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Abstract: We present an overview of laser results we obtained with Yb-

doped calcium fluoride and its isotype strontium fluoride. In order to study 

the laser performance in femtosecond and high power regimes, spectral and 

thermal properties are first discussed including the potential of these 

crystals at room and cryogenic temperatures. Experimental demonstrations 

of high-power and ultrashort pulse oscillators and amplifiers are presented 

and analyzed. 
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1. Introduction  

Calcium fluoride (CaF2 also known in crystallography as fluorite or fluorospar [1]), has raised 

the interest of the laser community since the very beginning [2,3]. Nevertheless, this matrix 

was almost absent for laser applications until its revival in 2004 with the ytterbium doping. 

Indeed, since its first laser operation in 2004 [4-6], Yb:CaF2 and its isotype SrF2 have been 

among the most studied and promising crystals for the development of short-pulse, high-

energy, high-power diode-pumped solid state lasers [7, 8] with, for example, the recent 

development of a TW chain [9]. Three main reasons explain this trend. First, calcium fluoride 

is a simple cubic crystal whose crystallographic properties are fairly well known. This crystal 

can be grown in large dimension and optical-quality ceramics for laser applications have been 

demonstrated a long time ago [3]. Second, the simple structure of this crystal permits to 

obtain good thermal properties [10,11]. Finally, Yb-doped fluorides have very broad and 

smooth emission bands, which is exceptional for cubic crystals. This is explained by the 

different valencies of the dopant (Yb
3+

) and the substituted alkaline cations (Ca
2+

, Sr
2+

) which 

induces the creation of clusters during the doping process [12-16]. The cluster organization of 

Yb-doped fluorides is therefore a key point to obtain ultra broad emission bands. The 

exceptional feature of Yb-doped fluorides, combining both good thermal and spectral 

properties –which are often contradictory for Yb-doped materials–, makes them very 

attractive (Fig. 1) for diode-pumped femtosecond solid-state lasers aiming at the generation 

of high-energy ultrashort pulses with high average power.  

In this paper, the fluorides exception is studied more deeply with a description of the 

spectral and thermal properties of these materials at room and cryogenic temperatures. 

Moreover, the impact of these properties on laser performance is discussed by examining the 

experimental results already obtained in the high-average-power CW-laser regime and in 

ultrashort femtosecond oscillators and amplifiers. 

 
Fig. 1. Figure of merit plotting thermal conductivity (undoped crystals) versus 
emission bandwidth (at room temperature) in order to estimate the potential of 

Yb-doped laser hosts for the development of high-average-power, short-pulse 

lasers. 

2. Spectral Considerations  

One of the main spectroscopic interest of Yb-doped fluorides concerns their very broad and 

smooth emission bands, which is exceptional for cubic crystals. As mentioned above, it 



comes from the formation of Yb
3+ 

clusters which occur during the doping process because of 

a question of charge compensation [12-16]. This cluster effect occurs at the lowest doping 

levels but it really becomes preponderant for Yb-doping above 0.5at%. The organization of 

the Yb
3+

 ions in these clusters leads to only one kind of luminescent and laser active center 

but due to some structural disorder inside and between the clusters, the spectroscopy of the 

Yb
3+

 ions resembles that of a glass leading to broad and relatively smooth absorption and 

emission spectra. Co-doping the crystals with charge compensating ions such as monovalent 

Na
+
 ions has been used by some authors [17] to reduce the formation of divalent Yb

2+
 

species. However, co-doping the crystals, at least by a non-negligible amount of Na
+
, which 

was not the case in [17], would lead to a disintegration of the clusters and to an undesired 

change of the luminescent properties (absorption, emission and lifetime) of the lasing center, 

which makes the interest of this particular laser system.  

 

Fig. 2. Absorption spectra of Yb:CaF2 and Yb:SrF2 at room temperature 

 

Fig. 3. Emission spectra of Yb:CaF2 and Yb:SrF2 at room temperature 

At room temperature the spectroscopic characteristics of Yb:CaF2 and Yb:SrF2 are very 

similar (Fig. 2, 3 and 6). And at low temperature, the spectra of these two crystals slightly 

differ, but with the good idea of having a complementary emission spectra in the 1020-1060 

nm range  (Fig. 4, 5 and 6). 



