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LEVEL-SET APPROACH FOR REACHABILITY ANALYSIS OF
HYBRID SYSTEMS UNDER LAG CONSTRAINTS∗

G. GRANATO† AND H. ZIDANI‡

Abstract. This study aims at characterizing a reachable set of a hybrid dynamical system with
a lag constraint in the switch control. The setting does not consider any controllability assumptions
and uses a level-set approach. The approach consists in the introduction of an adequate hybrid
optimal control problem with lag constraints on the switch control whose value function allows a
characterization of the reachable set. The value function is in turn characterized by a system of
quasi-variational inequalities (SQVI). We prove a comparison principle for the SQVI which shows
uniqueness of its solution. A class of numerical finite difference scheme for solving the system of
inequalities is proposed and the convergence of the numerical solution towards the value function
is studied using the comparison principle. Some numerical examples illustrating the method are
presented. Our study is motivated by an industrial application. We are interested in the maximum
range of hybrid vehicles.

Key words. Optimal control, Quasi-variational Hamilton-Jacobi equation, Hybrid systems,
Reachability analysis
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1. Introduction. This paper deals with the characterization of a reachable set
of a hybrid dynamical system with a lag constraint in the switch control. The approach
consists in the introduction of an adequate hybrid optimal control problem with lag
constraints on the switch control whose value function allows a characterization of the
reachable set.

The term hybrid system refers to a general framework that can be used to
model a large class of systems. Broadly speaking, they arise whenever a collection of
continuous- and discrete-time dynamics are put together in a single model. In that
sense, the discrete dynamics may dictate switching between the continuous dynam-
ics, jumps in the system trajectory or both. Moreover, they can contain specificities,
as for instance, autonomous jumps and/or switches, time delay between discrete de-
cisions, switching/jumping costs. This work considers a particular class of hybrid
systems where only switching between continuous dynamics are operated by the dis-
crete logic, with no jumps in the trajectory, and with no switching costs. In addition,
switch decisions are constrained to be separated in time by a non-zero interval, fact
which is referred to as switching lag.

Before referring to the reachability problem in the hybrid setting, the main ideas
are introduced in the non-hybrid framework. Given a time t > 0, a closed target set
C and a closed admissible set K, consider a controlled dynamical system

ẏ(s) = f(s, y(s), u(s)), a.e. s ∈ [0, t], (1.1)
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where f : IR+ × IRd × U → IRd and u : IR+ → U is a measurable function. The
reachable set RC(t) is defined as the set of all positions x for which there exists a
trajectory that starts in C, stays inside K on [0, t] and arrives in x at time t:

RC(t) := {x | ∃(y, u) satisfies (1.1), with y(0) ∈ C and y(s) ∈ K on [0, t], and y(t) = x}.

It is a known fact that the reachable set can be characterized by the negative region
of the value function of an optimal control problem. For this, following the idea
introduced by Osher and Sethian [15], one can consider the control problem defined
by:

v(x, t) := inf{v0(y(0)) | (y, u) satisfies (1.1), with y(t) = x and y(s) ∈ K on [0, t]},
(1.2)

where v0 is a Lipschitz continuous function satisfying v0(x) ≤ 0 ⇐⇒ x ∈ C (for
instance, v0 can be the signed distance dC to C). Under classical assumptions on the
vector-field f , one can prove that the reachable set is given by

RC(t) = {x ∈ K, v(x, t) ≤ 0}.

Moreover, when K is equal to IRd, the value function has been shown to be the unique
viscosity solution of a Hamilton-Jacobi-Bellman (HJB) equation [2] (for every t > 0):

∂tv + sup
u∈U
{−f(s, x, u) · ∇v} = 0 on IRd × (0, t],

with the initial condition v(x, 0) = v0(x).
When the set K is a subset of IRd (K 6= IRd), the characterization of v by means

of a HJB equation becomes a more delicate matter. However, it was pointed out in [6]
that in case of state-constraints, it is still possible to characterize the reachable set
by an adequate control problem involving a supremum cost (see Section 2.3 for more
details).

In this paper, we are interested in the extension of the reachability framework to
some class of control problems of hybrid systems.

Let us recall that a hybrid dynamical system is a collection of controlled continuous-
time processes selected through a high-level discrete control logic. A general frame-
work for the (optimal) control hybrid dynamical systems was introduced in [7]. Several
papers deal with the optimal control problem of hybrid systems, let us just mention
here the papers [1,9,13,17] where the optimality conditions in the form of Pontryagin’
principle are studied and [11,12,19] where the HJB approach is analyzed.

A feature of the hybrid system used in our work is a time lag between two consec-
utive switching decisions. From the mathematical viewpoint this removes the partic-
ularities linked to Zeno-like phenomena [18]. Indeed, the collection of state spaces is
divided in subsets labeled in three categories according to whether they characterize
discrete decisions as optional, required (autonomous) or forbidden. Landing condi-
tions ensure that whatever the region of the state space the state vector “lands” after
a switch no other switch is possible by requiring a positive distance (in the Hausdorff
sense) between the landing sets and the optional/autonomous switch sets. In the
other hand, when allowed to switch freely without any costs, when no time interval
is imposed between discrete transitions, a controller with a possibly infinite number
of instantaneous switches may become admissible. Switch costs can be introduced in
order to rule out this kind of strategy by the controller as it becomes over-expensive
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to switch to a particular mode using superfluous transitions. However, such costs do
not make sense in the level-set approach used in this paper.

Diffusion processes with impulse controls including switch lags are studied in [8],
where it is considered the idea of introducing a state variable to keep track of the
time since the last discrete control decision. There, in addition, discrete decisions also
suffer from a time delay before they can manifest in the continuous-time process. In
that case, one has the possibility of scheduling discrete orders whenever the time for
a decision to take place may be longer than that of deciding again. Then, the analysis
also includes keeping record of the nature of this scheduled orders. This work inspired
the idea of a state variable locking possible transitions used here.

To study the reachability sets for our system, we follow the level set approach
and adapt the ideas developed in [6] to hybrid systems by proposing a suitable control
problem which allows us to handle in a convenient way the state constraints and the
decision lag. Here the main difficulty is to characterize the value function associated to
the control problem. It turns out that this value function satisfies a quasi-variational
HJB inequality system (in the viscosity sense). A comparison principle is derived for
this system.

This paper is organized as follows: Section 2 states the associated hybrid optimal
control problem and defines the reachable set and the value function. Section 3
presents the main results of the paper: it establishes a dynamic programming principle
for the value function, shows that the value function is Lipschitz continuous and a
solution of an system of quasi-variational inequalities (SQVI). It follows with the
proof of a comparison principle for the SQVI that ensures uniqueness of its solution.
Section 4 presents a numerical analysis of the SQVI. It shows the convergence of a
class of numerical schemes for the computation of the value function and illustrates
the convergence of a particular discretization scheme for a simple instance inspired
by the vehicle applications.

2. Motivation and Problem Settings.

2.1. Hybrid Vehicles. A hybrid vehicle is a vehicle with two different sources of
energy. The first one is a fuel tank and provides power through an internal combustion
engine (ICE). The second one is a battery and provides power through an electric
motor. Both the vehicle’s energy sources are considered to have normalized energetic
capacities – thus valued between 0 and 1.

The controls available to the controller are the ICE state – on or off – and the
power produced in the ICE. The power produced in the ICE is a non-negative piece-
wise continuous function of time. The ICE’s state is controlled by a discrete sequence
of switching orders decided and executed at discrete times. The model assumes that
the vehicle must stop whenever there is no charge left in the battery. Additionally,
a feature of this model is a time interval δ > 0 imposed between two consecutive
decisions times. From the physical viewpoint, this assumption incorporates the fact
that frequent switching of the ICE is undesirable in order to avoid mechanical wear
off and acoustic nuisance for the driver. In this setting, the optimal controller seeks to
best control the power of the ICE and its state to maximize the vehicle’s autonomy,
i.e. drive to the furthest point possible. The objective of finding the vehicle autonomy
therefore translates in reaching the furthest point away from the vehicle geographic
starting point where the battery is depleted for the first time.

