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Abstract

For a large class of vanilla contingent claims, we establish an explicit Föllmer-Schweizer decomposition

when the underlying is an exponential of an additive process. This allows to provide an efficient algorithm

for solving the mean variance hedging problem. Applications to models derived from the electricity market

are performed.
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1 Introduction

There are basically two main approaches to define the mark to market of a contingent claim: one relying on

the no-arbitrage assumption and the other related to a hedging portfolio, those two approaches converging in

the specific case of complete markets. In this paper we focus on the hedging approach. A simple introduction

to the different hedging and pricing models in incomplete markets can be found in chapter 10 of [13].

When the market is not complete, it is not possible, in general, to hedge perfectly an option. One has to

specify risk criteria, and consider the hedging strategy that minimizes the distance (in terms of the given

criteria) between the payoff of the option and the terminal value of the hedging portfolio. In practice the

price of the option is related to two components: first, the initial-capital value and second the quantitative

evaluation of the residual risk induced by this imperfect hedging strategy (due to incompleteness).

Several criteria can be adopted. The aim of super-hedging is to hedge all cases. This approach yields in

general prices that are too expensive to be realistic [18]. Quantile hedging modifies this approach allowing

for a limited probability of loss [20]. Indifference utility pricing introduced in [23] defines the price of an
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option to sell (resp. to buy) as the minimum initial value s.t. the hedging portfolio with the option sold

(resp. bought) is equivalent (in term of utility) to the initial portfolio. Global quadratic hedging approach

was developed by M. Schweizer ([38], [40]): the distance defined by the expectation of the square of the

difference between the hedging portfolio and the payoff is minimized. Then, contrarily to the case of utility

maximization, in general that approach provides linear prices and hedge ratios with respect to the payoff.

In this paper, we follow this last approach either to derive the hedging strategy minimizing the global

quadratic hedging error for a given initial capital, or to derive both the initial capital and the hedging

strategy minimizing the same error. Both actions are referred to the objective measure. Moreover we also

derive explicit formulae for the global quadratic hedging error which together with the initial capital allows

the practitioner to define his option price.

We spend now some words related to the global quadratic hedging approach which is also called mean-

variance hedging or global risk minimization. Given a square integrable r.v. H , we say that the pair (V0, ϕ)

is optimal if (c, v) = (V0, ϕ) minimizes the functional E
(
H − c−

∫ T
0
vdS

)2
. The quantity V0 and process ϕ

represent the initial capital and the optimal hedging strategy of the contingent claim H .

Technically speaking, the global risk minimization problem is based on the local risk minimization one

which is strictly related to the so-called Föllmer-Schweizer decomposition (or FS decomposition) of a square

integrable random variable (representing the contingent claim) with respect to an (Ft)-semimartingale S =

M + A modeling the asset price: M is an (Ft)-local martingale and A is a bounded variation process

with A0 = 0. Mathematically, the FS decomposition, constitutes the generalization of the martingale

representation theorem (Kunita-Watanabe representation), which is valid when S is a Brownian motion

or a martingale. Given a square integrable random variable H , the problem consists in expressing H as

H0 +
∫ T
0 ξdS +LT where ξ is predictable and LT is the terminal value of an orthogonal martingale L to M ,

i.e. the martingale part of S. In the seminal paper [21], the problem is treated for an underlying process

S with continuous paths. In the general case, S is said to satisfy the structure condition (SC) if there

is a predictable process α such that At =
∫ t
0
αsd〈M〉s and

∫ T
0
α2
sd〈M〉s < ∞ a.s. In the sequel, most of

the contributions were produced in the multidimensional case. Here, for simplicity, we will formulate all the

results in the one-dimensional case.

H0 constitutes in fact the initial capital and it is given by the expectation of H under the so called

variance optimal signed measure (VOM). Hence, in full generality, the initial capital V0 is not guaranteed

to be an arbitrage-free price. For continuous processes, the variance optimal measure is proved to be non-

negative under a mild no-arbitrage condition [41]. Arai ([4] and [3]) provides sufficient conditions for the

variance-optimal martingale measure to be a probability measure, even for discontinuous semimartingales.

In the framework of FS decomposition, a process which plays a significant role is the so-called mean variance

trade-off (MVT) process K. This notion is inspired by the theory in discrete time started by [36]; under

condition (SC), in the continuous time case K is defined as Kt =
∫ t
0 α

2
sd〈M〉s, t ∈ [0, T ]. In fact, in [38]

also appear a slight more general condition, called (ESC), together with a corresponding EMVT process;

we will nevertheless not discuss here further details. If the MVT process is deterministic, [38] solves the

mean-variance hedging problem and also provides an efficient relation between the solution of the global

risk minimization problem and the FS decomposition, see Theorem 4.1. We remark that, in the continuous

case, treated by [21], no need of any condition on K is required. It also shows that, for obtaining the

mentioned relation, previous condition is not far from being optimal. The next important step was done

in [30] where, under the only condition that K is uniformly bounded, the FS decomposition of any square

integrable random variable exists, it is unique and the global minimization problem admits a solution.
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More recently has appeared an incredible amount of papers in the framework of global (resp. local) risk

minimization, so that it is impossible to list all of them and it is beyond our scope. Four significant papers

containing a good list of references are [42], [7], [11] and [43].

In this paper, we are not interested in generalizing the conditions under which the FS decomposition

exists. The present article aims, in the spirit of a simplified Clark-Ocone formula, at providing an explicit

form for the FS decomposition for a large class of European payoffs H , when the process S is an exponential

of additive process which is not necessarily a martingale. From a practical point of view, this serves to

compute efficiently the variance optimal hedging strategy which is directly related to the FS decomposition,

since the mean-variance trade-off is for that type of processes deterministic. One major idea proposed

by Hubalek, Kallsen and Krawczyk in [24], in the case where the log price is a Lévy process, consists in

determining an explicit expression for the variance optimal hedging strategy for exponential payoffs and

then deriving, by linear combination the corresponding optimal strategy for a large class of payoff functions

(through Laplace type transform). Using the same idea, this paper extends results of [24] considering prices

that are exponential of additive processes and contingent claims that are Laplace-Fourier transform of a

finite measure. In this generalized framework, we could formulate assumptions as general as possible. In

particular, our results do not require any assumption on the absolute continuity of the cumulant generating

function of log(St), thanks to the use of a natural reference variance measure instead of the usual Lebesgue

measure, see Section 3.2. In the context of non stationary processes, the idea to represent payoffs functions as

Laplace transforms was applied by [26] (that we discovered after finishing our paper) to derive explicit pricing

formulae and by [19] to investigate time inhomogeneous affine processes. However, the [26] generalization

was limited to additive processes with absolutely continuous characteristics and to the pricing application:

hedging strategies were not addressed.

One practical motivation for considering processes with independent and possibly non stationary incre-

ments came from hedging problems in the electricity market. Because of non-storability of electricity, the

hedging instrument is in that case, a forward contract with value S0
t = e−r(Td−t)(FTdt − FTd0 ) where FTdt

is the forward price given at time t ≤ Td for delivery of 1MWh at time Td. Hence, the dynamics of the

underlying S0 is directly related to the dynamics of forward prices. Now, forward prices are known to exhibit

both heavy tails (especially on the short term) and a volatility term structure according to the Samuelson

hypothesis [34]. More precisely, as the delivery date Td approaches, the forward price is more sensitive to

the information arrival concerning the electricity supply-demand balance for the given delivery date. This

phenomenon causes great variations in the forward prices close to delivery and then increases the volatility.

Hence, those features require the use of forward prices models with both non Gaussian and non stationary

increments in the stream of the model proposed by Benth and Saltyte-Benth, see [9] and also [8].

The paper is organized as follows. After this introduction we introduce the notion of FS decomposition

and describe global risk minimization. Then, we examine at Section 3 the explicit FS decomposition for

exponential of additive processes. Section 4 is devoted to the solution to the global minimization problem,

Section 5 to theoretical examples and Section 6 to the case of a model intervening in the electricity market.

Section 7 is devoted to simulations.
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2 Preliminaries on additive processes and Föllmer-Schweizer de-

composition

In the whole paper, T > 0, will be a fixed terminal time and we will denote by (Ω,F , (Ft)t∈[0,T ],P) a filtered

probability space, fulfilling the usual conditions. In the whole paper, without restriction of generality F will

stand for the σ-field FT .

2.1 Generating functions

Let X = (Xt)t∈[0,T ] be a real valued stochastic process.

Definition 2.1. The cumulant generating function of (the law of) Xt is the mapping z 7→ Log(E[ezXt ])

where Log(w) = log(|w|) + iArg(w) where Arg(w) is the Argument of w, chosen in ] − π, π]; Log is the

principal value logarithm. In particular we have

κXt : D → C with eκXt(z) = E[ezXt ] ,

where D := {z ∈ C | E[eRe(z)Xt ] < ∞, ∀t ∈ [0, T ]}. In the sequel, when there will be no ambiguity on

the underlying process X, we will use the shortened notations κt for κXt . We observe that D includes the

imaginary axis.

Remark 2.2. 1. For all z ∈ D, κt(z̄) = κt(z) , where z̄ denotes the conjugate complex of z ∈ C.

2. For all z ∈ D ∩ R , κt(z) ∈ R .

In the whole paper R⋆ will stand for R− {0}.

2.2 Semimartingales

An (Ft)-semimartingale X = (Xt)t∈[0,T ] is a process of the form X = M + A, where M is an (Ft)-local

martingale and A is a bounded variation adapted process vanishing at zero. ||A||T will denote the total

variation of A on [0, T ]. If A is (Ft)-predictable then X is called an (Ft)-special semimartingale. The

decomposition of an (Ft)-special semimartingale is unique, see Definition 4.22 of [25]. Given two (Ft)-
locally square integrable martingales M and N , 〈M,N〉 will denote the angle bracket of M and N , i.e. the

unique bounded variation predictable process vanishing at zero such that MN − 〈M,N〉 is an (Ft)-local

martingale. If X and Y are (Ft)-semimartingales, [X,Y ] denotes the square bracket of X and Y , i.e. the

quadratic covariation of X and Y . In the sequel, if there is no confusion about the underlying filtration (Ft),
we will simply speak about semimartingales, special semimartingales, local martingales, martingales.

All along this paper we will consider C-valued martingales (resp. local martingales, semimartingales).

Given two C-valued local martingalesM1,M2 thenM1,M2 are still local martingales. Moreover 〈M1,M2〉 =
〈M1,M2〉 . If M is a C-valued martingale then 〈M,M〉 is a real valued increasing process.

All the local martingales admit a cadlag version. By default, when we speak about local martingales

we always refer to their cadlag version. Given a real cadlag stochastic process X , the quantity ∆Xt will

represent the jump Xt −Xt−. More details about previous notions are given in chapter I of [25].

