1): the update of the map, leading to Mt , is done

afterwards, according to the solution obtained for equation 1

(see figure 1). As shown in [2], solving equation 1 requires

the incremental computation of the full posterior, as follows:

p
(

St |zt ,Mt−1

)

=

η p
(

zt |St ,Mt−1

)

n

∑
j=−1

p
(

St |St−1 = j,Mt−1

)

p
(

St−1 = j|Mt−1

)

(2)

where η is a normalization term. The recursive aspect of

the mathematical formulation proposed in equation 2 stems

from the fact that p
(

St−1|Mt−1

)

is a factored rewriting of

p
(

St−1|zt−1,Mt−2

)

, the posterior at time t − 1, given that

Mt−2 has been updated with zt−1 to form Mt−1.

From equation 2, it can be seen that the estimation of

the full posterior requires the computation of the conditional

probability p
(

zt |St ,Mt−1

)

, which is considered as a likeli-

hood function L (St |zt ,Mt−1) of St : we evaluate, for each

entry St = i of the model, the likelihood of the currently

observed words zt (see section IV-B). Also, we can observe

that a time evolution model p
(

St |St−1 = j,Mt−1

)

is needed

to sum the full posterior calculated one step before over all

possible transitions between t −1 and t (see section IV-A).

A. Transition from t −1 to t

As explained in [2], the time evolution model gives the

probability of transition from one state i at time t−1 to every

possible state j at time t, enforcing the temporal coherency of

the estimation and limiting transient detection errors. In this

paper, we introduce a new image acquisition policy to skip

consecutive images that are too similar (see section V), which

is what may happen when the camera is standing still. Then,

when an image is considered for processing, it is assumed

that the camera has moved. The probability of transition from

state i to state j with i, j > −1 is thus modeled using a sum

of Gaussians, whereas a single Gaussian was used in our

previous work. The sum of Gaussians is set to give more

emphasis to states j = i−1 and j = i+1 when considering

state i, the new image acquisition policy letting us assume

that the probability of staying in state j = i is low (see figure

4).

B. Likelihood in a voting scheme

The likelihood function L (St |zt ,Mt−1) is obtained using

a simple and efficient voting scheme (see [2] for details).

An inverted index helps associating each visual word in the

visual vocabulary with the nodes of the map it characterizes.

Therefore, when an image is processed, the found visual

words vote for the nodes they characterize using the tf–idf

coefficient [18]: this procedure makes it possible to quickly



Fig. 4. Sum of Gaussians vs single Gaussian for the time evolution
model: the sum of Gaussians model (solid line) gives more emphasis to
neighboring states than the single Gaussian model (dashed line), which puts
more emphasis to the centre.

vote for the nodes whose characterization is similar to the

current image. The particular case of the no loop-closure

event is easily handled by adding an entry to the inverted

index corresponding to a virtual node characterized with the

mostly seen visual words.

C. A posteriori hypotheses management

When the time evolution model has been applied and the

product with the likelihood done, the full posterior is nor-

malized. We then select as possible loop-closure hypothesis

the node whose probability is above some threshold (0.8

in our experiments). Since the posterior may be diffused

over neighboring nodes rather than peaked over a single one,

the score’s sum over neighboring nodes is used instead of

a single probability score. The selected hypothesis is next

submitted to the epipolar geometry ([5]) validation step to

discard outliers: a RANSAC procedure entails finding a con-

sistent camera viewpoint transformation between one image

of the selected node and the current frame by matching the

corresponding SIFT features using a threshold on the average

reprojection error. If successfull, the loop-closure hypothesis

is accepted and the loop-closing node is augmented with

the visual words from the current image. Otherwise, if no

hypothesis has been fully validated, a new node characterized

with these visual words is added to the map.