2.2. Hybrid Dynamical System. Hybrid systems have some supervision logic
that intervenes punctually between two or more continuous functions. The main
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elements of the class of hybrid dynamical systems considered in this work are a discrete
state q valued in a discrete set Q, and a family of continuous dynamics (vector fields)
f and a continuous state space X = IRd.

More precisely, the continuous state variable is denoted by y and it is valued in
the state space X. The discrete variable is q ∈ Q = {0, 1, · · · , dq}, where dq is the
number of possible dynamics that can operate the system.

The continuous control is a measurable function u : [0,∞[→ IRm valued in a
set that depends on the discrete state U(q). The discrete control is a sequence of
switching decisions

w = {(w1, s1), · · · , (wi, si), (wi+1, si+1), · · · }, (2.1)

where the si are switching times and the wi are switching decisions. Switching times
can happen at any time, therefore si ∈ [0,∞[. Switching decisions are valued in a
discrete set W (q) ⊂ Q that depend on the discrete state, therefore wi ∈ W (q). Set
W (q) is the set of available orders when in discrete state q. The sequence of discrete
switching decisions {wi}i>0 (designating the new mode of operation) is associated
with a sequence of switching times {si}i>0 where each decision wi is exerted at time
si. The case where no switch can occur corresponds to a single discrete input (w1, s1)
where s1 = 0 and w1 ∈ Q (this decision will have no effect on the controlled system
as it is considered backward in time, see (2.5)). Denote by A the space of hybrid
controls a = (u, (wi, si)i).

The lag condition between switches is included as a control constraint that im-
poses two switch orders to be separated by a time interval of δ > 0, i.e.,

si+1 − si ≥ δ.

We precise the class of admissible controls A ⊂ A in the following definition:
Definition 2.1. For a fixed time horizon T ≥ 0 a hybrid control a = (u, (wi, si)i) ∈

A is said to be admissible if the continuous control satisfies u(s) ∈ U(q(s)) and the
discrete control sequence w = {wi, si}i≥1 has increasing decision times

s1 ≤ s2 ≤ · · · ≤ si ≤ si+1 ≤ · · · ≤ T, (2.2a)

admissible decisions

∀i > 0, wi ∈W (q(si)) ⊂ Q, (2.2b)

and verifies a decision lag

si+1 − si ≥ δ, (2.2c)

where δ > 0.
Let us point out that the above definition includes the case where no switch occurs

during the interval time (0, T ], i.e. the sequence of switching times is reduced to one
single element s1 = 0.

An important consequence in the definition of admissible control is the finiteness of
the number of switch orders:

Proposition 2.2. Fix T ≥ 0. Let a ∈ A be an admissible hybrid control. Then,
the discrete control sequence has at most N = bT/δc switch decisions.
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Proof. The proof is trivial in a finite-time setting with imposed delay between
switching orders.

In this setting, given a discrete state q(s) = q, a final state x, a switching sequence
(wi, si) and a continuous control u. The system evolves according to

ẏ(s) = f(s, y(s), u(s), q(s)), for a.e. s ∈ [0, t], y(t) = x. (2.3)

When q(s) = qi, the vector field corresponding to the discrete state qi is active and
dictates the evolution of the continuous state. At some isolated times {si}i>0, given
by the discrete switching control sequence, the discrete dynamics g : Q2 → Q is
activated (notice that the system is backward in time)

qi−1 = g(wi, qi) (2.4)

and the continuous state follows another vector field f(·, ·, ·, qi−1). In the considered
system, the discrete decisions only switch the continuous dynamics and introduce no
discontinuities on the trajectory.

In more general frameworks, we can also include jumps in the continuous state
vector that can be used to model an instant change in the value of the state following
a discrete decisions [5, 7].

Assume controlled continuous dynamics f , the lag δ and the set of control values
U(q) satisfy the following assumptions:
(H0) Through all the paper the lag interval δ > 0 is fixed. For every q ∈ Q, U(q) is

a compact set of IRm (m ≥ 1).
(H1) There exists Lf > 0 such that, for all s ≥ 0, y, y′ ∈ X, q ∈ Q and u ∈ U(q),

‖f(s, y, u, q)− f(s, y′, u, q)‖ ≤ Lf‖y − y′‖, ‖f(s, y, u, q)‖ ≤ Lf .

(H2) For all q ∈ Q, f(·, ·, ·, q) : [0,∞[×X × IRm → X is continuous.
(H3) For all s ≥ 0, y ∈ X and q ∈ Q, f(s, y, U(q), q) is a convex subset of X.

Assumption (H0),(H1) ensures that a trajectory exists and that it is unique.
Assumption (H2) is used to prove the Lipschitz continuity of the value function and
(H3) is needed in order to observe the compactness of the trajectory space.

Now we introduce the hybrid trajectory. Fix a time horizon T > 0 and let 0 < t < T .
Given a hybrid control a = (u, (wi, si)i) ∈ A with at most N switch orders and given
x ∈ X, q ∈ Q, the hybrid dynamical system is

ẏ(s) = f(s, y(s), u(s), qi), for s ∈ (si−1, si), and y(t) = x, (2.5a)

q(s) = qi, for s ∈ [si−1, si), and q(t) = q, (2.5b)

qi−1 = g(wi, qi), i = 1, · · · , N. (2.5c)

Denote the solutions of (2.5a)-(2.5c) with final conditions x, q by yx,q;t and qx,q;t. As
pointed out, not all discrete control sequences are admissible. Only admissible control
sequences engender admissible trajectories. Thus, given t > 0, x ∈ X and q ∈ Q, the
admissible trajectory set Y x,q[0,t] is defined as

Y x,q[0,t] = {y(·) | a ∈ A and yx,q;t solution of (2.5) } (2.6)

A consequence of proposition 2.2 and the above definition is the finiteness of the
number of discrete decisions in any admissible trajectory.
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The hybrid control admissibility condition formulated as in conditions (2.2) is not
well adapted to a dynamic programming principle formulation, needed later on. In
order to include the admissibility condition in the optimal control problem in a more
suitable form, we associate to each discrete control (wi, si)i a new state variable π.
Recall that the decision lag conditions implies that new switch orders are not available
up to a time δ since the last switch. The new variable is constructed such that at a
given time s ∈ [0, t], the value of π(s) measures the time since the last switch. The
idea is to impose constraints on this new state variable and treat them more easily
in the dynamic programming principle. Thus, if π(s) < δ all switch decisions are
blocked and if, conversely, π(s) ≥ δ the system is free to switch. For that reason, this
variable can be seen as a switch lock.

More precisely, given t > 0, s ∈ [0, t] and a discrete control {wi, si}i>0, the switch
lock dynamics is defined by

π(s) =

{
δ + s if s < s1

infsi≤s s− si if s ≥ s1
(2.7)

Indeed, once the discrete control is given, the trajectory π(·) can be determined. Pro-
ceeding with the idea of adapting the admissibility condition in order to manipulate
it in a dynamic programming principle, we consider π(t) = p, with p ∈ [0, T ] the final
value of the switch lock variable trajectory and impose the lag condition under the
form π(s−i ) ≥ δ for all si, where s−i denotes the limit to the left at the switching times
si (notice that π(s+

i ) = 0 by construction). Note that when a switch can occur, the
final value of the switch lock p should be in [0, t), while when no switch can occur, p
can be considered as any value in [t, T ).

Then, since these conditions suffice to define an admissible discrete control set,
while optimizing with respect to admissible functions, one needs only look within the
set of hybrid controls that engenders a trajectory π(·) with the appropriate structure.
In other words, given t > 0, x ∈ X, q ∈ Q and p ∈ [0, T ), define a admissible trajectory
set Sx,q,p[0,t] as

Sx,q,p[0,t] = {y(·) | a = (u, {wi, si}Ni=1) ∈ A, yx,q,p;t solution of (2.5a)-(2.5c),

π(·) solution of (2.7), π(t) = p, π(s−i ) ≥ δ, i = 1, · · · , N}. (2.8)

The next lemma states a relation between sets Y and S:
Lemma 2.3. Set T > 0 is a final horizon. Following the above definitions, for

every t ∈ [0, T ], sets (2.6) and (2.8) satisfy

Y x,q[0,t] =
⋃

p∈[0,T )

Sx,q,p[0,t] .