For any special semimartingale X we define ||X ||2δ2 = E [[M,M ]T ] + E
(
||A||2T

)
. The set δ2 is the set of

(Ft)-special semimartingale X for which ||X ||2
δ2

is finite.
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2.3 Föllmer-Schweizer Structure Condition

Let X = (Xt)t∈[0,T ] be a real-valued special semimartingale with canonical decomposition, X = M + A.

For simplicity, we will just suppose in the sequel that M is a square integrable martingale. For the clarity

of the reader, we formulate in dimension one, the concepts appearing in the literature, see e.g. [38] in the

multidimensional case. For a given local martingale M , the space L2(M) consists of all predictable R-valued

processes v = (vt)t∈[0,T ] such that E

[∫ T
0
|vs|2d 〈M〉s

]
< ∞, where 〈M〉 := 〈M,M〉. For a given predictable

bounded variation process A, the space L2(A) consists of all predictable R-valued processes v = (vt)t∈[0,T ]

such that E

[
(
∫ T
0 |vs|d||A||s)2

]
<∞ . Finally, we set

Θ := L2(M) ∩ L2(A), (2.1)

which will be the class of admissible strategies. For any v ∈ Θ, the stochastic integral process Gt(v) :=∫ t
0 vsdXs, for all t ∈ [0, T ] , is therefore well-defined and is a semimartingale in δ2. We can view this

stochastic integral process as the gain process associated with strategy v on the underlying process X .

The minimization problem we aim to study is the following. Given H ∈ L2(Ω,F ,P), a pair (V0, ϕ),

where V0 ∈ R and ϕ ∈ Θ is called optimal if (c, v) = (V0, ϕ) minimizes the expected squared hedging error

E[(H − c−GT (v))
2] , (2.2)

over all pairs (c, v) ∈ R×Θ. V0 will represent the initial capital of the hedging portfolio for the contingent

claim H at time zero. The definition below introduces an important technical condition, see [38].

Definition 2.3. Let X = (Xt)t∈[0,T ] be a real-valued special semimartingale. X is said to satisfy the

structure condition (SC) if there is a predictable R-valued process α = (αt)t∈[0,T ] such that the following

properties are verified.

1. At =
∫ t
0
αsd 〈M〉s , for all t ∈ [0, T ]; in particular dA is absolutely continuous with respect to d〈M〉,

in symbols we denote dA≪ d 〈M〉.

2.

∫ T

0

α2
sd 〈M〉s <∞ , P−a.s.

From now on, we will denote by K = (Kt)t∈[0,T ] the cadlag process Kt =
∫ t
0 α

2
sd 〈M〉s , for all t ∈ [0, T ] .

This process will be called the mean-variance trade-off (MVT) process. Lemma 2 of [38] states the

following.

Proposition 2.4. If X satisfies (SC) such that KT is a bounded r.v., then Θ = L2(M).

The structure condition (SC) appears naturally in applications to financial mathematics. In fact, it is

mildly related to the no arbitrage condition at least when X is a continuous process. Indeed, in the case

where X is a continuous martingale under an equivalent probability measure, then (SC) is fulfilled.

2.4 Föllmer-Schweizer Decomposition and variance optimal hedging

Throughout this section, as in Section 2.3, X is supposed to be an (Ft)-special semimartingale fulfilling the

(SC) condition. Two (Ft)-martingales M,N are said to be strongly orthogonal if MN is a uniformly

integrable martingale, see Chapter IV.3 p. 179 of [31]. If M,N are two square integrable martingales, then

M and N are strongly orthogonal if and only if 〈M,N〉 = 0. This can be proved using Lemma IV.3.2 of [31].
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Definition 2.5. A random variable H ∈ L2(Ω,F ,P) admits a Föllmer-Schweizer (FS) decomposition,

if

H = H0 +

∫ T

0

ξHs dXs + LHT , P − a.s. , (2.3)

where H0 ∈ R is a constant, ξH ∈ Θ and LH = (LHt )t∈[0,T ] is a square integrable martingale, with E[LH0 ] = 0

and strongly orthogonal to M .

We summarize now some fundamental results stated in Theorems 3.4 and 4.6, of [30] on the existence

and uniqueness of the FS decomposition and of solutions for the optimization problem (2.2).

Theorem 2.6. We suppose that X satisfies (SC) and that the MVT process K is uniformly bounded in t

and ω. Let H ∈ L2(Ω,F ,P).

1. H admits a FS decomposition. It is unique in the sense that H0 ∈ R, ξH ∈ L2(M) and LH is uniquely

determined by H.

2. For every H ∈ L2(Ω,F ,P) and every c ∈ L2(F0), there exists a unique strategy ϕ(c,H) ∈ Θ such that

E[(H − c−GT (ϕ
(c,H)))2] = min

v∈Θ
E[(H − c−GT (v))

2] . (2.4)

3. For every H ∈ L2(Ω,F ,P) there exists a unique couple (c(H), ϕ(H)) ∈ L2(F0)×Θ such that

E[(H − c(H) −GT (ϕ
(H)))2] = min

(c,v)∈L2(F0)×Θ
E[(H − c−GT (v))

2] .

Next theorem gives the explicit form of the optimal strategy under some restrictions on K.

Theorem 2.7. Suppose that X satisfies (SC) and that the MVT process K of X is deterministic and let α

be the process appearing in Definition 2.3 of (SC). Let H ∈ L2(Ω,F ,P) with FS decomposition (2.3).

1. For any c ∈ R, the solution of the minimization problem (2.4) verifies ϕ(c,H) ∈ Θ, such that

ϕ
(c,H)
t = ξHt +

αt
1 + ∆Kt

(Ht− − c−Gt−(ϕ
(c,H))) , for all t ∈ [0, T ] (2.5)

where the process (Ht)t∈[0,T ] is defined by Ht := H0 +
∫ t
0 ξ

H
s dXs + LHt .

2. The solution of the minimization problem (2.2) is given by the pair (H0, ϕ
(H0,H)) .

3. If 〈M〉 is continuous,

min
v∈Θ

E[(H − c−GT (v))
2] = exp(−KT )

(
(H0 − c)2 + E[(LH0 )2]

)

+E

[∫ T

0

exp{−(KT −Ks)}d
〈
LH
〉
s

]
.

Proof. Item 1. is stated in Theorem 3 of [38]. Item 2. is a consequence of Corollary 10 of [38]. Item 3. is a

consequence of Corollary 9 of [38] taking into account that K inherits the continuity property of 〈M〉. We

remark that K̃ = K, where K̃ is a process appearing in the statement of the mentioned corollary.

In the sequel, we will find an explicit expression of the FS decomposition for a large class of square

integrable random variables, when the underlying process is an exponential of additive process.
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2.5 Additive processes

This subsection deals with processes with independent increments which are continuous in probability. From

now on (Ft) will always be the canonical filtration associated with X .

Definition 2.8. A cadlag process X = (Xt)t∈[0,T ] is a (real) additive process iff X0 = 0, X is continuous

in probability, i.e. X has no fixed time of discontinuities and it has independent increments in the following

sense: Xt −Xs is independent of Fs for 0 ≤ s < t ≤ T .

X is called Lévy process if it is additive and the distribution of Xt − Xs only depends on t − s for

0 ≤ s ≤ t ≤ T .

An important notion, in the theory of semimartingales, is the notion of characteristics, introduced in

definition II.2.6 of [25]. A triplet of characteristics (b, c, ν), depends on a fixed truncation function h :

R → R with compact support such that h(x) = x in a neighborhood of 0; ν is some random σ-finite Borel

measure on [0, T ]× R. If X is a semimartingale additive process the triplet (b, c, ν) admits a deterministic

version, see Theorem II.4.15 of [25]. Moreover (bt), (ct) and t 7→
∫
[0,t]×B

(|x|2 ∧ 1)ν(ds, dx) have bounded

variation for any Borel real subset B. Generally in this paper B(E) denotes the Borel σ-field associated with

a topological space E.

Proposition 2.9. Suppose X is a semimartingale additive process with characteristics (b, c, ν), where ν is

a non-negative Borel measure on [0, T ]× R. Then t 7→ at given by

at = ||b||t + ct +

∫

R

(|x|2 ∧ 1)ν([0, t], dx) (2.6)

fulfills

dbt ≪ dat , dct ≪ dat and ν(dt, dx) = Ft(dx)dat , (2.7)

where Ft(dx) is a non-negative kernel from
(
[0, T ],B([0, T ])

)
into (R,B(R)) verifying

∫

R

(|x|2 ∧ 1)Ft(dx) ≤ 1 , ∀t ∈ [0, T ]. (2.8)

Proof. The existence of (at) as a process fulfilling (2.6) and F fulfilling (2.8) is provided by the statement

and the proof of Proposition II. 2.9 of [25]. (2.6) guarantees that (at) is deterministic.

We come back to the cumulant generating function κ and its domain D.

Remark 2.10. In the case where the underlying process X is an additive process, then

D := {z ∈ C | E[eRe(z)Xt ] <∞, ∀t ∈ [0, T ]} = {z ∈ C | E[eRe(z)XT ] <∞} .

In fact, for given t ∈ [0, T ], γ ∈ R we have E(eγXT ) = E(eγXt)E(eγ(XT−Xt)) < ∞. Since each factor is

positive, if the left-hand side is finite, then E(eγXt) is also finite.

3 Föllmer-Schweizer decomposition for exponential of additive pro-

cesses

The aim of this section is to derive a quasi-explicit formula of the FS decomposition for exponential of

additive processes with possibly non stationary increments.
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We assume that the process S is the discounted price of the non-dividend paying stock which is supposed

to be of the form, St = s0 exp(Xt), for all t ∈ [0, T ], where s0 is a strictly positive constant and X is a

semimartingale additive process, in the sense of Definition 2.8, but not necessarily with stationary increments.

In the whole paper, if z is a complex number, Szt stands for exp(ln(s0) + zXt). In particular if y is a real

number, Syt stands for s0 exp(yXt).

3.1 On some properties of cumulant generating functions

We need now a result which extends the classical Lévy-Khinchine decomposition, see e.g. 2.1 in Chapter II

and Theorem 4.15 of Chapter II, [25], which is only defined in the imaginary axis to the whole domain of the

cumulant generating function. Similarly to Theorem 25.17 of [35], applicable for the Lévy case, for additive

processes we have the following.

Proposition 3.1. Let X be a semimartingale additive process and setD0 =
{
c ∈ R |

∫
[0,T ]×{|x|>1} e

cxν(dt, dx) <∞
}
.

Then,

1. D0 is convex and contains the origin.

2. D0 = D ∩R.

3. If z ∈ C such that Re(z) ∈ D0, i.e. z ∈ D, then

κt(z) = zbt +
z2

2
ct +

∫

[0,t]×R

(ezx − 1− zh(x))ν(ds, dx) . (3.1)

Proof. 1. is a consequence of Hölder inequality similarly as i) in Theorem 25.17 of [35] .