At cryogenic temperature (see in Fig. 4 and 5) the absorption and emission spectra are 

more structured but their cross sections increase and they remain sufficiently large to allow 

for the production of ultrashort laser pulses. 

  

Fig. 4. Absorption spectra of Yb:CaF2 and Yb:SrF2 at LN2 temperature 

 

Fig. 5. Emission spectra of Yb:CaF2 and Yb:SrF2 at LN2 temperature 

 

In view of these spectra and knowing their respective emission lifetimes, each material 

has its own advantages: a higher peak absorption cross section around 980 nm and a longer 

fluorescence lifetime for Yb:SrF2 (2.9 ms compared to 2.4 ms for Yb:CaF2), and a wider and 

slightly larger gain cross section spectrum (see in Fig. 6) for Yb:CaF2.  

In a regenerative amplifier configuration, the longer fluorescence lifetime is crucial since 

it permits higher energy storage, which leads potentially to higher energy pulses with 

repetition rates in the 100 Hz range. However, for mode-locked operation, the long lifetime 

becomes a disadvantage, leading to a strong tendency to operate in Q-switched regime [18]. It 

is also interesting to notice that the Yb:SrF2 gain cross-section spectrum is shifted to shorter 

wavelengths compared to the Yb:CaF2 spectrum. This spectral complementarity might be 

useful to design ultra broad laser oscillators and amplifiers based on the combination of both 

materials. 



 

Fig. 6. Gain cross section of Yb:CaF2, and Yb:SrF2 (for beta= 0.1 and 0.2) at 

room temperature (left) and LN2 temperature (right) 

 

3. Thermal Considerations  

At first glance, the thermal properties and especially the thermal conductivities of calcium 

fluoride and strontium fluoride seem well-suited to the design of high power lasers. Indeed, 

the relatively simple structure of these cubic crystals induces good thermal conductivities in 

the range of 10 W.m
-1

K
-1

 at room temperature: 9.7 W.m
-1

K
-1

 for undoped CaF2 and 

8.3 W.m
-1

K
-1

 for undoped SrF2. Nevertheless, other thermal properties of materials must be 

taken into account to assess more precisely their potential for high power lasers.  

Specifically, a second important parameter is the thermo-optic coefficient. This 

parameter results from three effects: the refractive index variation versus temperature 

(dn/dT), the thermal expansion of the crystal, and the mechanical stress induced by the 

thermal loads. In the case of CaF2 and SrF2 [11] the second term is positive while the two 

others are negative with approximately the same absolute value, resulting in a negative 

thermo-optic coefficient of -11.3x10
-6

 K
 -1

 for CaF2 and -15.9x10
-6

 K
 -1

 for SrF2 at room 

temperature. The thermal lenses induced in the fluorides are relatively small and negative, 

making these crystals quite atypical compared to others whose thermo-optic coefficients are 

quasi systematically positive (e.g. in YAG the thermo-optic coefficient is 8.9x10
-6

 K
 -1

). 

Another important thermal properties is the thermal shock parameter [19,20]; it is well 

known that fluorite is sensitive to thermal shocks.  Indeed, the thermal shock parameter of 

undoped CaF2 (cf. table 1) is 7 times lower than for YAG for example. Fluorite is therefore 

relatively sensitive to fracture, and requires special precaution in high power pumping 

configuration to ensure slow variations of pump power absorption.   

Concerning parasitic thermal loads, a strong advantage of CaF2 is its broad transparency 

range extending up into the VUV (≈160 nm), which avoids the possibility of multi-photon 

absorptions at high power levels. Nevertheless, when doped with ytterbium, the crystal 

transparency range depends strongly on the growing process. Indeed, depending on the 

fabrication technique, the possible presence of Yb
2+

 leads to an absorption band around 390 

nm (Fig. 7). To avoid the formation of divalent Yb
2+

 species, it is not necessary to co-dope 

the crystals with charge compensators like Na
+
 or to apply special post-growth treatment. 