Proof. The equivalence between Y x,q[0,t] and
⋃
p∈[0,T ) S

x,q,p
[0,t] is obtained by construc-

tion.
In the following of the paper, whenever we wish to call attention to the fact that

the final conditions of (2.5a), (2.5c) and (2.7) are fixed, we denote their solutions
respectively by yx,q,p;t, qx,q,p;t, πx,q,p;t.

2.3. Reachability of Hybrid Dynamical Systems and Optimal Control
Problem. Let C ⊂ X be the set of allowed initial states, i.e. the set of states from
which the system (2.5a)-(2.5c) is allowed to start. Moreover, define a compact set
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K ⊂ X as the hybrid system admissible set, i.e., a set inside which the state must
remain.

In the sequel C and K are assumed to be closed nonempty sets. Consider a finite
horizon T > 0 and let 0 < t < T . Define the reachable set as:

RC(t) = {x | ∃q ∈ Q, y ∈ Y x,q[0,t], y(0) ∈ C, and y(θ) ∈ K ∀θ ∈ [0, t]}
= {x | ∃(q, p) ∈ Q×[0, T ), y ∈ Sx,q,p[0,t] , y(0) ∈ C, and y(θ) ∈ K ∀θ ∈ [0, t]}.

The reachable set RC(t) contains the values of yx,q;t(t) = x, regardless of the final
discrete state, for all admissible trajectories – i.e., trajectories obtained through an
admissible hybrid control – starting within the set of possible initial states C, that
never leave set K.

The following proposition ensures that the space of admissible trajectories is a
compact set.

Proposition 2.4. Given T > 0 and assume (H1),(H2),(H3). Then, the admis-
sible trajectory set Y x,q[0,T ] is a compact set in C([0, T ]) endowed with the W 1,1-topology.

Proof. Fix q ∈ Q and 0 ≤ s < t ≤ T . Consider a bounded admissible continuous
control sequence un ∈ L1([s, t]). Since un is bounded, there exists a subsequence
unj such that unj ⇀ u in L1([s, t]). Invoking (H1),(H2), we have yun = yn ⇀ y in
W 1,1([s, t]). Since W 1,1([s, t]) is compactly embedded in C0([s, t]), we get the strong
convergence of the solution yn → y in C0([s, t]). Hypothesis (H3) guarantees that the
limit function y is a solution of (2.5a). Because all controls un and the limit control
u are admissible, y is an admissible solution.

So far, the proof shows that the limit trajectory is admissible when q is hold
constant.

The goal of the following argument is to extend the previous reasoning to pieces
of any trajectory, since q will eventually be constant outside switching times, due the
finiteness of switches.

Consider a sequence of admissible discrete control sequences (w)n where the num-
ber of switching orders, 0 ≤ kn ≤ bT/δc may depend on n. Since each term of this
sequence has a (first) discrete component and is bounded on the (second) continuous
component, then, as n → ∞ there exists a subsequence (w)nl and λ > 0 such that
qnl = q for all l > λ. This implies kn → k. As the number of switches is constant from
the λth term and s, t are arbitrary, one can obtain, using the limit discrete control
sequence w, the time intervals [si−1, si] over which qi is constant and the argument in
the first paragraph of the proof. Because the trajectory is continuous and admissible
on all time intervals [si−1, si], i = 1, · · · , I, it is admissible on [0, T ]. This completes
the proof.

Remark 2.1. The arguments presented in the above proof can be slightly modified
to show that the admissible trajectory set with fixed final p, Sx,q,p[0,T ] is compact. Also

in a similar way, the proof can be adapted to show that the reachable RC(t) is closed
for any t ≥ 0. Indeed, by the closedness of set C, a sequence of initial conditions
(y0)n ∈ C, associated with admissible trajectories yn ∈ Y x,q[0,T ], converges to y0 ∈ C
which is also the initial condition for the limiting trajectory yn → y.

In order to characterize the reachable sets RC(·) this paper follows the classic
level-set approach [15]. The idea is to describe (2.9) as the negative region of a
function v. It is well known that the function v can be defined as the value function
of some optimal control problem. In the case of system (2.5a)-(2.5c), v happens to be
the value function of a hybrid optimal control problem.
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Consider a bounded Lipschitz continuous function φ : X → IR such that

φ(x) ≤ 0⇔ x ∈ C. (2.9)

Such a function always exists – for instance, the function

φ(x) := max(min(dC(x), LK),−LK),

where dC is the signed distance function from the set C, and LK > 0 a positive
constant.

Define a bounded Lipschitz continuous function γ : X → IR to be

γ(x) ≤ 0⇔ x ∈ K. (2.10)

Such a function always exist as far as K is a closed set. In the sequel, we consider
LK > 0 a positive constant such that:

|γ(x)| ≤ LK and |φ(x)| ≤ LK , ∀x ∈ X.

Then, for a given t ≥ 0, (x, q, p) ∈ X ×Q × [0, T ) and y ∈ Sx,q,p[0,t] , define a total cost

function to be

J(x, q, p, t; y) =

(
φ(y(0))

∨
max
θ∈[0,t]

γ(y(θ))

)
and then, the optimal value :

v(x, q, p, t) = inf
y∈Sx,q,p

[0,t]

J(x, q, p, t; y). (2.11)

Observe that (2.11) is bounded thanks to the constructions (2.9) and (2.10). The
idea in place is that one needs only to look at the sign of v to obtain information
about the reachable set. Therefore, the bound LK removes the necessity of dealing
with an unbounded value function besides providing a natural bound for numerical
computations.

3. Main Results. The next proposition certifies that (2.9) is indeed a level-set
of (2.11).

Proposition 3.1. Assume (H1)-(H3). Define Lipschitz continuous functions φ
and γ by (2.9) and (2.10) respectively. Define the value function v by (2.11). Then,
for t ≥ 0, the reachable set is given by

RC(t) = {x | ∃(q, p) ∈ Q× [0, T ), v(x, q, p, t) ≤ 0} (3.1)

Proof. Assume yx,q,p;t(t) ∈ RC(t). Then, by definition, there exists (q, p) ∈
Q × [0, T ) and an admissible trajectory such that yx,q,p;t(θ) ∈ K for all time and
yx,q,p;t(0) ∈ C. This implies that maxθ∈[0,t](γ(yx,q,p;t(θ))) ≤ 0 and φ(yx,q,p;t(0)) ≤ 0.
It follows that v(x, q, p, t) ≤ J(x, q, p, t; y) ≤ 0.

Conversely, assume v(x, q, p, t) ≤ 0. For any optimal trajectory ŷ (which is admis-
sible thanks to Proposition 2.4) v(x, q, p, t) = J(x, q, p, t; ŷ) ≤ 0. Since the maximum
of the two quantities is non positive only if they are both non positive one can draw
the desired conclusion.
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Proposition (3.1) states that one can draw information about RC(·) by computing
v. In the sequel, it is shown that the value function defined in (2.11) is the unique
(viscosity) solution of a quasi-variational inequalities’ system. The first step is to
state a dynamic programming principle for (2.11).