2. The characteristic function of the law of Xt is given through the characteristics of X , i.e.

Ψt(u) = iubt −
u2

2
ct +

∫

R

(eiux − 1− iuh(x))F t(dx) , for all u ∈ R,

where we recall that for any t ≥ 0, ct ≥ 0 and B 7→ F t(B) := ν([0, t]×B) is a positive measure which

integrates 1∧|x|2. Let t ∈ [0, T ]. According to Theorem II.8.1 (iii) of [35], there is an infinitely divisible

distribution with characteristics (bt, ct, F
t(dx)). By uniqueness of the characteristic function, that law

is precisely the law of Xt. By Corollary II.11.6, in [35], there is a Lévy process (Lts, 0 ≤ s ≤ 1) such

that Lt1 and Xt are identically distributed. We define

Ct0 = {c ∈ R |
∫

{|x|>1}

ecxFt(dx) <∞} and Ct = {z ∈ C | E
[
exp(Re(zLt1)

]
<∞} .

Remark 2.10 says that CT = D, moreover clearly CT0 = D0. Theorem V.25.17 of [35] implies D0 =

D ∩ R, i.e. point 2. is established.

3. Let t ∈ [0, T ] be fixed; let z ∈ D ⊂ Ct, in particular Re(z) ∈ Ct0. We apply point (iii) of Theorem

V.25.17 of [35] to the Lévy process Lt.

Proposition 3.2. Let X be a semimartingale additive process. For all z ∈ D, t 7→ κt(z) has bounded

variation and κdt(z) ≪ dat, where t 7→ at was defined in Proposition 2.9.
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Proof. Using (3.1), we only have to prove that t 7→
∫
[0,T ]×R

(ezx−1−zh(x))ν(ds, dx) is absolutely continuous

w.r.t. (dat). We can conclude

κt(z) = z

∫ t

0

dbs
das

das +
z2

2

∫ t

0

dcs
das

das +

∫ t

0

das

∫

R

(ezx − 1− zh(x))Fs(dx) ,

if we show that
∫ T

0

das

∫

R

|ezx − 1− zh(x)|Fs(dx) <∞ . (3.2)

Without restriction of generality we can suppose h(x) = x1|x|≤1. (3.2) can be bounded by the sum I1+I2+I3

where

I1 =

∫ T

0

das

∫

|x|>1

|ezx|Fs(dx) , I2 =

∫ T

0

das

∫

|x|>1

Fs(dx) , and I3 =

∫ T

0

das

∫

|x|≤1

|ezx−1−zx|Fs(dx) .

Using Proposition 2.9, we have

I1 =

∫ T

0

das

∫

|x|>1

|ezx|Fs(dx) =
∫ T

0

das

∫

|x|>1

eRe(z)xFs(dx) =

∫

[0,T ]×{|x|>1}

eRe(z)xν(ds, dx);

this quantity is finite because Re(z) ∈ D0 taking into account Proposition 3.1. Concerning I2 we have

I2 =

∫ T

0

das

∫

|x|>1

Fs(dx) =

∫ T

0

das

∫

|x|>1

(1 ∧ |x2|)Fs(dx) ≤ aT ,

because of (2.8). As far as I3 is concerned, we have

I3 ≤ eRe(z)
|z|2
2

∫

[0,T ]×{|x|≤1}

das(x
2 ∧ 1)Fs(dx) = eRe(z)

|z|2
2
aT

again because of (2.8). This concludes the proof of the proposition.

The converse of the first part of previous Proposition 3.2 also holds. To show this, we formulate first a

simple remark.

Remark 3.3. 1. For every z ∈ D, (exp(zXt − κt(z))) is a martingale. In fact, for all 0 ≤ s ≤ t ≤ T , we

have E[exp(z(Xt −Xs))] = exp(κt(z)− κs(z)).

2. t 7→ κt(0) ≡ 1 and it has always bounded variation.

Proposition 3.4. Let X be an additive process and z ∈ D∩R⋆. (Xt)t∈[0,T ] is a semimartingale if and only

if t 7→ κt(z) has bounded variation.

Proof. Using Proposition 3.2, it remains to prove the converse implication. If t 7→ κt(z) has bounded

variation then t 7→ eκt(z) has the same property. Remark 3.3 says that ezXt = Mte
κt(z) where (Mt) is a

martingale. Finally, (ezXt) is a semimartingale and taking the logarithm (zXt) has the same property.

Remark 3.5. Let z ∈ D. If (Xt) is a semimartingale additive process, then (ezXt) is necessarily a special

semimartingale since it is the product of a martingale and a bounded variation continuous deterministic

function and by use of integration by parts.

Proposition 3.6. The function (t, z) 7→ κt(z) is continuous. In particular, (t, z) 7→ κt(z), t ∈ [0, T ], z

belonging to a compact real subset, is bounded.
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Proof. • Proposition 3.1 implies that z 7→ κt(z) is continuous uniformly w.r.t. t ∈ [0, T ].

• We first prove that z ∈ Int(D), t 7→ κt(z) is continuous. Since z ∈ Int(D), there is γ > 1 such that

γz ∈ D; so

E[exp(zγXt)] = exp(κt(γz)) ≤ exp(sup
t≤T

(κt(γz))) ,

because t 7→ κt(γz) is bounded, being of bounded variation. This implies that (exp(zXt))t∈[0,T ] is

uniformly integrable. Since (Xt) is continuous in probability, then (exp(zXt)) is continuous in L1. The

partial result easily follows.

• To conclude it remains to show that t 7→ κt(z) is continuous for every z ∈ D. Since D̄ = Int(D), there

is a sequence (zn) in the interior of D converging to z. Since a uniform limit of continuous functions

on [0, T ] is a continuous function, the result follows.

3.2 A reference variance measure

For notational convenience we introduce the set D
2 = {z ∈ C|2z ∈ D}.

Remark 3.7. We recall that D is convex. Consequently we have.

1. If y, z ∈ D
2 , then y + z ∈ D. If z ∈ D

2 then z̄ ∈ D
2 and 2Re(z) ∈ D.

2. Since 0 ∈ D, clearly D
2 ⊂ D.

3. Under Assumption 1 below, 2 ∈ D and so D
2 + 1 ⊂ D.

We introduce a new function that will be useful in the sequel.

Definition 3.8. • For any t ∈ [0, T ], if z, y ∈ D
2 we denote

ρt(z, y) = κt(z + y)− κt(z)− κt(y) . (3.3)

• To shorten notations ρt :
D
2 → C will denote the real valued function such that,

ρt(z) = ρt(z, z̄) = κt(2Re(z))− 2Re(κt(z)) . (3.4)

Notice that the latter equality results from Remark 2.2 1.

An important technical lemma follows below.

Lemma 3.9. Let z ∈ D
2 , with Re(z) 6= 0, then, t 7→ ρt(z) is strictly increasing if and only if X has no

deterministic increments.

Proof. It is enough to show that X has no deterministic increments if and only if for any 0 ≤ s < t ≤ T , the

following quantity is positive,

ρt(z)− ρs(z) =
[
κt
(
2Re(z)

)
− κs

(
2Re(z)

)]
− 2Re

(
κt(z)− κs(z)

)
. (3.5)

By Remark 3.3, we have exp[κt(z)−κs(z)] = E[exp(z∆t
sX)], where ∆t

sX := Xt−Xs. Applying this property

and Remark 2.2 1., to the exponential of the first term on the right-hand side of (3.5) yields

exp
[
κt
(
2Re(z)

)
− κs

(
2Re(z)

)]
= E[exp(2Re(z)∆t

sX)] = E[exp((z + z̄)∆t
sX)] = E[

∣∣exp(z∆t
sX)

∣∣2] .
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Similarly, for the exponential of the second term on the right-hand side of (3.5), one gets

exp
[
2Re

(
κt(z)− κs(z)

)]
= exp

[(
κt(z)− κs(z)

)
+
(
κt(z)− κs(z)

)]
=
∣∣E[exp(z∆t

sX)]
∣∣2 .

Hence taking the exponential of ∆t
sρ(z) := ρt(z)− ρs(z) yields

exp[∆t
sρ(z)]− 1 =

E[|exp(z∆t
sX)|2]

|E[exp(z∆t
sX)]|2

− 1 =
E[|ΓtsX(z)|2]
|E[ΓtsX(z)]|2

− 1 , where ΓtsX(z) = exp(z∆t
sX) ,

(3.6)

=
V ar

[
Re
(
ΓtsX(z)

)]
+ V ar

[
Im
(
ΓtsX(z)

)]

|E[ΓtsX(z)]|2
.

• If X has a deterministic increment ∆t
sX = Xt − Xs, then ΓtsX(z) is again deterministic and (3.6)

vanishes and hence t 7→ ρt(z) is not strictly increasing.

• If X has never deterministic increments, then the nominator is never zero, otherwise Re
(
ΓtsX(z)

)
=

exp(Re(z)∆t
sX), and therefore ∆t

sX would be deterministic.

Remark 3.10. If 2 ∈ D, setting z = 1 in (3.6) implies that ρt(1) > ρs(1) is equivalent to
V ar

(
exp(∆t

sX)
)

(
E[exp(∆t

sX)]
)2 >

0. Taking the process S at discrete instants t0 = 0 < · · · < tk < · · · < tn = T , one can define the discrete

time process (Sdk)k=0,··· ,n such that Sdk = Stk and derive the counterpart of Lemma 3.9 in the discrete time

setting. Indeed, the following assertions are equivalent:

• (ρtk(1))k=0,···n is an increasing sequence;

• ∆
tk+1

tk
X is never deterministic for any k = 0, · · · , n− 1.

Moreover, accordingly to Proposition 3.10 in [22], we observe that, under one of the above equivalent condi-

tions, the (discrete time) mean-variance trade-off process associated with (Sdk)k=0,··· ,n defined by

Kd
n :=

n−1∑

k=0

(
E[Sk+1 − Sk|Fk]

)2
(
V ar[Sk+1 − Sk|Fk]

)2 =

n−1∑

k=0

(
E[exp(∆

tk+1

tk
X)− 1

)2
(
V ar

[
exp(∆

tk+1

tk
X)
] )2

is always bounded. According to Proposition 2.6 of [40], that condition guarantees that every square integrable

random variable admits a discrete Föllmer-Schweizer decomposition. The process Kd is the discrete analogous

of the MVT process K; one can compare the mentioned result to item 1. of Theorem 2.6.

From now on, we will always suppose the following assumption.

Assumption 1. 1. (Xt) has no deterministic increments.

2. 2 ∈ D.

We continue with a simple observation.

Lemma 3.11. Let I be a compact real interval included in D. Then supx∈I supt≤T E[Sxt ] <∞.

Proof. Let t ∈ [0, T ] and x ∈ I, since κ is continuous, we have

E[Sxt ] = sx0 exp{κt(x)} ≤ max(1, ssup I0 ) exp(supt≤T,x∈I |κt(x)|) .
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Remark 3.12. From now on, in this section, dρt = ρdt will denote the measure

dρt = ρdt(1) = d(κt(2)− 2κt(1)) . (3.7)

According to Assumption 1 and Lemma 3.9, it is a positive measure which is strictly positive on each interval.