V. LOCAL IMAGE SIMILARITY

In this paper, a simple method to compute local image

similarity has been introduced to overcome some of the

limitations of our previous work regarding loop-closure de-

tection. First, every acquired image was considered for pro-

cessing, provoking loop-closure detections when the camera

is standing still for a while. Second, in the discrete Bayes

filter implementation proposed before, a cache mechanism

was used to delay the “release” of a hypothesis: since

each image is similar to its neighbors in time, immediately

releasing a hypothesis would result in local loop-closure

detections when the next image would be processed. The

size of this cache was empirically set to 10 images and was

dependent on the camera frame rate and on the velocity of

camera motion. Thus, every hypothesis was released only

after 10 images had been processed, making it impossible

to check for loop-closures between Ii and Ii−10, . . . , Ii−1 (see

[2] for details). Using such a fixed cache size could result in

local loop-closure detections in case of slower than expected

camera displacement.

The local image similarity is defined between a node Ni

and the current image It as the percentage of visual features

extracted in It that are visual words characterizing Ni. The

higher the percentage, the higher the similarity.

Based on this criterion, a newly acquired image is accepted

for processing only if the local similarity with the last added

or updated node is below 90%, allowing to skip very similar

consecutive images. Moreover, the cache mechanism is now

also governed by the local image similarity: each node is kept

in cache as long as its local similarity with the current image

is above 20%. A node is thus released and effectively taken

into account in the map only when it is different enough from

the current image to avoid local loop-closure detections.

Note that we did not differenciate here the addition of a

new node to the map from the update of an existing one. In

both cases, a new node is first created, characterized with

the visual words found in the current image, and immediatly

pushed in cache. Then, when the node is released, two

different treatements are possible: either it is used to update

the characterization of an existing node (i.e. in case of a

loop-closure), or it is added as is in the map. In the first

case, updating an existing node with a released one can be

considered as merging their characterizations.

VI. EXPERIMENTAL RESULTS

Experimental results were obtained from a video sequence

lasting 247 seconds and acquired at 1Hz using a handheld

wide-angle camera. During the travel of the camera, several

loops were closed in a particularly challenging indoor en-

vironment with strong perceptual aliasing (see figure 8 for

examples of the images composing the sequence).

The trajectory of the camera is shown superimposed on the

floor plan of the environment in figure 5, left part. The travel

begins with a first loop in the blue area, before entering the

magenta area. After that, the camera comes back into the

blue area and goes straight ahead to the red area. It then

comes back again to the blue area before discovering the

green area. The travel ends near the 8th white circle. On the

right part of the figure is shown the resulting topological

map, for which the same color convention is used in order

to easily identify mapped areas. It can be seen that all the

loops corresponding to a return of the camera into the blue

area are correctly detected, as well as the multiple loops done

inside the blue area. This is shown by the yellow color of

the trajectory on the floor plan but also by the yellow circles

that highlight the loop-closing nodes of the map. Note that a

loop-closing node may correspond to multiple loop-closure:

for example, the camera passed 4 times around the 6th white

circle, causing several nearby loop-closing nodes to encode

for multiple similar images.

When considering the topological map more carrefully, we

can observe that there is some delay between the occurrence

of a loop-closure and its detection. This can be seen each

time the camera is coming back to the blue area: the true

loop-closing node (i.e. the node corresponding to the effec-

tive return of the camera in an already visited place) precedes

the loop-closing node selected by the SLAM algorithm. For



Fig. 5. Floor plan of the travelled environment superimposed with the trajectory of the camera (left part of the figure) and corresponding topological map
(right part of the figure). The graph layout is performed using a simple “spring-mass” model [19]. See text for details.

example, when the camera is coming back from the magenta

area to the blue one, the effective transition (near the 3rd

white circle) is 3 nodes away from the corresponding loop-

closing node (i.e. the yellow circled node that links together

the magenta and blue branches of the topological map). The

reasons for this are twofold. First, we already observed in

[2] that the loop-closure detection had a low responsiveness,

which was partially motivated by the robustness to transient

detection errors. Second, when the camera is travelling along

consecutive already visited locations (e.g. “d” in figure 5),

the likelihood may be divided among several nodes that

correspond to the previous passings of the camera (e.g. “a”,

“b” and “c” in figure 5) and that all lead to a common

loop-closing node. Thus, the likelihood exhibits multiple

peaks (see figure 6) that prevent the full posterior from

being unambiguously focused on one particular hypothesis.