First, we present some preliminary notation. Given T > 0, set Ω = X × Q ×
(0, T ) × (0, T ] and denote its closure by Ω. For a fixed p0 ∈ [0, T ), define Ω|p0 =
X ×Q× {p0} × (0, T ] and denote Ω|p0 the closure of Ω|p0 . Define

V(Ω) := {v | v : Ω→ IR, v bounded }, (3.2)

V(Ω|p0
) := {v | v : Ω|p0

→ IR, v bounded }, for p0 ∈ [0, T ). (3.3)

For v ∈ V(Ω), denote its upper and lower envelope at point (x, q, p, t) ∈ Ω respectively
as v∗ and v∗:

v∗(x, q, p, t) = lim sup
xn→x
qn→q
pn→p
tn→t

v(xn, qn, pn, tn) (3.4)

v∗(x, q, p, t) = lim inf
xn→x
qn→q
pn→p
tn→t

v(xn, qn, pn, tn) (3.5)

In the case where p0 ∈ [0, T ) is fixed and v ∈ V(Ω|p0), the upper and lower envelopes
of v are also given by (3.4), (3.5) with pn = p0 for all n.

Now, fix p = 0 and define the non-local switch operators M,M+,M− : V(Ω|0)→
V(Ω|0) to be

(Mv)(x, q, 0, t) = inf
w∈W (q)
p′≥δ

v(x, g(w, q), p′, t)

(M+v)(x, q, 0, t) = inf
w∈W (q)
p′≥δ

v∗(x, g(w, q), p′, t)

(M−v)(x, q, 0, t) = inf
w∈W (q)
p′≥δ

v∗(x, g(w, q), p′, t)

The action of these operators on the value function represents a switch that
respects the lag constraint. They operate whenever a switch is activated, which is
equivalent to the condition p = 0. Therefore, they are defined only for a fixed p = 0.
In the following, denote BUSC( Ω) and BUSC( Ω) the set of bounded upper semi-
continuous and bounded lower semi-continuous functions valued in Ω, respectively.
Let us recall here some classical properties of operators M,M+ and M− (adapted
from [19]):

Lemma 3.2. Let v ∈ V( Ω). Then M+v∗ ∈ BUSC( Ω) and M−v∗ ∈ BLSC( Ω).
Moreover (Mv)∗ ≤M+v∗ and (Mv)∗ ≥M−v∗.

Proof. Fix q ∈ Q, p = 0 and ε > 0. Let w∗ ∈ W (x, q) and p∗ > 0 be such that
for all x ∈ X and t ∈ (0, T ), (M+v∗)(x, q, p, t) ≥ v∗(x, g(w∗, q), p∗, t) − ε. Consider
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sequences xn → x and tn → t. Then

M+v∗(x, q, 0, t) ≥ v∗(x, g(w∗, q), p∗, t)− ε
≥ lim sup

xn→x
tn→t

v∗(xn, g(w∗, q), p∗, tn)− ε

≥ lim sup
xn→x
tn→t

inf
w∈W (xn,q),p′≥δ

v∗(xn, g(w, q), p′, tn)− ε

= lim sup
xn→x
tn→t

(M+v∗)(xn, q, 0, tn)− ε.

Notice that q and p are held constant throughout the inequalities and thus, the limsup
of the jump operator considering only sequences xn → x and tn → t corresponds to
its envelope at the limit point. Then, by the arbitrariness of ε, this proves the upper
semi-continuity of M+v∗. The lower semi-continuity of M−v∗ can be obtained in a
similar fashion.

Now, observe that Mv ≤ M+v∗. Taking the upper envelope of each side, one
obtains:

(Mv)∗ ≤ (M+v∗)∗ = M+v∗.

By the same kind of reasoning Mv ≥M−v∗ and

(Mv)∗ ≥ (M−v∗)∗ = M−v∗.

The next proposition is the dynamic programming principle verified by (2.11):
Proposition 3.3. The value function (2.11) satisfies the following dynamic

programming principle:
(i) For t=0,

v(x, q, p, 0) = max(φ(x), γ(x)), ∀(x, q, p) ∈ X ×Q× [0, T ), (3.6)

(ii) For p = 0,

v(x, q, 0, t) = (Mv)(x, q, 0, t), (x, q, t) ∈ X ×Q× [0, T ], (3.7)

(iii) For (x, q, p, t) ∈ Ω, define the non-intervention zone as Σ = (0, p ∧ t). Then,
for h ∈ Σ,

v(x, q, p, t) = inf
Sx,q,p

[t−h,t]

{
v(yx,q,p;h(t− h), q, p− h, t− h)

∨
max

θ∈[t−h,t]
γ(yx,q,p;h(θ))

}
(3.8)

Proof. The dynamic programming principle is composed of three parts.
(i): Equality (3.6) is obtained directly by definition (2.11).

(ii): ” ≤ ”. Let (x, q, t) ∈ X×Q× [0, T ] and p = 0. Consider an admissible hybrid
control a = (u(·), {wi, si}Ni=1) and construct a new control a = (u(·), {wi, si}N−1

i=1 ) with
associated trajectory ya, where u = u, wi = wi and si = si for i = 1, · · · , N − 1 and
sN = t, wN = w′. Then, one obtains:

v(x, q, 0, t) ≤ J(x, q, 0, t; ya) = J(x, g(w′, q), p′, t; ya),
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where the controller must respect the condition p′ ≥ δ for it to be admissible. Since
a is arbitrary, then we get:

v(x, q, 0, t) ≤ inf
ya∈S(x,g(w′,q),p′)

[0,t]

J(x, g(w′, q), p′, t; ya) = v(x, g(w′, q), p′, t)

for every p′ ≥ δ, w′ ∈W (q). This yields to

v(x, q, 0, t) ≤ inf
w′∈W (q)
p′≥δ

v(x, g(w′, q), p′, t)

= (Mv)(x, q, p, t).

” ≥ ”. For (x, q) ∈ X ×Q and p = 0, for ε > 0, there exists an admissible control
aε, such that

v(x, q, 0, t) + ε ≥ J(x, q, 0, t; yaε).

Using the same hybrid control constructions as in the “≤” case, one obtains

J(x, q, 0, t; yaε) = J(x, g(w′, q), p′, t; yāε)

≥ v(x, g(w′, q), p′, t)

≥ inf
w′∈W (q)
p′≥δ

v(x, g(w′, q), p′, t) = (Mv)(x, q, 0, t).

Relation (3.7) is obtained by the arbitrariness of ε.

(iii): ” ≤ ”. For (x, q, p, t) ∈ Ω and 0 < h ≤ p ∧ s, (2.11) yields

v(x, q, p, t) ≤ max

((
φ(yx,q,p;t(0))

∨
max

θ∈[0,t−h]
γ(yx,q,p;t(θ))

)
, max
θ∈[t−h,t]

γ(yx,q,p;t(θ))

)
,

(3.9)
for any y ∈ Sx,q,p[0,t] . By the choice of h, there is no switching between times t− h and

t. Write the admissible control a = (u,w) as a0 = (u0, w) and a1 = (u1, w) with

u0(s) = u(s), s ∈ [0, t− h],

u1(s) = u(s), s ∈ (t− h, t].

Since a is admissible, both controls a0, a1 are also admissible. Denote the trajectory
associated with controls a, a0, a1 respectively by ya, y0, y1. Then, ya ∈ Sx,q,p[0,t] and by

continuity of the trajectory we achieve the following decomposition:

y1 ∈ Sx,q,p[t−h,t], y0 ∈ Sy
1(t−h),q,p−h

[0,t−h] .

The above decomposition together with inequality (3.9) yields

v(x, q, p, t) ≤ max

((
φ(y0(0))

∨
max

θ∈[0,s−h]
γ(y0(θ))

)
, max
θ∈[t−h,t]

γ(y1(θ))

)
, (3.10)

And one concludes after minimizing with respect to the trajectories associated
with a0 and a1.
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The ” ≥ ” part uses an ε-optimal controller and the same decomposition to obtain
the inverse inequality of (3.10), allowing to conclude by the arbitrariness of ε. This
is possible because there is no switching between t− h and t.

A direct consequence of proposition 3.3 is the Lipschitz continuity of the value
function, stated in the next proposition:

Proposition 3.4. Assume (H1)-(H2). Define Lipschitz continuous functions φ
and γ by (2.9) and (2.10), with Lipschitz constants Lφ and Lγ respectively. Then, for
any T > 0, the value function defined in (2.11) is Lipschitz continuous on X × Q ×
[0, T )× [0, T ].