This measure will play a fundamental role.

We state below a result that will help us to show that κdt(z) is absolutely continuous w.r.t. ρdt(1).

Lemma 3.13. We consider two positive finite non-atomic Borel measures on E ⊂ Rn, µ and ν. We suppose

the following:

1. µ ≪ ν ;

2. µ(I) 6= 0 for every open ball I of E.

Then h :=
dµ

dν
6= 0 ν a.e. In particular µ and ν are equivalent.

Proof. We consider the Borel set B = {x ∈ E|h(x) = 0}. We want to prove that ν(B) = 0. So we suppose

that there exists a constant c > 0 such that ν(B) = c > 0 and take another constant ǫ such that 0 < ǫ < c.

Since ν is a Radon measure, there are compact subsets Kǫ and K ǫ
2

of E such that Kǫ ⊂ K ǫ
2
⊂ B and

ν(B −Kǫ) < ǫ, ν(B −K ǫ
2
) < ǫ

2 . Setting ǫ = c
2 , we have ν(Kǫ) >

c
2 and ν(K ǫ

2
) > 3c

4 . By Urysohn lemma,

there is a continuous function ϕ : E → R such that, 0 ≤ ϕ ≤ 1 with ϕ = 1 on Kǫ and ϕ = 0 on the closure

of Kc
ǫ
2
. Now

∫
E
ϕ(x)ν(dx) ≥ ν(Kǫ) >

c
2 > 0. By continuity of ϕ there is an open set O ⊂ E with ϕ(x) > 0

for x ∈ O. Clearly O ⊂ K ǫ
2
⊂ B; since O is relatively compact, it is a countable union of balls, and so

B contains a ball I. The fact that h = 0 on I implies µ(I) = 0 and this contradicts Hypothesis 2. of the

statement. Hence the result follows.

Remark 3.14. 1. If E = [0, T ], then point 2. of Lemma 3.13 becomes µ(I) 6= 0 for every open interval

I ⊂ [0, T ].

2. The result holds for every normal metric locally connected space E, provided ν are Radon measures.

Proposition 3.15. Under Assumption 1

d(κt(z)) ≪ dρt , for all z ∈ D . (3.8)

Proof. We apply Lemma 3.13, with dµ = dρt and dν = dat. Indeed, Proposition 3.2 implies Condition 1. of

Lemma 3.13 and Lemma 3.9 implies Condition 2. of Lemma 3.13. Therefore, dat is equivalent to dρt.

Remark 3.16. Notice that this result also holds with dρt(y) instead of dρt = dρt(1), for any y ∈ D
2 such

that Re(y) 6= 0.

3.3 On some semimartingale decompositions and covariations

Proposition 3.17. We suppose the validity of item 2. of Assumption 1. Let y, z ∈ D
2 . Then Sz is a special

semimartingale whose canonical decomposition Szt =M(z)t +A(z)t satisfies

A(z)t =

∫ t

0

Szu−κdu(z) , 〈M(y),M(z)〉t =
∫ t

0

Sy+zu− ρdu(z, y) , M(z)0 = sz0, (3.9)

where dρu(z) is defined by equation (3.4). In particular we have the following:
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1. 〈M(z),M〉t =
∫ t
0 S

z+1
u− ρdu(z, 1)

2. 〈M(z),M(z̄)〉t =
∫ t
0 S

2Re(z)
u− ρdu(z) .

Remark 3.18. • Clearly 1 ∈ D since 0 and 2 belong to D0 and D0 is convex by Proposition 3.1.

• If z = 1, we have Sz = S, so that by uniqueness of the special semimartingale decomposition, it follows

that M(1) =M .

Proof. The case y = 1, follows very similarly to the proof of Lemma 3.2 of [24]. The major tools are

integration by parts and Remark 3.3 which says that N(z)t := e−κt(z)Szt is a martingale. The general case

can be easily adapted.

Remark 3.19. Lemma 3.11 implies that E [| 〈M(y),M(z)〉|] < ∞ and so M(z) is a square integrable mar-

tingale for any z ∈ D
2 .

3.4 On the Structure Condition

Proposition 3.17 with y = z = 1 yields S = M + A where At =
∫ t
0
Su−κdu(1) and M is a martingale such

that 〈M,M〉t =
∫ t
0 S

2
u−(κdu(2) − 2κdu(1)) =

∫ t
0 S

2
u−ρdu. At this point, the aim is to exhibit a predictable

R-valued process α such that

1. At =
∫ t
0
αsd 〈M〉s , t ∈ [0, T ].

2. KT =
∫ T
0 α2

sd 〈M〉s is bounded.

In that case, according to item 1. of Theorem 2.6, there will exist a unique FS decomposition for any H ∈
L2(Ω,F ,P) and so the minimization problem (2.2) will have a unique solution, characterized by Theorem 2.7

2.

Proposition 3.20. Under Assumption 1, At =
∫ t
0
αsd 〈M〉s , where α is given by

αu :=
λu
Su−

with λu :=
dκu(1)

dρu
, for all u ∈ [0, T ]. (3.10)

Moreover the MVT process is given by

Kt =

∫ t

0

(
d(κu(1))

dρu

)2

dρu . (3.11)

Corollary 3.21. Under Assumption 1, the structure condition (SC) is verified if and only if

KT =

∫ T

0

(
d(κu(1))

dρu

)2

dρu <∞ .

In particular, (Kt) is deterministic therefore bounded.

Remark 3.22. Item 1. of Assumption 1 is natural. Indeed if it were not realized, i.e. if X admits a

deterministic increment on some interval [s, t], then S would not fulfill the (SC) condition, unless u 7→ κu(1)

is constant on [s, t]. In this case, the market model would admit arbitrage opportunities.

Proof (of Proposition 3.20). By Proposition 3.15, dκt(1) is absolutely continuous w.r.t. dρt. Setting αu as

in (3.10), relation (3.11) follows from Proposition 3.17, expressing Kt =
∫ t
0
α2
ud 〈M〉u.
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Lemma 3.23. The space Θ, defined in (2.1), is constituted by all predictable processes v such that E
(∫ T

0
v2t S

2
t−dρt

)
<

∞.

Proof. According to Proposition 2.4, the fact that K is bounded and S satisfies (SC), then v ∈ Θ holds if and

only if v is predictable and E[
∫ T
0 v2t d 〈M,M〉t] <∞. Since 〈M,M〉t =

∫ t
0 S

2
s−dρs, the assertion follows.

3.5 Explicit Föllmer-Schweizer decomposition

We denote by D the set of z ∈ D such that

∫ T

0

∣∣∣∣
dκu(z)

dρu

∣∣∣∣
2

dρu <∞. (3.12)

From now on, we formulate another assumption.

Assumption 2. 1 ∈ D.

Remark 3.24. 1. Because of Proposition 3.15,
dκt(z)

dρt
exists for every z ∈ D.

2. Under Assumption 1, Corollary 3.21 says that Assumption 2 is equivalent to (SC).

The proposition below will constitute an important step for determining the FS decomposition of the

contingent claim H = f(ST ) for a significant class of functions f , see Section 3.6.

Proposition 3.25. Let z ∈ D ∩ D
2 with z + 1 ∈ D, (in particular 2Re(z) ∈ D), then

1. SzT ∈ L2(Ω,F ,P).

2. Moreover, suppose that Assumptions 1 and 2 hold and define

γ(z, t) :=
d(ρt(z, 1))

dρt
, t ∈ [0, T ]. (3.13)

Then
∫ T
0
|γ(z, t)|2ρdt <∞ and

η(z, t) := κt(z)−
∫ t

0

γ(z, s)κds(1) = κt(z)−
∫ t

0

γ(z, s)
dκs(1)

dρs
ρds (3.14)

is well-defined, besides η(z, ·) is absolutely continuous w.r.t. ρds and therefore bounded.

3. Again under Assumptions 1 and 2, H(z) = SzT admits an FS decomposition H(z) = H(z)0+
∫ T
0 ξ(z)tdSt+

L(z)T where

H(z)t := e
∫
T

t
η(z,ds)Szt , (3.15)

ξ(z)t := γ(z, t)e
∫
T

t
η(z,ds)Sz−1

t− , (3.16)

L(z)t := H(z)t −H(z)0 −
∫ t

0

ξ(z)udSu . (3.17)

Proof. 1. is a consequence of Lemma 3.11.

2. γ(z, ·) is square integrable because Assumption 2 and z, z + 1 ∈ D. Moreover η is well-defined since

(∫ T

0

|γ(z, s)|
∣∣∣∣
dκs(1)

dρs

∣∣∣∣ ρds

)2

≤
∫ T

0

|γ(z, s)|2ρds
∫ T

0

∣∣∣∣
dκs(1)

dρs

∣∣∣∣
2

ρds. (3.18)
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3. In order to prove that (3.15),(3.16) and (3.17) is the FS decomposition of H(z), we need to show that

(a) H(z)0 is F0-measurable,

(b) 〈L(z),M〉 = 0,

(c) ξ(z) ∈ Θ, where Θ was defined in (2.1).

(d) L(z) is a square integrable martingale.

We proceed similarly to the proof of Lemma 3.3 of [24]. Point (a) is obvious. Partial integration and

point 1 of Proposition 3.17 yield

H(z)t = H(z)0 +

∫ t

0

e
∫
T

u
η(z,ds)dM(z)u −

∫ t

0

e
∫
T

u
η(z,ds)Szuη(z, du) +

∫ t

0

e
∫
T

u
η(z,ds)Szu−κdu(z) . (3.19)

On the other hand

∫ t

0

ξ(z)udSu =

∫ t

0

ξ(z)udMu +

∫ t

0

γ(z, u)e
∫
T

u
η(z,ds)Szu−κdu(1) . (3.20)

Hence, using expressions (3.19) and (3.20), by definition of η in (3.14), which says η(z, du) = κdu(z)−
γ(z, u)κdu(1), we obtain

L(z)t = H(z)t −H(z)0 −
∫ t

0

ξ(z)udSu =

∫ t

0

e
∫
T

u
η(z,ds)dM(z)u −

∫ t

0

ξ(z)udMu, (3.21)

which implies that L(z) is a local martingale.

From point 1. of Proposition 3.17, using (3.16), it follows that

〈L(z),M〉t =
∫ t

0

e
∫
T

u
η(z,ds)Sz+1

u− [ρdu(z, 1)− γ(z, u)ρdu].

Then by definition of γ in (3.13), ρdt(z, 1) = γ(z, t)ρdt , yields 〈L(z),M〉t = 0. Consequently, point (b)

follows.