However, further image acquisition will help removing this

ambiguity when the camera reaches the loop-closing node

that joins the branches corresponding to the past passings.

In the results presented above, the overall processing has

been done online and in real-time: 123s were needed to

process the 247s of the sequence using a Pentium Core2

Duo 2.33GHz laptop and with 320x240 pixels image size.

Figure 7 shows the evolution of the computation time per

image. In [2] we noted that the overall image processing

time seemed to evolve approximatively linearly with time:

this is confirmed here. However, we can observe that feature

extraction and word searching times are higher here: more

visual features are found in the larger images used in this

experiment, causing more visual words to be added to the

visual vocabulary.

Fig. 6. An example of ambiguous likelihood: this corresponds to a situation
where the camera goes back for the fourth time (“d” in figure 5) to an already
visited location. From left to right, the peaks correspond to the “a”, “b” and
“c” passings of the camera at this location in figure 5. Hopefully, further
acquired images will help removing the ambiguity.

Fig. 7. Evolution of the processing time per image: given is the time needed
to extract the features in the images (triangles), to which is added the time
required to find the corresponding words in the vocabulary (circles), along
with the total computation time per image (squares). The total computation
time includes all the processings that lead to the addition or the update
of a node in the map (i.e. image processing, word searching, loop-closure
probability estimation and multiple-view geometry verification). To enhance
readability, computation times have been averaged over 5 images.

VII. DISCUSSION AND FUTURE WORK

The appearance-based approach to topological SLAM

proposed in this paper compares favorably with the methods



Fig. 8. Examples of images composing the sequence. Note the strong
similarity between the images from the magenta, red and green areas.

cited in section II because it is the only one to combine

real-time performances and fully incremental processing. We

adapted our previous work on loop-closure detection [2] to

the topological SLAM context, improving some aspects re-

garding images selection and hypotheses management: simi-

lar consecutive images are skipped, the cache size parameter

is adaptative and based on the computation of local image

similarity, and only those hypotheses that do not correspond

to a loop-closure are added to the model as new nodes in

the map, scaling better with the number of images.

The results obtained here show the robustness of the loop-

closure detection method, making it possible to build con-

sistent topological maps using only a wide-angle monocular

camera: the visual bag of words model [4] performed well

without having to remove radial distortion from images,

making it possible to detect loop-closures even with non-

standard perspective cameras. However, monocular vision

performs poorly when travelling in an already visited place

with significant viewpoint changes (e.g. passing twice in the

same location with opposite directions). One solution could

be to use local metric information from relative transforma-

tions between camera viewpoints as a replacement for the

actual time evolution model. This could be done using visual

odometry [20], or a visual 3D-SLAM algorithm like the one

presented in [21]. In a more experimental perspective, we

could consider overcoming this difficulty by mounting the

camera on a mobile robot that provides odometry measure-

ments. On the one hand, purely vison-based solutions can be

easily adapted to any type of mobile robot mounted with a

camera, but they require robust feature tracking at frame rate

over time, thus failling when the environment is poor. On the

other hand, odometry measurements provided by the robot

would enable detecting loop-closures even when appearance

information is unusable (e.g. when the images do not exhibit

salient features), but this would limit the application to robots

that can provide such measurements. Furthermore, not only

the addition of local metric information to the model could

help enhancing loop-closure detection capabilities, it would

be necessary for navigation: when planning a path in the

map, local metric information encoded in the edges would

be required to determine how to travel between nodes.

VIII. CONCLUSION

In this paper, we have presented an appearance-based ap-

proach to address the topological SLAM problem using only

a single monocular wide-angle camera. We demonstrated the

quality of our method by building a consistent topological

map that is coherent with the topology of the environment,

even under strong perceptual aliasing conditions. Results

were obtained in real-time thanks to incremental processing

and should be enhanced in the near future with the addition

of odometry measurements.
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