Proof. Fix t ≥ 0, x, x′ ∈ X, q ∈ Q, p > 0. Then, using max(A,B)−max(C,D) ≤
max(A−B,C −D), one obtains,

|v(x, q, p, t)− v(x′, q, p, t)| ≤ max

(
|φ(yx,q,p;t(0))− φ(yx′,q,p;t(0))| ,

max
θ∈[0,t]

|γ(yx,q,p;t(θ))− γ(yx′,q,p;t(θ))|
)

≤ max

(
Lφ |yx,q,p;t(0)− yx′,q,p;t(0)| ,

Lγ max
θ∈[0,t]

(|yx,q,p;t(θ)− yx′,q,p;t(θ)|)
)

≤ Lv|x− x′|,

where Lv = max(Lφ, Lγ)eLfT .
Now, take h > 0 and observe that v(x, q, p, t) ≥ γ(x). Then,

|v(x, q, p+ h, t+ h)− v(x, q, p, t)| ≤ max

(∣∣∣∣v(yx,q,p+h;t+h(t), q, p, t)− v(x, q, p, t)

∣∣∣∣ ,∣∣∣∣ max
θ∈[t,t+h]

γ(yx,q,p;t+h(θ))− γ(x)

∣∣∣∣)
≤ max

(
Lv

∣∣∣∣yx,q,p+h;t+h(t)− x
∣∣∣∣ ,

Lγ max
θ∈[t,t+h]

|yx,q,p+h;t+h(θ)− x|
)

≤ LfLvh.

In order to proceed to the HJB equations, define the Hamiltionian to be

H(t, x, q, z) = sup
u∈U(q)

f(t, x, u, q) · z. (3.11)

Before stating the next result, we recall the notion of viscosity solution [10] used
throughout this paper for the equation:

∂tv + ∂pv +H(t, x, q,∇xv)
∧

v − γ(x) = 0 if (x, q, p, t) ∈ Ω (3.12a)

v(x, q, p, t) = (M+v)(x, q, p, t) if p = 0, (3.12b)

v(x, q, p, t) = max(φ(x), γ(x)) if t = 0, (3.12c)



REACHABILITY ANALYSIS OF HYBRID SYSTEMS 13

Definition 3.5. A function u1 (resp. u2) upper semi-continuous (u.s.c.) (resp.
lower semi-continuous (l.s.c)) is a viscosity subsolution (resp. supersolution) of (3.12)
if for every continuously differentiable function ψ such that u1−ψ has a local maximum
(resp. u2 − ψ has a local minimum) at (x, q, p, t) ∈ Ω we have:

∂tψ + ∂pψ +H(t, x, q,∇xψ)
∧
u1 − γ(x) ≤ 0 if (x, q, p, t) ∈ Ω

u1(x, q, p, t) ≤ (M+u1)(x, q, p, t) if p = 0,

u1(x, q, p, t) ≤ max(φ(x), γ(x)) if t = 0,

(with the inequalities signs inversed and M− instead of M+ for u2). A bounded
function u is a (viscosity) solution of (3.12) if u∗ is a subsolution and u∗ is a super-
solution (where, we recall, u∗ is the upper semi-continuous envelope and u∗ the lower
semi-continuous envelope of u).

The next statement shows that the value function defined in (2.11) is a solution
of the quasi-variational system (3.12).

Theorem 3.6. Assume (H1)-(H2). Let T be a given finite horizon. Let the
Lipschitz functions φ and γ be defined by (2.9) and (2.10) respectively. Then, the
Lipschitz, bounded value function v defined in (2.11) is a viscosity solution of the
quasi-variational inequality (3.12) on Ω = X ×Q× (0, T )× (0, T ].

Proof. By definition, v satisfies the initial condition (3.12c). The boundary con-
dition (3.12b) is deducted from proposition 3.3. Now, we proceed to show that (i) v
is a supersolution and (ii) a subsolution of (3.12a):

First, let us prove the supersolution property (i). To satisfy min(A,B) ≥ 0 one
needs to show A ≥ 0 and B ≥ 0. Since v − γ(x) ≥ 0, it is immediate that B ≥ 0.
Now, consider 0 < h ≤ p∧ t. Let ψ be a continuously differentiable function such that
v−ψ attains a minimum at (x, q, p, t). Then, using proposition 3.3-(iii) and selecting
an ε-optimal controller, dependent on h, with associated trajectory yεx,q,p;t, it follows
that

ψ(x, q, p, t) = v(x, q, p, t) ≥ inf
Sx,q,p

[0,t]

v(yx,q,p;t(t− h), q, p− h, t− h)

≥ v(yεx,q,p;t(t− h), q, p− h, t− h)− hε
= ψ(yεx,q,p;t(t− h), q, p− h, t− h)− hε

and then,

ψ(x, q, p, t)− ψ(yεx,q,p;t(t− h), q, p− h, t− h) ≥ −hε.

Since the control domain is bounded and using the continuity of f and ψ we divide
by h and take the limit h→ 0 to obtain

∂tψ + ∂pψ +H(t, x, q,∇xψ) ≥ −ε

and conclude that A ≥ 0 by the arbitrariness of ε.
For (ii), observe that for min(A,B) ≤ 0 it suffices to show that A ≤ 0 or B ≤ 0.

If v(x, q, p, t) = γ(x), it implies B ≤ 0. On the contrary, if v(x, q, p, t) > γ(x), then
there exists a Σ 3 h ≥ 0 small enough so that

v(yux,q,p;t(t− h), q, p− h, t− h) > max
θ∈[t−h,h]

γ(yux,q,p;t(θ))
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strictly, using the Lipschitz continuity of f, p and the compactness of U (which ensures
the trajectories will remain near each other). Thus, proposition 3.3(iii) yields

v(x, q, p, t) = inf
yu∈Sx,q,p

[t−h,t]

v(yux,q,p;t(t− h), q, p− h, t− h).

Let ψ be a continuously differentiable function such that v − ψ attains a maximum
at (x, q, p, t). Fix an arbitrary u ∈ U and consider a constant control u(s) = u for
t− h < s < t. Also, without loss of generality, assume that v(x, q, p, t) = ψ(x, q, p, t).
Hence,

v(x, q, p, t) ≤ v(yux,q,p;t(t− h), q, p− h, t− h)

≤ ψ(yux,q,p;t(t− h), q, p− h, t− h)

and by dividing by h and taking h→ 0 one obtains

∂tψ + ∂pψ + f(t, x, u) · ∇xψ ≤ 0.

Since u is arbitrary and admissible, we conclude that A ≤ 0, which completes the
proof.

Theorem 3.6 provides a convenient way to characterize the value function whose
level-set is the reachable set defined in (2.9). However, in order to be sure that the
solution that stems from (3.12) corresponds to (2.11), a uniqueness result is necessary.
This is achieved by a comparison principle which is stated in the next theorem. We
recall that BUSC(Ω) and BLSC(Ω) respectively are the space of bounded u.s.c. and
bounded l.s.c. functions defined over the set Ω.

Theorem 3.7. Assume (H1)-H2). Let T be a given finite horizon and denote
Ω = X ×Q× (0, T )× (0, T ]. Let u1 ∈ BUSC(Ω) and u2 ∈ BLSC(Ω) be, respectively,
sub- and supersolution of (3.12). Then, u1 ≤ u2 in Ω.

The proof is inspired by earlier work on uniqueness results for hybrid control
problems. The idea is to show that u1 ≤ u2 in all domain Ω and then on the bound-
ary p = 0. The main difficulty arises when dealing with points in the boundary p = 0
where the system has a switching condition given by a non-local switch operator. This
is tackled by the utilization of “friendly giant”-like test functions [3], [14]. Classically,
these functions are used to prove uniqueness for elliptic problems with unbounded
value functions where they serve to localize some arguments regardless of the func-
tion’s possible growth at infinity. This feature proves itself very useful in our case
because one can properly split the domain in no-switching and switching regions. In
this work, the lag condition for the switch serves as an equivalent to the “landing
condition”– which states that after an autonomous switch the system must land at
some positive distance away from the autonomous switch set [11], [19].