It remains to prove point (d) i.e. that L(z) is a square-integrable martingale for all z ∈ D and that

Re(ξ(z)) and Im(ξ(z)) are in Θ. (3.21) says that

L(z)t =

∫ t

0

e
∫
T

s
η(z,du)dMs(z)−

∫ t

0

ξ(z)sdMs .

By Remark 2.2 we observe first that z̄, z̄ + 1 ∈ D. Moreover by definition of γ and η, it follows

γ(z, t) = γ(z̄, t) and η(z, t) = η(z̄, t). (3.22)

By Proposition 3.17, 3.22 and (3.21), it follows

〈
L(z), L(z)

〉

t
= 〈L(z), L(z̄)〉t =

〈
L(z),

∫ .

0

e
∫
T

s
η(z̄,du)dMs(z̄)

〉

t

=

∫ t

0

e
∫
T

s
η(z,du)e

∫
T

s
η(z̄,du)S

2Re(z)
s− ρds(z)−

∫ t

0

ξ(z)se
∫
T

s
η(z̄,du)S1+z̄

s− ρds(z̄, 1) .(3.23)

Consequently
〈
L(z), L(z)

〉

t
=

∫ t

0

e
∫
T

s
2Re(η(z,du))S

2Re(z)
s− [ρds(z)− |γ(z, s)|2ρds] . (3.24)
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Taking the expectation in (3.24), using point 2., (3.13), (3.14) and Lemma 3.11, we obtain

E

[〈
L(z), L(z)

〉

T

]
<∞ . (3.25)

Therefore, L is a square-integrable martingale.

It remains to prove point (c) i.e. that ξ(z) ∈ Θ. In view of applying Lemma 3.23, we evaluate

∫ T

0

|ξ(z)s|2S2
s−ρds =

∫ T

0

|γ(z, s)|2e
∫
T

t
2Re(η(z,du))S

2Re(z)
s− ρds. (3.26)

Similarly as for (3.24), we can show that the expectation of the right-hand side of (3.26) is finite. This

concludes the proof of Proposition 3.25.

3.6 FS decomposition of special contingent claims

We consider now payoff functions of the type

H = f(ST ) with f(s) =

∫

C

szΠ(dz) , (3.27)

where Π is a (finite) complex measure in the sense of Rudin [33], Section 6.1. An integral representation of

some basic European calls is provided in the sequel. We need now the new following assumption.

Assumption 3. Let I0 = suppΠ ∩ R. We denote I = 2I0 ∪ {1}.

1. I0 is compact.

2. ∀z ∈ suppΠ, z, z + 1 ∈ D.

3. I0 ⊂ D
2 .

4. supx∈I

∥∥∥d(κt(x))dρt

∥∥∥
∞
<∞.

Remark 3.26. 1. Two kinds of assumptions appear. Assumptions 1 and 2 only concern the process and

Assumption 3 involves both the process and the payoff.

2. Assumption 3 looks obscure. Examples for its validity will be provided in Section 5. For instance con-

sider the specific case where X is a Wiener integral driven by a Lévy process Λ, i.e. Xt =
∫ t
0
l(s)dΛs, t ∈

[0, T ] and the payoffs are either a call or a put. We observe in Example 5.6 below that Assumptions 1, 2

and 3 are a consequence of the simple Assumption 4.

Remark 3.27. 1. Point 3. of Assumption 3 implies supz∈I+iR ‖κdt(Re(z))‖T <∞ .

2. Under Assumption 3, H = f(ST ) is square integrable. In particular it admits an FS decomposition.

3. Because of (3.8) in Proposition 3.15, the Radon-Nykodim derivative at Assumption 3.4, always exists.

We need now to obtain upper bounds on z for the quantity (3.25). We will first need the following lemma

which constitutes a (not straightforward) generalization of Lemma 3.4 of [24] which was stated when X is a

Lévy process. The fact that X does not have stationary increments, constitutes a significant obstacle.

Lemma 3.28. Under Assumptions 1, 2, 3, there are positive constants c1, c2, c3 such that dρs a.e.

16



1. sup
z∈I0+iR

dRe(η(z, s))

dρs
≤ c1 .

2. For any z ∈ I0 + iR , |γ(z, s)|2 ≤ dρs(z)

dρs
≤ c2 − c3

dRe(η(z, s))

dρs
.

3. − sup
z∈I0+iR

∫ T

0

2Re(η(z, dt)) exp

(∫ T

t

2Re(η(z, ds))

)
<∞ .

Remark 3.29. 1. According to Proposition 3.25, t 7→ Re(η(z, t)) is absolutely continuous w.r.t. dρt.

2. We recall that suppΠ is included in I0 + iR.

Proof (of Lemma 3.28). According to Point 3. of Assumption 3 we denote

c11 := sup
x∈I

∥∥∥∥
d(κt(x))

dρt

∥∥∥∥
∞

. (3.28)

For z ∈ I0 + iR, t ∈ [0, T ], we have η(z, t) = κt(z) −
∫ t
0
γ(z, s)dκs(1) and η(z̄, t) = κt(z̄) −

∫ t
0
γ(z̄, s)dκs(1) .

Then, we get Re(η(z, t)) = Re(κt(z))−
∫ t
0 Re(γ(z, s))dκs(1) . We obtain

∫ T

t

Re(η(z, ds)) ≤ Re (κT (z)− κt(z)) +

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣

=

∫ T

t

Re(dκs(z))

dρs
dρs +

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ . (3.29)

Since
〈
L(z), L(z)

〉

t
is increasing, taking into account (3.24), the measure

(
dρs(z)− |γ(z, s)|2dρs

)
is non-

negative. It follows that

dρs(z)

dρs
− |γ(z, s)|2 ≥ 0 , dρs a.e. (3.30)

By (3.30), in particular the density
dρs(z)

dρs
is non-negative dρs a.e. Consequently,

2
dRe(κs(z))

dρs
≤ dκs(2Re(z))

dρs
, dρs a.e. (3.31)

In order to prove 1. it is enough to verify that, for some c0 > 0,

dRe(η(z, s))

dρs
≤ c0 +

1

2

dRe(κs(z))

dρs
dρs a.e. (3.32)

In fact, (3.31), Assumption 3 point 3. and (3.28), imply that
dRe(η(z, s))

dρs
≤ c0 +

1

2
c11 =: c1. To prove (3.32)

it is enough to show that

Re(η(z, T )− η(z, t)) ≤ c0(ρT − ρt) +
1

2
Re(κT (z)− κt(z)), ∀t ∈ [0, T ]. (3.33)

Again Assumption 3 point 3. implies that

∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ ≤ c12

∫ T

t

|γ(z, s)|dρs , (3.34)
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where c12 = ‖ dκs(1)
dρs

‖∞. Using (3.30) and Assumption 3 it follows

|γ(z, s)|2 ≤ dρs(z)

dρs
=
dκ(2Re(z))

dρs
− 2dRe(κs(z))

dρs
≤ c11 −

2dRe(κs(z))

dρs
. (3.35)

This implies that c212 |γ(z, s)|
2 ≤

(
c213 +

1
4

(
dRe(κs(z))

dρs

)2)
, where c13 > 0 is chosen such that c213 ≥ 4c412 +

c212c11. Consequently,
∣∣∣∣∣

∫ T

t

γ(z, s)dκs(1)

∣∣∣∣∣ ≤
∫ T

t

dρs

(
c13 +

1

2

∣∣∣∣
dRe(κs(z))

dρs

∣∣∣∣
)
.

Coming back to (3.29), we obtain

Re(η(z, T )− η(z, t)) ≤
∫ T

t

(
Re(dκs(z))

dρs
+ c13 +

1

2

∣∣∣∣
Re(dκs(z))

dρs

∣∣∣∣
)
dρs

≤
∫ T

t

(
1

2

Re(dκs(z))

dρs
+

(
Re(dκs(z))

dρs

)+

+ c13

)
dρs.

(3.31) and Assumption 3 allow to establish

Re(η(z, T )− η(z, t)) ≤
∫ T

t

dρs

(
c0 +

1

2

dRe(κs(z))

dρs

)
, (3.36)

where c0 = c11
2 + c13. This concludes the proof of point 1.

In order to prove point 2. we first observe that (3.32) implies

−dRe(κs(z))
dρs

≤ 2

(
c0 −

dRe(η(z, s))

dρs

)
dρs a.e. (3.37)

(3.35) implies |γ(z, s)|2 ≤ c21 − 4
dRe(η(z, s))

dρs
, where c21 = c11 + 4c0. Point 2. is now established with

c2 = c21 and c3 = 4.

We continue with the proof of point 3. We decompose Re(η(z, t)) = A+(z, t)−A−(z, t), where A+(z, .) and

A−(z, .) are the increasing non negative functions given by

A+(z, t) =

∫ t

0

(
dRe(η(z, s))

dρs

)

+

dρs and A
−(z, t) =

∫ t

0

(
dRe(η(z, s))

dρs

)

−

dρs.

Moreover point 1. implies A+(z, t) ≤ c1ρt. At this point, for z ∈ I0 + iR

−
∫ T

0

Re(η(z, dt))e
∫
T

t
2Re(η(z,ds)) =

∫ T

0

(
A−(z, dt)−A+(z, dt)

)
e2

∫
T

t
Re(η(z,ds))

≤
∫ T

0

A−(z, dt)e2(A
+(z,T )−A+(z,t))e−2(A−(z,T )−A−(z,t))

≤ e2c1ρT
∫ T

0

e−2(A−(z,T )−A−(z,t))A−(z, dt)

=
e2c1ρT

2

{
1− e−2A−(z,T )

}
≤ e2c1ρT

2
,

which concludes the proof of point 3 of Lemma 3.28.

Theorem 3.30. Let Π be a finite complex-valued Borel measure on C. Suppose Assumptions 1, 2, 3. Any

complex-valued contingent claim H = f(ST ), where f is of the form (3.27), and H ∈ L2(Ω,F ,P), admits a

unique FS decomposition H = H0 +
∫ T
0 ξHt dSt + LHT with the following properties.
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1. H ∈ L2(Ω,F ,P) and

Ht =

∫
H(z)tΠ(dz), ξHt =

∫
ξ(z)tΠ(dz), LHt =

∫
L(z)tΠ(dz),

where for z ∈ supp(Π), H(z), ξ(z) and L(z) are the same as those introduced in Proposition 3.25 and

we convene that they vanish if z /∈ supp(Π).

2. Previous decomposition is real-valued if f is real-valued.

Remark 3.31. Taking Π = δz0(dz), z0 ∈ C, Assumption 3 is equivalent to the assumptions of Proposition

3.25.

Proof (of Theorem 3.30). a) f(ST ) ∈ L2(Ω,F ,P) since by Jensen’s, E
∣∣∫

C
Π(dz)SzT

∣∣2 ≤
∫
C
|Π|(dz)E|S2Re(z)

T ||Π|(C) ≤
supx∈I0 E(S2x

T )|Π|(C)2, where |Π| denotes the total variation of the finite measure Π. Previous quantity is

bounded because of Lemma 3.11.

b) We go on with the FS decomposition. We would like to prove first that H and LH are well defined

square-integrable processes and E(
∫ T
0
|ξHs |2d〈M〉s) <∞.