Actually, it is only necessary to grow the crystals with the adequate atmosphere. The overall 

thermal behavior can be degraded under high intensity pumping if the quantity of Yb
2+

 is not 

adequately reduced.  Moreover, the growing process of Yb:CaF2 and Yb:SrF2 is sufficiently 

well mastered to allow a very good quantum efficiency (determined with the method of 

Chénais et al. [21-23]): measured to be higher than 99% in both cases. This leads to a very 

low thermal load due to non-radiative effects with these crystals: 0.7 % for Yb:CaF2 and 0.5 

% forYb:SrF2. 



 

 
Fig. 7. Absorption spectra for two different qualities of Yb:CaF2 crystals. 

 

 
Fig. 8. Thermal conductivity versus doping level (Yb/Ca) for Yb:CaF2 at room 

and LN2 temperatures [10,24-26]. 

 

 
Fig. 9. Thermal conductivity versus temperature (Yb/Ca) for Yb:CaF2 for 0%, 

3 % and 15 % doping levels [10,24-26]. 

 



 

Table 1. Spectroscopic and thermal properties of undoped and Yb doped CaF2 at room and LN2 temperatures 

[6,10,11,19, 25, 27-33] 

Undoped crystal CaF2 

At 273 K 

CaF2 

At 77 K 

Thermal conductivity (W m-1K-1)  9.7 68 

Hardness (Knoop : kg/mm2) 

                (Moh) 

140-160 

4 
 

Elastic compliance (1/TPa) : s11 

                                              s12 

                                              s44 

6.83 

-1.46 

29.6 

 

Elastic moduli (GPa) : c11 

                                     c12 

                                     c44 

165.3 

44.5 

33.8 

 

Young Modulus (GPa) : <100> 

                                       <111> 

146.4 

89.6 
 

Poisson ration ν  0.21  

Linear thermal expansion (10-6 K-1) 18.9 4.5 

Vickers Hardness (GPa) 2  

Fracture toughness (MPa m1/2) 0.7  

Tensile fracture strength (optically polished) (MPa) 157  

Thermal shock parameter (W m-1) 436 12800* 

Melting point 1691 K 

Elasto-optic coefficient: p11 

                                        p12 

                                        p44 

0.089 

0.223 

0.024 

 

dn/dT (10-6 K-1) -11.3 -3 

dilatation (10-6 K -1) 10.3 2.46 

 stress (10-6 K-1) -11 -2.62 

Thermo-optic coefficient (10-6 K-1) -11.3 -3.16 

Sound velocity (m/s) 5870  

Refractive index n (@  1µm) 1.429 1.435 

Non-linear index n2, ( 10-20m2/W) 1.9  

Doped crystal 

≈2.5% 

Yb:CaF2 

At 273 K 

Yb:CaF2 

At 77 K 

Standard laser wavelength L (nm) 1053  1034 

Standard absorption wavelength P (nm) 979.6 980.9 

Absorption cross section @  P (10-20 cm2)   0.54 1.7 

Emission cross section @ L (10-20 cm2) 0.16 0.49 

Absorption cross section @ L= (10-20 cm2) 0.0029 0.00066 

Emission cross section @ P (10-20 cm2)  0.48 0.62 

Mean fluorescence wavelength (nm) 1005 1018 

Fluorescence lifetime 2.4  

ILsat (kW.cm-2) 32 17 

Thermal conductivity (W .m-1.K-1) 5.4 4.9 

Thermal shock parameter (W m-1) 242* 925* 

Thermo-optic coefficient (10-6 K-1) 

In situ measurements 

 

-17.8 

 

-2.45 
* Calculated taking into account the value of the parameters at 77 K when found in the literature. 

 

Another effect to take into account to fully assess the thermal properties is the influence 

of the Yb
3+ 

doping on the thermal behavior.  

Up to now, few works have been performed on this subject. But it clearly appears that the 

doping level impacts negatively the thermal properties. For example, the thermal conductivity 



decreases by a factor of 2 from undoped CaF2 to 5%Yb- doped CaF2. To approximate the 

behavior, a law for low doping level ( < 10 %), derived from the Gaumé’s model[24], is given 

by the following equation: 



  

0

d
arctan


0
d













,     (1) 

where 




0
 stands for the thermal conductivity for the undoped crystal, 



d  the doping level 

[34], and  equals at room temperature to 0.28 for Yb:CaF2 and 0.15 for SrF2. In conclusion 

the doping level strongly influences the thermal properties. The change of thermal 

conductivity also affects other thermal properties, such as the thermal shock parameter, which 

is proportional to the thermal conductivity. 