Proof. Let Ω be defined as above, ∂Ω|T = X × Q × (0, T ) × {0} and ∂Ω|P =
X ×Q× {0} × (0, T ].

First, the comparison principle is proved for ∂Ω|T (case 1), followed by Ω (case
2) and finally for ∂Ω|P (case 3), which concludes the proof for Ω.

Case 1: At a point (x, q, p, t) ∈ ∂Ω|T , from the sub- and supersolution properties,

u1(x, q, p, 0)−max(φ(x), γ(x)) ≤ 0,

−u2(x, q, p, 0) + max(φ(x), γ(x)) ≤ 0,

which readily yields u1 ≤ u2 in ∂Ω|T .
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Case 2: Start by using to sub- and supersolution properties of u1, u2 to obtain,
in Ω,

min(∂tu1 + ∂pu1 +H(t, x, q,∇xu1), u1 − γ(x)) ≤ 0, (3.13)

min(∂tu2 + ∂pu2 +H(t, x, q,∇xu2), u2 − γ(x)) ≥ 0. (3.14)

Expression (3.14) implies that both

u2 ≥ γ(x) (3.15)

and

∂tu2 + ∂pu2 +H(t, x, q,∇xu2) ≥ 0. (3.16)

From (3.13), one has to consider two possibilities. The first one is when u1 ≤ γ(x).
If so, together with (3.15), one has immediately u1 ≤ u2. Now, if ∂tu1 + ∂pu1 +
H(t, x, q,∇xu1) ≤ 0, one turns to (3.16).

Define v = u1 − u2. Notice that v ∈ BUSC(Ω). The next step is to show that v
is a subsolution of

∂tv + ∂pv +H(t, x, q,∇xv) = 0 (3.17)

at (x̄, q̄, p̄, t̄).
Let ψ ∈ C2(Ω), bounded, be such that v − ψ has a strict local maximum at

(x̄, q̄, p̄, t̄) ∈ Ω. Define auxiliary functions over Ωi × Ωi, i = 0, 1 as

Φiε(x, p, t, ξ, π, ς) = u1(x, i, p, t)− u2(ξ, i, π, ς)− ψ(x, p, t) (3.18)

−|x− ξ|
2

2ε
− |p− π|

2

2ε
− |t− ς|

2

2ε
.

Because the boundedness of ψ, u1 and u2 the suprema points are finite, for each
i = 0, 1. Denote (xε, pε, tε, ξε, πε, ςε) ∈ Ωq̄ × Ωq̄ a point such that

Φq̄ε(xε, pε, tε, ξε, πε, ςε) = sup
Ωq̄×Ωq̄

Φq̄ε(x, p, t, ξ, π, ς).

The following lemma (proved further below for readability) establishes some es-
timations needed further in the proof:

Lemma 3.8. Define Φiε and (xε, pε, tε, ξε, πε, ςε) as above. Then, as ε→ 0,

|xε − ξε|2

ε
→ 0,

|pε − πε|2

ε
→ 0,

|tε − ςε|2

ε
→ 0,

|xε − ξε| → 0, |pε − πε| → 0, |tε − ςε| → 0,

and (xε, pε, tε, ξε, πε, ςε)→ (x̄, p̄, t̄, x̄, p̄, t̄)
A straightforward calculation allows to show that there exists a, b ∈ IR such that

(a, b,Dε) ∈ D−u2(ξε, q̄, πε, ςε)

(a+ ∂tψ, b+ ∂pψ,Dε +∇xψ) ∈ D+u1(xε, q̄, pε, tε),

where D−, D+ respectively denote the sub- and super differential [10] and Dε =
2|xε − ξε|/ε, which implies

a+ b+H(ςε, ξε, q̄, Dε) ≥ 0

a+ ∂tψ + b+ ∂pψ +H(tε, xε, q̄, Dε +∇xψ) ≤ 0,
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which in turn yields, as ε→ 0,

∂tψ + ∂pψ − Lf |∇xψ| ≤ 0

at (x̄, q̄, p̄, t̄) ∈ Ω. By adequately choosing the test functions ψ, one can repeat the
arguments to show that this assertion holds for any point in Ω. Thus, this establishes
that v is a subsolution of (3.17) in Ω.

Now, take κ > 0 and define a non-decreasing differentiable function χκ : (−∞, 0)→
IR+ such that

χκ(x) = 0, x ≤ −κ ; χκ(x)→∞, x→ 0.

Take η > 0, and define a test function

ν(x, p, t) = ηt2 + χκ(−p).

Observe that v − ν achieves a maximum at a finite point (x0, q̄, p0, t0) ∈ Ω. Since
κ can be made arbitrarily small one can consider p0 > κ without loss of generality.
Therefore, using the subsolution property of v, by a straightforward calculation one
has

2ηt0 ≤ 0,

since χ′η(−p0) = 0. The above inequality implies that t0 = 0. Noticing that
ν(x0, p0, t0) = v(x0, q̄, p0, t0) = 0, it follows

v(x, q̄, p, t) ≤ ηt2 + χκ(−p)

for all t ∈ (0, T ], x ∈ X and p > κ. Letting η → 0, κ→ 0 and from the arbitrariness
of q̄, we conclude that v ≤ 0 in Ω.

Case 3: In this case the switch lock variable arrives at the boundary of the
domain, incurring thus a switch, as all others variables remain inside the domain.
For all (x0, q0, p0, t0) ∈ ∂Ω|P , for any p ≥ δ one has (using case 2 and noticing that
M+u1 = Mu1 and M−u2 = Mu2)

(M+u1)(x0, q0, p0, t0) ≤ u1(x0, q0, p, t0) ≤ u2(x0, q0, p, t0).

Taking the infimum with respect to p, the above expression yields M+u1 ≤M−u2 in
∂Ω|P . This suffices to conclude, since that by the sub- and supersolution properties

v = u1 − u2 ≤M+u1 −M−u2.

Now we present the proof of Lemma 3.8:
Proof. Writing

2Φiε(xε, pε, tε, ξε, πε, ςε) ≥ Φiε(xε, pε, tε, xε, pε, tε) + Φiε(ξε, πε, ςε, ξε, πε, ςε),

for i = 0, 1, one obtains,

|xε − ξε|2

ε
+
|pε − πε|2

ε
+
|tε − ςε|2

ε
≤ (u1 + u2)(xε, i, pε, tε)− (u1 + u2)(ξε, i, πε, ςε) +

ψ(xε, pε, tε)− ψ(ξε, πε, ςε),
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which means that, since ψ, u1 and u2 are bounded that

|xε − ξε|2

ε
≤ C∗, |pε − πε|

2

ε
≤ C∗, |tε − ςε|

2

ε
≤ C∗, (3.19)

where C∗ depends on the sup |u1|, sup |u2|, sup |ψ| and is independent of ε. Expression
(3.19) yields

|xε − ξε| ≤
√
εC∗, |pε − πε| ≤

√
εC∗, |tε − ςε| ≤

√
εC∗.

which implies that the doubled terms tend to zero.
Since (x̄, q̄, p̄, t̄) is a strict maximum of v − ψ, one gets (xε, pε, tε, ξε, πε, ςε) →

(x̄, p̄, t̄, x̄, p̄, t̄). Remark that, since p̄ > 0, one can always choose a suitable subsequence
εn → 0 such that all pεn > 0, avoiding thus touching the switching boundary.

4. Numerical Analysis.

4.1. Numerical Scheme and Convergence. Equations (3.12) can be solved
using a finite difference scheme on a domain Ω = X ×Q× (0, T )× (0, T ], for T > 0.
This section proposes a class of discretization schemes and shows its convergence using
the Barles-Souganidis [4] framework.