By Jensen’s inequality, we have

E

∣∣∣∣
∫

C

L(z)tΠ(dz)

∣∣∣∣
2

≤ E

(∫

C

|Π|(dz)|L(z)t|2
)
|Π(C)| =

∫

C

|Π|(dz)E[|L(z)t|2]|Π(C)|.

Similar calculations allow to show that

E[(ξH)2t ] ≤ |Π|(C)
∫

C

|Π|dz)E[|ξ(z)t|2] and E[(LHt )2] ≤ |Π(C)|
∫

C

|Π|(dz)E[|L(z)t|2] .

We will show now that

• (A1): supt≤T,z∈suppΠ E[|Ht(z)|2] <∞ ;

• (A2):
∫
C
|Π|(dz)E[|L(z)T |2] <∞;

• (A3): E
(∫ T

0 dρtS
2
t

∫
C
|ξt(z)|2|Π|(dz)

)
<∞.

(A1): Since H(z)t = e
∫
T

t
η(z,ds)Szt , we have |H(z)t|2 = H(z)tH(z)t = e

∫
T

t
2Re(η(z,ds))S

2Re(z)
t , so

E[|H(z)t|2] = e
∫
T

t
2Re(η(z,ds))

E[S
2Re(z)
t ] ≤ c4e

∫
T

t
2Re(η(z,ds)) ,

where c4 is well defined by (3.38), below, since by Lemma 3.11,

c4 := sup
x∈I,s≤T

E [Sxs ] <∞ . (3.38)

Lemma 3.28 implies (A1). Therefore (Ht) is a well-defined square-integrable process. (A2): E[|Lt(z)|2] ≤
E[|LT (z)|2] = E[

〈
L(z), L(z)

〉

T
] , where the first inequality is due to the fact that |Lt(z)|2 is a submartingale.

E

[〈
L(z), L(z)

〉

T

]
= E

[∫ T

0

e
∫
T

s
2Re(η(z,du))S

2Re(z)
s−

[
dρs(z)− |γ(z, s)|2dρs

]
]
.

By Fubini’s theorem, Lemma 3.11 and (3.24), we have

E

[〈
L(z), L(z)

〉

T

]
=

∫ T

0

e
∫
T

s
2Re(η(z,du))

E[S
2Re(z)
s− ]

[
dρs(z)

dρs
− |γ(z, s)|2

]
dρs

≤ c4

∫ T

0

e
∫
T

s
2Re(η(z,du))

[
dρs(z)

dρs

]
dρs.
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According to Lemma 3.28 point 2, previous expression is bounded by c4I(z), where

I(z) :=

∫ T

0

dρt exp

(∫ T

t

2Re(η(z, ds))

)[
c2 − c3

dRe(η(z, t))

dρt

]
= c2I1(z) + c3I2(z), (3.39)

where I1(z) =
∫ T
0 dρt exp

(∫ T
t
2Re(η(z, ds))

)
and I2(z) = −

∫ T
0 exp

(∫ T
t
2Re(η(z, ds))

)
Re(η(z, ds)). Using

again Lemma 3.28, we obtain

sup
z∈I0+iR

|I1(z)| ≤ ρT exp (2c1ρT ) and sup
z∈I0+iR

|I2(z)| <∞ , (3.40)

and so

sup
z∈I0+iR

E

[〈
L(z), L(z)

〉

T

]
<∞ . (3.41)

This concludes (A2).

We verify now the validity of (A3). This requires to control

E

[∫ T

0

ρdtS
2
t

(∫

C

|Π|(dz)|ξ(z)t|2
)]

≤ E



∫ T

0

ρdtS
2
t



∫

C

|Π|(dz)
∣∣∣∣∣γ(z, t) exp

(∫ T

t

Re(η(z, ds))

)
Sz−1
t

∣∣∣∣∣

2



 .

Using Jensen’s inequality, this is smaller or equal than

|Π(C)|
∫

C

|Π|(dz)
∫ T

0

ρdtE
[
S
2Re(z)
t

]
|γ(z, t)|2 exp

(
2

∫ T

t

Re(η(z, ds))

)
.

Lemma 3.28 gives the upper bound c4|Π|(C)
∫
C
|Π|(dz)I(z), where I(z) was defined in (3.39). Since Π is

finite and because of (3.40), (A3) is now established.

c) In order to conclude the proof of item 1., it remains to show that L is an (Ft)-martingale which is

strongly orthogonal to M . This can be established similarly as in [24], Proposition 3.1, by making use of

Fubini’s theorem and Fubini’s theorem for stochastic integrals (cf. [31], Theorem IV.46) and (A1), (A2), (A3).

Consequently, (H0, ξ
H , LH) provide a (possibly complex) FS decomposition of H .

d) It remains to prove item 2., that is to say that the decomposition is real-valued. Let (H0, ξ
H , LH) and

(H0, ξ
H
, L

H
) be two FS decomposition of H . Consequently, since H and (St) are real-valued, we have

0 = H−H = (H0−H0)+

∫ T

0

(ξHs −ξHs )dSs+(LHT −LHT ), which implies that 0 = Im(H0)+
∫ T
0 Im(ξHs )dSs+

Im(LHT ). By Theorem 2.6 1., the uniqueness of the real-valued Föllmer-Schweizer decomposition yields that

the processes (Ht),(ξ
H
t ) and (LHt ) are real-valued.

3.7 Representation of call and put options

We used some integral representations of payoffs of the form (3.27). We refer to [15], [32] and more re-

cently [17], for some characterizations of classes of functions which admit this kind of representation. In

order to apply the results of this paper, we need explicit formulae for the complex measure Π in some example

of contingent claims. Let K > 0 be a strike.

The European Call option H = (ST −K)+. For arbitrary 0 < R < 1, s > 0, we have

(s−K)+ − s =
1

2πi

∫ R+i∞

R−i∞

sz
K1−z

z(z − 1)
dz . (3.42)
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The European Put option H = (K − ST )+. For an arbitrary R < 0, s > 0, we have

(K − s)+ =
1

2πi

∫ R+i∞

R−i∞

sz
K1−z

z(z − 1)
dz . (3.43)

4 The solution to the minimization problem

FS decomposition will help to provide the solution to the global minimization problem. Let X be an additive

process with cumulant generating function κ. We denote St = s0 exp(Xt), t ∈ [0, T ], s0 > 0. Next theorem

deals with the case where the payoff to hedge is given as a bilateral Laplace transform of the exponential of

the additive process X . It is an extension of Theorem 3.3 of [24] to additive processes with no stationary

increments.

Theorem 4.1. Let H = f(ST ) where f is of the form (3.27). We assume the validity of Assumptions 1, 2,

3. The variance-optimal capital V0 and the variance-optimal hedging strategy ϕ, solution of the minimization

problem (2.2), are given by V0 = H0 and the implicit expression

ϕt = ξHt +
λt
St−

(Ht− − V0 −
∫ t

0

ϕsdSs) , (4.1)

where the processes (Ht), (ξt) and (λt) are defined by

γ(z, t) :=
dρt(z, 1)

dρt
with ρt(z, y) = κt(z + y)− κt(z)− κt(y) ,

η(z, dt) := κdt(z)− γ(z, t)κdt(1), λt :=
d(κt(1))

dρt

Ht :=

∫

C

e
∫
T

t
η(z,ds)SztΠ(dz), ξHt :=

∫

C

γ(z, t)e
∫
T

t
η(z,ds)Sz−1

t− Π(dz) .

The optimal initial capital is unique. The optimal hedging strategy ϕt(ω) is unique up to some (P(dω)⊗ dt)-

null set.

Remark 4.2. The mean variance trade-off process can be expressed as, see (3.11), Kt =
∫ t
0
dκu(1)
dρu

κdu(1).

Proof (of Theorem 4.1).

SinceK is deterministic, the optimality follows from Theorem 3.30 and by items 1. and 2. of Theorem 2.7.

We recall that α was given in (3.10). Uniqueness follows from Theorem 2.6 2.

When the underlying price is an exponential of additive process, we evaluate the so called variance of

the hedging error of the contingent claim H i.e. the quantity E[(V0 +GT (ϕ) −H)2], where V0, ϕ and H

were defined at Theorem 4.1.

Theorem 4.3. Under the assumptions of Theorem 4.1, the variance of the hedging error equals

J0 :=

(∫

C

∫

C

J0(y, z)Π(dy)Π(dz)

)
,

where

J0(y, z) :=

{
sy+z0

∫ T
0
β(y, z, t)eκt(y+z)+α(y,z,t)dρt : y, z ∈ suppΠ

0 : otherwise,
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with

α(y, z, t) := η(z, T )− η(z, t)− (η(y, T )− η(y, t))−
∫ T

t

(
dκs(1)

dρs

)2

dρs ,

β(y, z, t) :=
dρt(y, z)

dρt
− dρt(y, 1)

dρt

dρt(z, 1)

dρt
. (4.2)

This expression of the error involving the function β (4.2), can be used to characterize the price models

that are exponential of additive processes for which the market is complete, at least for vanilla option payoffs.

For instance, by evaluating β, we can verify, in Remarks 5.10 and 5.11, below, the complete market model

property in the Poisson and the Gaussian case.

Proof (of Theorem 4.3). Since X0 = 0, F0 is the trivial σ-field, therefore LH0 = 0, because it is mean-zero

and deterministic.

The quadratic error can be calculated using Theorem 2.7 3. It gives

E

[∫ T

0

exp {−(KT −Ks)} d
〈
LH
〉
s

]
, (4.3)

where LH is the remainder martingale in the FS decomposition of H . We proceed now to the evaluation

of
〈
LH
〉
. Similarly to the proof of Theorem 3.2 of [24], using (3.23), the bilinearity and the stability w.r.t.

complex conjugate of the covariation together with (3.41), it is possible to show that

〈
LH , LH

〉
t
=

∫ ∫
〈L(y), L(z)〉tΠ(dy)Π(dz). (4.4)

It remains to evaluate 〈L(y), L(z)〉 for y, z ∈ supp(Π). We know by Proposition 3.17 that for all y, z ∈ D
2 ,

〈M(y),M(z)〉t =
∫ t

0

Sy+zu− ρdu(y, z) .

Using the same terminology as in Proposition 3.25, similarly to (3.24) we have

〈L(y), L(z)〉t =

∫ t

0

e
∫
T

s
(η(z,du)+η(y,du))Sy+zs− [ρds(y, z)− γ(z, s)ρds(y, 1)]

=

∫ t

0

e
∫
T

s
(η(z,du)+η(y,du))Sy+zs− β(y, z, s)dρs .