 One way to improve the thermal properties of Yb-doped laser crystals like Yb:CaF2, is 

to decrease the temperature [35-36]. Indeed, in general, thermal properties, such as thermal 

expansion, thermal conductivity and thermo-optic coefficient can be significantly improved 

by reducing the temperature. For example, in the case of undoped CaF2, the thermal 

conductivity increases by a factor of 7 by lowering the temperature down to 77 K (see in table 

1). Following Slack measurements [10], the thermal conductivity increases hyperbolically 

down to about 50 K according to an empirical law given by 




0
 2652 /(T  37) . In parallel, 

the thermal expansion of undoped CaF2 decreases by a factor 4.2 and its thermo-optic 

coefficient by a factor 3.6 by lowering the temperature down to 77 K. Such behaviors thus 

really improve the thermal properties of the crystals; for instance, they improve their 

resistance to the thermal shocks by about a factor of 30. However, when the crystals are 

doped with rare-earth ions like Yb
3+

, the situation may greatly change. For example, 

according to Popov and Cardinali’s measurements [25,26] (Fig. 8 and 9) the behavior of the 

thermal conductivity of heavily doped Yb:CaF2 seems to be very particular, since it is 

decreasing (instead of increasing) by lowering the temperature, which is typical of disordered 

systems but is anomalous for crystals of simple stoichiometric composition. In fact, in the 

case of Yb:CaF2, the thermal conductivity only increases for low  (<0.1%Yb) dopant 

concentrations and it stays nearly constant for  about 1%Yb dopant concentrations. Such 

particular behavior is to be related with the clustering of the Yb
3+

 ions, which occurs at high 

dopant concentrations, and the resulting effect on the mean-free path of the phonons in this 

material. As a consequence, the  parameter which enters in equation (1) cannot be 

considered, as expected for a standard crystal, as a constant; actually, at 77 K, this factor 

drastically drops down to 0.05 for Yb:CaF2. With this consideration, the thermal properties at 

low temperature consist in a trade off between the different thermal parameters. Nevertheless, 

if we consider the thermal shock parameter as a real factor of merit, the lowering of the 

temperature still remains beneficial but only by a factor 3.8 for a 3%Yb doped crystal. 

Other drawbacks associated with low temperature operation are related to spectroscopic 

considerations: the emission spectrum consists of sharper features and the average 

fluorescence wavelength is longer, leading to an increase of the thermal load due to 

fluorescence by 50 %.  

In conclusion, laser operation at cryogenic temperature has to be considered very 

precisely; in fact the pros are higher gain and better thermal resistance at high power level but 

the cons are the more structured emission band and a strong dependence of the thermal 

conductivity with the doping concentration. 

 

4. High Power Experiments 

To validate the good thermal properties of fluorides and especially of Yb:CaF2, high power 

laser experiments have been performed in the CW regime [11]. At room temperature, with a 

simple 3-mirror cavity operating in the TEM00 mode, with a 2.6-%Yb-doped 5-mm long 



Yb:CaF2 crystal, 10.2 W at 1053 nm have been obtained for a 64 W incident pump power at 

980 nm (39 W absorbed) and, with a 2.9-%Yb-doped 5-mm long Yb:SrF2 crystal, 5.8 W at 

1051 nm have been obtained for 26 W incident  power (20 W absorbed). In these conditions 

the temperature difference between the center of the laser beam in the crystal and the 

periphery is around 30°C, leading to a thermal lens with a focal length around -110 mm. At 

cryogenic temperature (77 K), the laser performances are clearly improved [37]: a total 

average power of 97 W at 1034 nm is obtained when pumping with 212 W incident power 

(150 W absorbed). These better performances can be explained first by the increase of the 

gain cross section which allows a better laser efficiency; and also by the possibility of 

pumping with higher pump power. Actually, the better thermal shock parameter at cryogenic 

temperature allows us to pump up to 250 W instead of 100 W which was, at room 

temperature, closed to the fracture limitation with our apparatus.  