Set mesh sizes ∆x > 0, ∆p > 0, ∆t > 0 and denote the discrete grid point
by (xI , pk, tn), where xI = I∆x with I ∈ Zd, pk = k∆p with k = 0, · · · , np, and
tn = n∆t with n = 0, · · · , nt where np = T/∆p and nt = T/∆t. The approximation
of the value function is denoted by

v(xI , q, pk, tn) = vnIk(q)

and the penalization functions are denoted by φ(xI) = φI , γ(xI) = γI . Define the
following grids:

G# = ∆xZd ×Q×∆p{0, 1, · · · , np} ×∆t{0, 1, · · · , nt},
G#
p = ∆t{0, 1, · · · , nt} ×∆xZd ×Q,

and the discrete space gradient at point xI for any general function µ:

D±µ(XI) = D±µI =
(
D±x1

µI , · · · , D±xdµI
)
,

where

D±xjµI = ±µI
j,± − µI
∆x

,

with

Ij,± = (i1, · · · , ij−1, ij ± 1, ij+1, · · · , id).

Define a numerical Hamiltonian H : G#
p × IRd × IRd → IR destined to be an

approximation of H. We assume that H verifies the following hypothesis:
(H4) There exists LH1

, LH2
> 0 such that, for all t, x, q ∈ G#

p and A+, A−, B+, B− ∈
IRd,

|H(t, x, q, A+, A−)−H(t, x, q, B+, B−)| ≤ LH1
(||A+ −B+||+ ||A− −B−||)

||H(t, x, q, A+, A−)|| ≤ LH2
(||A+ +A−||).
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(H5) The Hamiltonian satisfies the monotonicity condition for all t, x, q ∈ G#
p and

almost every A+, A− ∈ IRd:

∂A+
i
H(t, x, q, A+, A−) ≤ 0, and ∂A−i

H(t, x, q, A+, A−) ≥ 0.

(H6) There exists LH3
> 0 such that for all t, x, q ∈ G#

p , t′, x′, q′ ∈ [0,∆tnt]×X×Q
and A ∈ IRd,

|H(t, x, q, A,A)−H(t′, x′, q′, A)| ≤ LH3(|t− t′|+ ||x− x′||+ |q − q′|).

Let Φ : Ω→ IR, h = (∆x,∆p,∆t) and set

SΩ
h (x, q, p, t, λ; Φ) = min

(
λ− γ(x),H(t, x, q,D+Φ(x, q, p, t−∆t), D−Φ(x, q, p, t−∆t))+

λ− Φ(x, q, p, t−∆t)

∆t
+
λ− Φ(x, q, p−∆p, t−∆t)

∆p

)
.

Now, consider the following operators:

Sh(x, q, p, t, λ; Φ) :=

{
SΩ
h (x, q, p, t, λ; Φ) if (x, q, p, t) ∈ Ω

λ−minw∈W (x,q),p′≥δ Φ(x, g(w, q), p′, t) if p = 0,

(4.1)
and

F(x, q, p, t, u,∇u) :=

{
u− γ(x)

∧
∂tu+ ∂pu+H(t, x, q,∇xu) if (x, q, p, t) ∈ Ω

u(x, q, p, t)− (Mu)(x, q, p, t) if p = 0.

(4.2)
With these notations, the equation (3.12) is equivalent to

F(x, q, p, t, v,∇v) = 0 in Ω.

We define an approximation scheme by:

Sh(x, q, p, t, uh(x, q, p, t), uh) = 0 in G#. (4.3)

Proposition 4.1. Let Φ ∈ C∞b (Ω). Under hypothesis (H1)-(H2), (H4)-(H6) and
the CFL condition

∆t

(
1

∆p
+

1

∆x

d∑
i=1

∂A+
i
H+ ∂A−i

H

)
≤ 1 (4.4)

the discretization scheme (4.3) is stable, monotone and consistent.
Moreover, uh converges towards the function v, as h→ 0.
Proof. The proof follows the lines used in the framework of Barles-Souganidis [4]

inside Ω. We then complete the proof with the case p = 0. The goal is to show that
the numerical scheme solutions’ envelopes

u(x′, q′, p′, t′) = lim inf
(x,q,p,t)→(x′,q′,p′,t′)

h→0

uh(x, q, p, t)

u(x′, q′, p′, t′) = lim sup
(x,q,p,t)→(x′,q′,p′,t′)

h→0

uh(x, q, p, t),
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are respectively supersolution and subsolution of (4.2). Then, using the comparison
principle in theorem 3.7, one obtains u ≤ u. However, since the inverse inequality is
immediate (using the definition of limsup and liminf, one gets u ≡ u = u achieving
thus the convergence.

Only the subsolution property of u is presented next, the proof of the supersolution
property of u being very alike.

Inside Ω it is sufficient to show that SΩ
h is stable, monotone and consistent. Ob-

serve that Sh is proportional to −Φ in the terms outside the Hamiltonian. Since
fluxes H are monotone by hypothesis (H7) (see [16] for details in monotone Hamil-
tonian fluxes) whenever the CFL condition (4.4) is satisfied, the monotonicity of Sh
follows. The stability is ensured by the boundedness of Φ and hypothesis (H6). Fi-
nally, hypothesis (H8) and lemma 3.2 are used in a straightforward fashion to obtain
the consistency properties below:

lim sup
(x′,q′,p′,t′)→(x,q,p,t)

h→0

Sh(x′, q′, p′, t′, λ; Φ) ≤ F∗(x, q, p, t,Φ,∇Φ)

lim inf
(x′,q′,p′,t′)→(x,q,p,t)

h→0

Sh(x′, q′, p′, t′, λ; Φ) ≥ F∗(x, q, p, t,Φ,∇Φ)

Now, choose Φ ∈ C∞b (Ω) such that u−Φ has a strict local maximum at (x0, q0, p0, t0) ∈
Ω (without loss of generality assume (u− Φ)(x0, q0, p0, t0) = 0).

First, suppose p0 > 0. Then there exists a ball centered in (x0, q0, p0, t0) of radius
r > 0 such that u(x, q, p, t) ≤ Φ(x, q, p, t), ∀(x, q, p, t) ∈ B((x0, q0, p0, t0), r) ⊂ Ω.
Construct sequences (xε, qε, pε, tε) → (x0, q0, p0, t0) and hε → 0 as ε → 0 such that
uhε(xε, qε, pε, tε) → u(x0, q0, p0, t0) and (xε, qε, pε, tε) is a maximum of uhε − Φ in
B((x0, q0, p0, t0), r). Denote ζε = (uhε − Φ)(xε, qε, pε, tε). (Remark that ζε → 0 as
ε→ 0).

Then, uhε ≤ Φ+ζε inside the ball and since Sh(xε, qε, pε, tε, uhε(xε, qε, pε, tε);uhε) =
0, by the monotonicity property one obtains

Sh(xε, qε, pε, tε,Φ(xε, qε, pε, tε) + ζε; Φ + ζε) ≤ 0.

Taking the limit (inf) ε→ 0 together with the consistency of the scheme, one obtains
the desired inequality

F∗(x0, q0, p0, t0,Φ,∇Φ) ≤ 0.

Suppose now that p0 = 0. Construct sequences (xε, qε, p0, tε) → (x0, q0, p0, t0)
and hε → 0 as ε→ 0 such that uhε(xε, qε, p0, tε)→ u(x0, q0, p0, t0). Then,

lim inf
xε→x0
qε→q0
tε→t0
hε→0

Sh(xε, qε, p0, tε,Φ(xε, qε, p0, tε),Φ) = lim inf
xε→x0
qε→q0
tε→t0
hε→0

(Φ−MΦ)(xε, qε, p0, tε)

= (Φ− (MΦ)∗)(x0, q0, p0, t0).