We come back to (4.3). Recalling that α(y, z, t) = (η(z, T )− η(z, t))− (η(y, T )− η(y, t))− (KT −Kt), where

K is the MVT process, we have

∫ T

0

e−(KT−Kt)d 〈L(y), L(z)〉t =
∫ T

0

eα(y,z,t)Sy+zt− β(y, z, t)dρt.

Since E[Sy+zt− ] = sy+z0 eκt(y+z), an application of Fubini’s theorem yields

E

(∫ T

0

e−(KT−Kt)d 〈L(y), L(z)〉t

)
= sy+z0

∫ T

0

eα(y,z,t)+κt(y+z)β(y, z, t)dρt, (4.5)

which equals J0(y, z). (4.4), (4.5) and again Fubini’s theorem imply

∫ T

0

e−(KT−Kt)d
〈
LH , LH

〉
t
=

∫

C

∫

C

J0(y, z)Π(dy)Π(dz).

This concludes the proof of Theorem 4.3.
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5 Examples

5.1 Exponential of a Wiener integral driven by a Lévy process

Let Λ be a square integrable Lévy process and let (t, z) 7→ κΛt (z) be the cumulative generating function of

Λ with domain DΛ in the sense of Definition 2.1. (t, z) 7→ κΛt (z) is continuous because of Proposition 3.25.

We observe that

κΛt (z) = tκΛ(z) , (5.6)

where κΛ : Λ → C is a continuous function such that κΛ(z) = κΛ1 (z). Let l : [0, T ] → R be a bounded

Borel function. We will consider in this subsection the additive process Xt =
∫ t
0 lsdΛs. Let us define the set

DΛ(l) ⊂ R such that

DΛ(l) = {x ∈ R|lx, lx ∈ DΛ}+ iR , where l := inf l, l := sup l .

Lemma 5.1. The cumulant generating function of X is such that for all z ∈ DΛ(l), we have

κXt(z) =

∫ t

0

κΛ(zls)ds.

In particular DΛ(l) ⊂ D, where D is the domain defined according to Definition 2.1.

Proof. If l is continuous, the result follows from the observation that
∫ T
0
lsdΛs is the limit in probability of

∑p−1
j=0 ltj (Λtj+1 − Λtj ) where 0 = t0 < t1 < ... < tp = T is a subdivision of [0, T ] whose mesh converges to

zero. If l is only Borel bounded the result can be established through approximation by convolution.

We formulate the following hypothesis which will be in force for the whole subsection.

Assumption 4. 1. κΛ(2)− 2κΛ(1) 6= 0.

2. l > 0 and 2l ∈ DΛ.

Remark 5.2. Lemma 3.9 applied to X being the Lévy process Λ implies that, for every γ > 0, such that

2γ ∈ DΛ, we have

κΛ(2γ)− 2κΛ(γ) > 0 . (5.7)

Remark 5.3. 1. By item 2. of Assumption 4, 2 ∈ DΛ(l) and so does 1 because DΛ(l) is convex. By

Lemma 5.1, 1 and 2 belong to D.

2. ρt =
∫ t
0

(
κΛ(2ls)− 2κΛ(ls)

)
ds ;

3. X is a semimartingale additive process since t 7→ κt(2) has bounded variation, see Proposition 3.4.

Proposition 5.4. Assumptions 1 and 2 are verified. Moreover DΛ(l) ⊂ D.

Proof. 1. By item 1. of Remark 5.3, 2 ∈ D and so the second item of Assumption 1 is verified. Using

Lemma 3.9, item 1. of Assumption 1 is verified if we show that t 7→ ρt(1) = κt(2) − 2κt(1) is strictly

increasing. Now κt(2)−2κt(1) =
∫ t
0

(
κΛ(2ls)− 2κΛ(ls)

)
ds. Inequality (5.7) and item 2. of Assumption

4 imply that ∀s ∈ [0, T ], κΛ(2ls)− 2κΛ(ls) > 0, and consequently t 7→ ρt(1) is strictly increasing.
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2. For z ∈ DΛ(l), by Lemma 5.1 and Remark 5.3 2. we have

∣∣∣∣
dκt(z)

dρt

∣∣∣∣ =
∣∣∣∣

κΛ(zlt)

κΛ(2lt)− 2κΛ(lt)

∣∣∣∣ ≤
supx∈[l,l] |κΛ(xz)|

infx∈[l,l] (κ
Λ(2x)− 2κΛ(x))

. (5.8)

Previous supremum and infimum exist since x 7→ κΛ(zx) is continuous and it attains a maximum and

a minimum on a compact interval. So, DΛ(l) ⊂ D and Assumption 2 is verified because of point 1. in

Remark 5.3.

Remark 5.5. Suppose for a moment that

2I0 ⊂ {x|lx, lx ∈ DΛ}. (5.9)

1. That implies then 2I0 ⊂ DΛ(l). Point 3. of Assumption 3 follows by Lemma 5.1. Item 2. of the same

Assumption is also verified. In fact, since 2I0 ⊂ DΛ(l) and 2 ∈ DΛ(l) and because of the fact that

DΛ(l) is convex, we have

suppΠ ∪ (suppΠ + 1) ⊂ DΛ(l)

2
+
DΛ(l)

2
⊂ DΛ(l).

The conclusion follows by Proposition 5.4 which says DΛ(l) ⊂ D.

2. From the proof of Proposition 5.4, it follows that

dκt(z)

dρt
=

κΛ(zlt)

κΛ(2lt)− 2κΛ(lt)
.

Admitting point 1. of Assumption 3, then I is compact. Taking into account (5.8), the fact that

1 ∈ DΛ(l), so I ⊂ DΛ(l), and that κΛ is continuous, point 4. of Assumption 3 is verified.

We consider again the same class of options as in previous subsections. To conclude the verification of

Assumption 3 it remains to show the following.

• I0 is compact. This point will be trivially fulfilled in the specific cases.

• (5.9).

Example 5.6. We keep in mind the call and put representations provided in Section 3.7.

1. H = (ST −K)+. In this case 2I0 = {2R, 2} and (5.9) is verified, since R ∈]0, 1[.

2. H = (K − ST )+. Again, here R < 0, 2I0 = {2R}.
Again, we only have to require that DΛ contains some negative values, which is the case for the three

examples introduced in Remark 5.8. Selecting R in a proper way, (5.9) is fulfilled.

Corollary 5.7. We consider a process X of the form Xt =
∫ t
0 lsdΛs under Assumption 4. The FS decom-

position of an option H of the type (3.27) and the related solution to the minimization problem are provided

by Theorem 3.30, Proposition 3.25 and Theorem 4.1 together with the expressions given below.

For z ∈ suppΠ, t ∈ [0, T ] we have

λs =
κΛ(ls)

κΛ(2ls)− 2κΛ(ls)
, γ(z, s) =

κΛ((z + 1)ls)− κΛ(zls)− κΛ(ls)

κΛ(2ls)− 2κΛ(ls)
,

η(z, s) = κΛ(zls)−
κΛ(ls)

κΛ(2ls)− 2κΛ(ls)

(
κΛ((z + 1)ls)− κΛ(zls)− κΛ(ls)

)
.

Again, for convenience, if z /∈ suppΠ then we define γ(z, ·) = η(z, ·) ≡ 0.
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5.2 Considerations about the Lévy case

If l ≡ 1 then X coincides with the Lévy process Λ and Assumption 4 is equivalent to Hubalek et alia Con-

dition introduced in [24] i.e. 1. 2 ∈ D ; 2. κΛ(2)− 2κΛ(1) 6= 0 .

In that case we have D = DΛ = DΛ(l). Therefore D = D because
dκt
dρt

(z) =
1

κΛ(2)− 2κΛ(1)
κΛ(z) for

any t ∈ [0, T ], z ∈ D.

We recall some cumulant and log-characteristic functions of some typical Lévy processes.

Remark 5.8. 1. Poisson Case: If X is a Poisson process with intensity λ, we have that κΛ(z) = λ(ez−1).

Moreover, in this case the set DΛ = C.

2. NIG Case: This process was introduced by Barndorff-Nielsen in [5]. Then X is a Lévy process with

X1 ∼ NIG(α, β, δ, µ), with α > |β| > 0, δ > 0 and µ ∈ R. We have κΛ(z) = µz + δ(γ0 − γz) and

γz =
√
α2 − (β + z)2, DΛ = [−α− β, α− β] + iR .

3. Variance Gamma case: Let α, β > 0, δ 6= 0. IfX is a Variance Gamma process with X1 ∼ V G(α, β, δ, µ)

with κΛ(z) = µz + δLog

(
α

α−βz− z2

2

)
, where Log is again the principal value complex logarithm de-

fined in Section 2. The expression of κΛ(z) can be found in [24, 27] or also [13], table IV.4.5 in

the particular case µ = 0. In particular an easy calculation shows that we need z ∈ C such that

Re(z) ∈]− β −
√
β2 + 2α,−β +

√
β2 + 2α[ so that κΛ(z) is well-defined so that

DΛ =]− β −
√
β2 + 2α,−β +

√
β2 + 2α[+iR.

Remark 5.9. We come back to the examples introduced in Remark 5.8. In all the three cases, Hubalek et

alia Condition is verified if 2 ∈ D. This happens in the following situations:

1. always in the Poisson case;

2. if Λ = X is a NIG process and if 2 ≤ α− β ;

3. if Λ = X is a VG process and if 2 < −β +
√
β2 + 2α .

Theorem 4.1 allows to re-obtain the results stated in [24].

Remark 5.10. If X is a Poisson process with parameter λ > 0 then the quadratic error is zero. In fact,

κΛ(z) = λ(exp(z)− 1)) , ρt(y, z) = λt(exp(y)− 1)(exp(z)− 1)

γ(z, t) =
κΛ(z + 1)− κΛ(z)− κΛ(1)

κΛ(2)− 2κΛ(1)
t =

exp(z)− 1

e− 1

imply that β(y, z, t) = 0 for every y, z ∈ C, t ∈ [0, T ].

Therefore J0(y, z, t) ≡ 0. In particular all the options of type (3.27) are perfectly hedgeable.
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5.3 About some singular non-stationary models

Here, we consider some singular models, in the sense that the cumulant generating function of the log-price

process is not absolutely continuous with respect to (a.c. w.r.t.) Lebesgue measure. More precisely, let (Wt)

be a standard Brownian motion. A classical approach to model the volatility clustering effect consists in

introducing the notion of trading time (as opposed to the real time) which accelerates or slows down the

price process depending on the activity on the market. This virtual time is represented by a change of time

(τt)t≥0 and the log-price is then constructed by subordination i.e. Xt =Wτ(t). Now, if the change of time τ

is singular, then it can be proved that the log-price process X is also singular.

This typically happens when the change of time τ , is obtained as the cumulative distribution function of a

deterministic positive multifractal measure dτ(t) = dψ(t), singular w.r.t. Lebesgue measure. Multifractal

measures were introduced in the physical sciences to model turbulent flows [28]. More recently, in [10], the

authors used this construction precisely for modeling financial volatility. But their model, the Multifractal

Model of Asset Returns (MMAR), relies on a random (and not deterministic) multifractal measure and is

hence beyond the framework of this paper.