 

5. Short Pulse Generation  

In order to generate the shortest pulse, we used the cavity described in Fig. 10 with a high 

brightness laser diode: a 7-W laser diode at 980 nm coupled to a 50 µm fiber. We used  6.1-

mm-long, 3 x 7 mm
2
 section Brewster-cut crystals : an Yb:CaF2 crystal doped at 2.6 % and an 

Yb:SrF2 crystal doped at 2.9 % [38-39]. The repetition rate of the cavity was 112.5 MHz.  

 
Fig. 10. Short-pulse oscillator setup. 

 

Fig. 11. Spectra obtained with in mode-locked oscillator. 

 

The shortest pulses are obtained with Yb:CaF2. We achieve a stable continuous-wave 

modelocked (CW ML) regime with 99 fs pulses. The average power is 380 mW for a 7 W 

pumping diode.  The corresponding spectrum is centred at 1053.4 nm (Fig. 11) and has a 

bandwidth of 13.2 nm. In this case the short pulses are generated with the assistance of the 



Kerr effect. The non-linear index of CaF2 is 1.9x10
-20

 m
2
/W [40]. The spectrum is clearly 

broadened compared to the case where the Kerr effect is negligible (Fig. 11): in this case, the 

pulse is lengthened (120 fs) and the power gets higher (595 mW).  

For Yb:SrF2 the pulses are longer but the average power gets higher. The shortest pulses 

obtained with this setup have a duration of 143 fs for a 8.5-nm-bandwidth spectrum centered 

at 1046.7 nm. The corresponding average power is 450 mW. The long lifetime of Yb:SrF2 

does not favor mode-locking[18] and a soliton-like regime [41] strongly assisted by the 

SESAM absorber [42] is then expected. Soliton pulse shaping and gain filtering play a major 

role in obtaining a stable mode-locked regime. Therefore small deviations from the ideal 

soliton regime would result in energy shedding to continuum, thereby initiating Q-switching 

for this long lifetime material. In other words, the range of stable CW-ML operation around 

the ―ideal‖ soliton regime is very restricted [43]. Moreover the Kerr lens effect is smaller in 

the case of SrF2 where the non-linear index equals 1.76x10
-20

 m
2
/W [40]. The experimentally 

obtained time-bandwidth product reflects this ideal soliton regime with a value only 5% 

above the theoretical value.  

In conclusion, Yb:CaF2 seems more favorable than Yb:SrF2, in the same conditions, to 

generate short pulses. Nevertheless, the emission spectra are slightly different which can 

justified the use of Yb:SrF2 for some specific applications. Compared to other crystals[44], 

the potential for ultrashort pulse duration seems not fully exploited for Yb:CaF2 and Yb:SrF2. 

Nevertheless they have demonstrated good performances in terms of pulse duration and 

average power for femtosecond oscillators in the 1050 nm range.  

 

6. Short Pulse Amplification  

 To evaluate the performance of fluoride crystals in amplifiers, a regenerative amplifier has 

been developed with the main goal of exploring the limitations in terms of pulse duration of 

Yb:CaF2 and Yb:SrF2 based amplifiers [45]. The experiment was performed with the same 

crystals used for the oscillators. The experimental set-up for the regenerative amplifier is 

illustrated in Fig. 12. In order to optimize the injection spectrum in terms of bandwidth and 

maximum gain, the seed pulses were generated by a broadband Yb:CALGO  oscillator 

centered at 1043 nm with a fwhm bandwidth of 15 nm  at a repetition rate of 27 MHz [46]. 

The pulses are stretched to 260 ps with a single transmission grating (1600 l/mm) optical 

arrangement. The regenerative amplifier is composed of a thin-film polarizer (TFP) and a 

BBO Pockels cell. The Pockels cell is adjusted as a quarter waveplate at 45° in the static 

state, i.e. without high voltage, and no birefringent effect with high voltage. The TFP is used 

in combination with the Pockels cell to extract the output pulse. Between the stretcher and the 

amplifier, a TFP, a Faraday rotator and a half-wave plate are used to separate the input and 

output beams. Finally, after increasing the beam diameter by a factor of two, the chirped 

pulses are sent to a grating compressor (1600 l/mm), based on two transmission gratings, with 

a 45% efficiency. 