Since each uhε is a solution of (4.3), using lemma 3.2 the above expression yields at
the point (x0, q0, p0, t0):

0 = (Φ− (MΦ)∗)(x0, q0, p0, t0)

≥ (Φ− (MΦ)∗)(x0, q0, p0, t0)

≥ (Φ− (M+Φ))(x0, q0, p0, t0)

= F∗(x0, q0, p0, t0,Φ,∇Φ)

achieving the desired inequality.
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4.2. Numerical Simulations. In this section, we give a simple example to
illustrate the convergence result. For simplicity, we take here d = 2 and consider the
numerical Hamiltonian H given by the monotone Local Lax-Friedrichs scheme [16]
(where the two components of the gradient are explicit):

H
(
t, x, q; a+, a−, b+, b−

)
= H

(
t, x, q;

a+ + a−

2
,
b+ + b−

2

)
−

ca

(
a+ − a−

2

)
− cb

(
b+ − b−

2

)
where a± = D±i v, b± = D±j v and the constants ca, cb are defined as

ca = sup
t,x,q,(r1,r2)

|∂r1H(t, x, q; r1, r2)| (4.5)

cb = sup
t,x,q,(r1,r2)

|∂r2H(t, x, q; r1, r2)|. (4.6)

This particular discretization satisfies hypothesis (H4)-(H6) and therefore is in
the setting of Proposition 4.1.

Taking vn the approximate solution of v at tn, the equation

Sh(xI , q, pk, tn+1, v
n+1
Ik (q); vn) = 0

allows an explicit expression of vn+1() as a function of past values vn():

vn+1
Ik (q) =


γI
∨
vnIk(q)−∆t

(
vnIk(q)−vnIk−1(q)

∆p +H(tn, xI , q,D
−vnIk(q), D+vnIk(q))

)
if (I, q, k, n) ∈ G#

minw∈W (xI ,q),k′≥δ/∆p v
n
Ik′(g(w, q)) if k = 0.

(4.7)

In order to illustrate the convergence of this particular numerical scheme, we present
simulations using a simple hybrid vehicle model (see Section 2.1). Here the vehicle’s
energy state is a two-dimensional vector y ∈ X = IR2, where y = (y1, y2) denotes
the state of charge of the battery and the fuel available in the fuel tank. These two
quantities are the image of the remaining energy and have to be constrained to stay
in the compact set K = [0, 1]2, where the energies quantities are normalized. The
discrete variable q ∈ Q = {0, 1} is the ICE state, indicating whether the ICE is off
(q = 0) or on (q = 1). The power output is a measurable function u(·) ∈ U where U
is the admissible control set that is taken here as U = [0, umax]. We consider that the
switch dynamics is given by g(w, q) = |q − w|.

Test 1. The energetic dynamical model is given by f(t, x, u, q) = (−a1 +
qu,−q(a2 +u)), where a1, a2 > 0 are constant depletion rates of the battery’s electric
energy and the reservoir’s fuel (whenever the ICE is on), respectively. The simulated
instances use a1 = 0.10, a2 = 0.15 and umax = 0.07.

We test an instance where the set of initial positions C is the square centered
at (x1, x2) = (0.5, 0.5) and with half-lenght equal to 0.05. The computations are
performed1 for (y1, y2) ∈ [−0.1, 1.1]2, Q = 0, 1, p ∈ [0, T ], where the final horizon is

1on 64-bit Mac OS using a 1.8GHz Intel Core i7 processor, with 4Gb of RAM



REACHABILITY ANALYSIS OF HYBRID SYSTEMS 21

chosen as T = 5.6.
Remark 4.1. Considering the above dynamics, an exact autonomy of the system

can be evaluated analytically. By autonomy, we mean the longest time during which
the state remains inside K. Equivalently, the autonomy is the first time when the
reachable set is empty: T ∗ = inf{s | RC(s) = ∅}. Indeed, one can readily see that
if no more admissible energy states are attainable after T ∗, any admissible trajectory
must come to a stop beyond this time. For this toy problem, given an initial conditions
(x1, x2), the shortest time to empty the fuel reservoir is given by t∗ = x1/(a2 +umax).
The charge left in the battery evaluated at this instant is given by x1(t∗) = x1(0) −
t∗(a1 − umax). If x1(t∗) ≤ 0, it means the fuel cannot be consumed fast enough before
the battery is depleted. This condition can be expressed in terms of the parameters of
the model as x1(a2 + umax) ≤ x2(a1 − umax). In this case, the autonomy is given by
T ∗ = x1/(a1 − umax). Otherwise, the autonomy is given by T ∗ = (x1 + umaxt

∗)/a1.

Simulations are running by fixing the CFL number to 0.9 in the condition (4.4)
and then using several discretization steps ∆x1 = ∆x2 = ∆x and ∆p. Since the
exact value function is not known, the convergence error is analyzed with respect to
a reference solution V # computed with ∆x = 0.01, ∆p = 0.028. The L∞ error, as a
function of the discretization step sizes ∆x,∆p, is then computed as being

e(∆x,∆p) = sup
(x,p,s,q)∈G#(∆x,∆p)

| v#(∆x,∆p)− V # |, (4.8)

where G#(∆x,∆p) is the numerical grid obtained using discretization steps (∆x,∆p)
and v#(∆x,∆p) the corresponding numerical solution. Table 4.1 presents the L∞-
error and the total CPU running times as a function of ∆x, ∆p. In these simulations,
δ is equal to 1. As can be seen from the numerical table, the error goes to 0 when
both ∆x and ∆p tend to 0.

∆p = 0.0112 ∆p = 0.056 ∆p = 0.028

∆x e(∆x,∆p) CPU (s) e(∆x,∆p) CPU (s) e(∆x,∆p) CPU (s)

0.05 8.10e-2 7.8 7.23e-2 16.7 7.16e-2 50.1
0.04 5.462-2 10.8 4.61e-2 26.4 4.49e-2 77.7
0.03 3.17e-2 19.0 2.12e-2 47.1 1.74e-2 170.7
0.02 2.91e-2 45.0 1.50e-2 114.1 1.27e-2 451.2

Table 4.1
Convergence results and running times of an instance using δ = 1.

Figure 4.1 shows, for different values of ∆x and ∆p, the minimum time values
when the value function first crosses the 0-level set, i.e. T (x) = min{t | ∃q, p, v(x, q, p, t) ≤
0}. The function T represents for each x the first time the position is reached by an
admissible trajectory starting from C.

Test 2 The previous example aimed to show the convergence of the numerical
method on a very simple model. Here we consider another model where the optimal
trajectories may have more than one switch. The reachable set depends on the value
of the lag variable δ. Set f(t, x, u, q) = (−0.3,−0.3(2q − 1)), and consider C the
square centred at (0.8, 0.9)T and with half lenght 0.04. The set of constraints K is
[−0.4, 1.1]2. Figure 4.2 shows the minimum time functions corresponding to different
values of the lag δ. The simulations are performed on the computational domain
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(a) ∆x = 0.05, ∆p = 0.112. (b) ∆x = 0.02, ∆p = 0.56. (c) ∆x = 0.01, ∆p = 0.028.

Figure 4.1. Test 1. Contour plots of the minimum time function: Three discretization steps
in ∆x and ∆p.

[−0.3, 1.2]2 × [0, T ], with T = 1.5, ∆x1 = ∆x2 = 0.009, ∆p = 0.015, and the CFL
number is fixed to 0.6. In this example, the optimal strategies include several switches
in order to keep the trajectories inside the set K. However, the number of possible
switches depends on the value of δ. When δ is very small, the number of possible
switches is large enough and the trajectories evolve in a large reachable set. If δ is
large, then the number of possible switches decreases and the reachable set becomes
smaller.

(a) δ = 0.02. (b) δ = 0.4. (c) δx = 1.

Figure 4.2. Test 2. Contour plots of the minimum time functions corresponding to three
different values of δ.

Despite these illustrations of a convergent numerical scheme, we believe that a
finer error analysis deserves further attention. This paper proofs the convergence of
the numerical scheme, which is a first step in the numerical analysis of the SQVI.
A more complete study should investigate more in detail the rate of convergence of
numerical schemes, and the sensitivity analysis with respect to δ.
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