 

Fig. 12. Regenerative amplifier setup 

 

Fig. 13. Evolution of the spectrum in Q-switched and injected regime (blue and 

deep blue for Yb:SrF2, red and deep red for Yb:SrF2-), and oscillator spectrum 
(black) 

 

As shown in Fig. 13, with Yb:CaF2, when the seed pulse is centered at 1043 nm, the 

bandwidth of the output pulse is 15 nm, fitting well with the spectrum obtained in the Q-

switched free running mode. The input spectrum (centered at 1043 nm) is slightly blue-

shifted to 1040 nm, corresponding to the gain spectrum of Yb:CaF2.  At repetition rates up to 

500 Hz, a pulse energy of 1.4 mJ/0.62 mJ (before/after compression) with a pulse duration of 

178 fs is obtained. 

With Yb:SrF2, at a 100 Hz repetition rate, we obtain a pulse duration of 325 fs for a 

spectral bandwidth of 5.8 nm (FWHM). The energies before and after compression are 1.4 mJ 

and 850 µJ respectively, giving an-optical-to-optical efficiency of 1.1% before compression. 

The build-up time in the present case is 1.7 µs compared to 1.4 µs in the case of Yb:CaF2 

indicating a lower small single pass gain. Shorter pulses are obtained with Yb:CaF2, but this 

is mainly due to the better overlap between the Yb:CALGO oscillator and the Yb:CaF2 gain 

spectra. Indeed, the Yb:SrF2 gain spectrum is shifted to shorter wavelengths, and only one 

peak of the Q-swiched free-running-mode spectrum is used efficiently.  

An interesting aspect of these results is that spectra obtained with Yb:CaF2 and Yb:SrF2 

are remarkably complementary. Both spectra have a ―camel‖ shape, i.e. peaks located at 1027 

and 1041 nm and a dip at 1036 nm for Yb:SrF2, and peaks at 1036 and 1047 nm and a dip at 



1041 nm for Yb:CaF2. Thus, by combining both materials (with two different bulk crystals or 

single combined ceramics [47]) we should obtain a broadband gain spectrum between 1025 

and 1050 nm. Seeded by a broadband oscillator, with a spectrum centered at 1038 nm, a 

regenerative amplifier with both crystals in the cavity should lead to sub-100 fs laser pulses, 

with the potential for a few millijoules pulses at a high repetition rate. 

The interest of Yb:CaF2 and Yb:SrF2 compared to other Yb-doped crystals are much 

more obvious for amplifiers[48] than for oscillators. In fact, in the current state of the art, 

they are among the best Yb-doped crystals for short pulse duration [45,49] and high peak 

power [9] generation tanks to their exceptional bandwidth and storage capacity.  

 

7. Conclusion  

The potential of ytterbium-doped calcium and strontium fluorides for high-power short pulse 

lasers has been demonstrated. Multi-watt oscillators and amplifiers have been developed 

successfully. This is due to the very particular spectroscopic and thermal properties of this 

crystal family, combining ultra-broad emission bandwidths and good thermal properties. The 

values of various physical parameters that are relevant for high-power short pulse operation 

clearly confirm the attractiveness of this material for laser applications. The experiments 

presented in this paper represent a summary of the work done by the CIMAP and LCFIO 

laboratories. For a more complete state of the art, the authors would like to point out other 

very interesting works made at the Institute for Optics and Quantum Electronics (Jena) within 

the POLARIS Project and the Research Center Dresden-Rossendorf (FZD Dresden) within 

the FZD-Petawatt Project on high-energy diode-pumped solid state lasers based on Yb:CaF2 

and Yb:SrF2 [7,9,50-51], at the Photonics Institute of Vienna on short pulse amplifiers at 

cryogenic temperature based on Yb,Na:CaF2 and Yb:CaF2 [17,49,52] and at the Laser 

Materials and Technology Research Center (Russia) on doped fluoride crystals and ceramics 

[53-54] associated with the Bryansk State University (Russia) for the thermal properties 

studies [25,55-57]. The field of applications of fluorides is then in full expansion. The current 

developments now concern the scaling up in energy involving studies on high-quality, large-

dimension crystals [58-59], the scaling up in average power involving specific laser 

geometries such as thin disks [60-62], slabs [63] and crystalline fibers [64], and the short 

pulse operation at cryogenic temperature involving ultra-low quantum defect 

configuration [65].  
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