Below, we consider two examples of singular non-stationary log-price models based on such (deterministic

or random) singular changes of time.

1. Deterministic change of time (log-Gaussian continuous process): Let us consider the log-price process

X such thatXt =Wψ(t), where ψ : R+ → R+ is a strictly increasing function, including the pathological

case where ψ
′

t = 0 a.e. For z ∈ D = C, we have E[ezXt ] = E[ezWψ(z) ] = eκt(z) = e
z2

2 ψ(t), so that

κt(z) =
z2

2 ψ(t) , ρt = ψ(t). Notice that dκt(z) is not necessarily a. c. w.r.t. Lebesgue measure and

that this is verified as soon as dψ(t) ≪ dt. Assumption 1 1. is verified since ψ is strictly increasing;

Assumption 1 2., Assumption 2 and Assumption 3 are verified since D = D = C and dκt(z)
dρt

= z2

2 is

continuous. Consequently all the conditions to apply Theorem 4.1 are satisfied and

γ(z, t) = z , η(z, t) =
ψ(t)

2
(z2 − z) and λt ≡

1

2
.

Remark 5.11. Calculating β(y, z, t) in (4.2), we find β ≡ 0. Therefore here also the quadratic error

is zero. This confirms the fact that the market is complete, at least for the considered class of options.

2. Random change of time: Let (θt)t≥0 denote an increasing Lévy process such that θ1 follows an Inverse

Gaussian distribution with parameters δ > 0 and γ > 0. Now, let us consider Y the process such that

Yt = µt + βθ(t) +Wθ(t), for all t ∈ [0, T ], with β , µ ∈ R. Then one can prove that Y is a NIG Lévy

process with Y1 ∼ NIG(α =
√
γ2 + β2, β, δ, µ). Finally, let us consider the log-price process X such

that Xt = Wτt , where τt = θψ(t) and ψ is the cumulative distribution of a deterministic multifractal

measure on [0, T ]. Hence, the cumulant generating function of Xt is singular w.r.t. Lebesgue measure

and is given by κt(z) = [µz + δ(γ0 − γz)]ψ(t) with γz =
√
α2 − (β + z)2, for all z ∈ D := DXt =

[−α− β, α− β] + iR .

6 Application to Electricity

6.1 Hedging electricity derivatives with forward contracts

Because of non-storability of electricity, no dynamic hedging strategy can be performed on the spot market.

Hedging instruments for electricity derivatives are then futures or forward contracts. For simplicity, we will
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assume that interest rates are deterministic and zero so that futures prices are equivalent to forward prices.

The value of a forward contract offering the fixed price FTd0 at time 0 for delivery of 1MWh at time Td is by

definition of the forward price, S0,Td
0 = 0. Indeed, there is no cost to enter at time 0 the forward contract

with the current market forward price FTd0 . Then, the value of the same forward contract S0,Td at time

t ∈ [0, Td] is deduced by an argument of Absence of (static) Arbitrage as S0,Td
t = e−r(Td−t)(FTdt − FTd0 ).

Hence, the dynamics of the hedging instrument (S0,Td
t )0≤t≤Td is directly related (for deterministic interest

rates) to the dynamics of forward prices (FTdt )0≤t≤Td . Consequently, in the sequel, when considering hedging

on electricity markets, we will always suppose that the underlying is a forward contract (S0,Td
t )0≤t≤Td and

we will focus on the dynamics of forward prices.

6.2 Electricity price models for pricing and hedging application

Observing market data, one can notice two main stylized features of electricity forward prices:

• Volatility term structure of forward prices: the volatility increases when the time to maturity decreases.

Indeed, when the delivery date approaches, the flow of relevant information affecting the balance

between electricity supply and demand increases and causes great variations in the forward prices.

This maturity effect is usually referred to as the Samuelson hypothesis, it was first studied in [34] and

can be observed on Figure 1, in the case of electricity futures prices.

• Non-Gaussianity of log-returns: log-returns can be considered as Gaussian for long-term contracts but

begin to show heavy tails for short-term contracts.
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Figure 1: Volatility of electricity Month-ahead futures prices w.r.t. to the time to maturity estimated on the French

Power market in 2007.

Hence, a challenge is to be able to describe with a single model, both the non-Gaussianity on the short term

and the volatility term structure of the forward curve. One reasonable attempt to do so is to consider the

exponential Lévy factor model, proposed in [9] or [12]. The forward price given at time t for delivery at time

Td ≥ t, denoted FTdt is then modeled by a p-factors model, such that

FTdt = FTd0 exp(mTd
t +

p∑

k=1

Xk,Td
t ) , for all t ∈ [0, Td] ,where (6.10)
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• (mTd
t )0≤t≤Td is a real deterministic trend;

• for any k = 1, · · · p, (Xk,Td
t )0≤t≤Td is such that Xk,Td

t =
∫ t
0 σke

−λk(Td−s)dΛks , where Λ = (Λ1, · · · ,Λp)
is a Lévy process on Rd, with E[Λk1 ] = 0 and V ar[Λk1 ] = 1;

• σk > 0 , λk ≥ 0 , are called respectively the volatilities and the mean-reverting rates.

Hence, forward prices are given as exponentials of additive processes with non-stationary increments. In

practice, we consider the case of a one or a two factors model (p = 1 or 2), where the first factor X1 is a

non-Gaussian additive process and the second factor X2 is a Brownian motion with σ1 ≫ σ2. Notice that

this kind of model was originally developed and studied in details for interest rates in [32], as an extension of

the Heath-Jarrow-Morton model where the Brownian motion has been replaced by a general Lévy process.

Of course, this modeling procedure (6.10), implies incompleteness of the market. Hence, if we aim at pricing

and hedging a European call on a forward with maturity T ≤ Td, it won’t be possible, in general, to hedge

perfectly the payoff (FTdT − K)+ with a hedging portfolio of forward contracts. Then, a natural approach

could consist in looking for the variance optimal initial capital and hedging portfolio. In this framework, the

results of Section 3 generalizing the results of Hubalek & al in [24] to the case of non stationary additive

process can be useful.

6.3 The non Gaussian two factors model

To simplify let us forget the superscript Td denoting the delivery period (since we will consider a fixed

delivery period). We suppose that the forward price F follows the two factors model

Ft = F0 exp(mt +X1
t +X2

t ) , for all t ∈ [0, Td] ,where (6.11)

• m is a real deterministic trend starting at 0. It is supposed to be absolutely continuous w.r.t. Lebesgue;

• X1
t =

∫ t
0 σse

−λ(Td−u)dΛu, where Λ is a Lévy process on R with Λ following a Normal Inverse Gaussian

(NIG) distribution or a Variance Gamma (VG) distribution. Moreover, we will assume that E[Λ1] = 0

and V ar[Λ1] = 1;

• X2 = σlW where W is a standard Brownian motion on R;

• Λ and W are independent;

• σs and σl standing respectively for the short-term volatility and long-term volatility.

6.4 Verification of the assumptions

The result below helps to extend Theorem 4.1 to the case where X is a finite sum of independent semi-

martingale additive processes, each one verifying Assumptions 1, 2 and 3 for a given payoff H = f(s0e
XT ).

Lemma 6.1. Let X1, X2 be two independent semimartingale additive processes with cumulant generating

functions κi and related domains Di,Di, i = 1, 2 characterized in Remark 2.10 and (3.12). Let f : C → C of

the form (3.27).

For X = X1 +X2 with related domains D,D and cumulant generating function κ, we have the following.

1. D = D1 ∩D2.
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2. D1 ∩ D2 ⊂ D.

3. If X1, X2 verify Assumptions 1, 2 and 3, then X has the same property.

Proof. Since X1, X2 are independent and taking into account Remark 2.10 we obtain 1. and κt(z) =

κ1t (z) + κ2(z), ∀z ∈ D. We denote by ρi, i = 1, 2, the reference variance measures defined in Remark 3.12.

Clearly ρ = ρ1 + ρ2 and dρi ≪ dρ with ‖ dρi
dρ

‖∞ ≤ 1.

If z ∈ D1 ∩D2, we can write

∫ T

0

∣∣∣∣
dκt(z)

dρt

∣∣∣∣
2

dρt ≤ 2

∫ T

0

∣∣∣∣
dκ1t (z)

dρ1t

dρ1t
dρt

∣∣∣∣
2

dρt + 2

∫ T

0

∣∣∣∣
dκ2t (z)

dρ2t

dρ2t
dρt

∣∣∣∣
2

dρt

= 2

∫ T

0

∣∣∣∣
dκ1t (z)

dρ1t

∣∣∣∣
2
dρ1t
dρt

dρ1t + 2

∫ T

0

∣∣∣∣
dκ2t (z)

dρ2t

∣∣∣∣
2
dρ2t
dρt

dρ2t

≤ 2

(∫ T

0

∣∣∣∣
dκ1t (z)

dρ1t

∣∣∣∣
2

dρ1t +

∫ T

0

∣∣∣∣
dκ2t (z)

dρ2t

∣∣∣∣
2

dρ2t

)
.

This concludes the proof of D1 ∩ D2 ⊂ D and therefore of the of Point 2.

Finally Point 3. follows then by inspection.

With the two factors model, the forward price F is then given as the exponential of an additive process,

X , such that for all t ∈ [0, Td],

Xt = mt +X1
t +X2

t = mt + σs

∫ t

0

e−λ(Td−u)dΛu + σlWt . (6.12)

For this model, we formulate the following assumption.

Assumption 5. 1. 2σs ∈ DΛ.

2. If σl = 0, we require Λ not to have deterministic increments.

3. f : C → C is of the type (3.27) fulfilling (5.9).

Proposition 6.2. 1. The cumulant generating function of X defined by (6.12), κ : [0, Td] × D → C is

such that for all z ∈ DΛ(σs) and for all t ∈ [0, Td],

κt(z) = zmt +
z2σ2

l t

2
+

∫ t

0

κΛ(zσse
−λ(Td−u))du . (6.13)

In particular for fixed z ∈ DΛ(σs), t 7→ κt(z) is absolutely continuous w.r.t. Lebesgue measure.

2. Under Assumption 5, Assumptions 1, 2 and 3 are fulfilled.

Proof. We set X̃2 = m +X2. We observe that D2 = D2 = C, κ2t (z) = exp(zmt + z2σ2
l
t
2 ). We recall that

Λ and W are independent so that X̃2 and X1 are independent. For clarity, we only write the proof under

the hypothesis that Λ has no deterministic increments, the general case could be easily adapted. X1 is a

process of the type studied at Section 5.1; it verifies Assumption 4 and DΛ(l) contains DΛ(σs).

According to Proposition 5.4, Remark 5.5 and (5.9) it follows that Assumptions 1, 2 and 3 are verified

for X1. Both statements 1. and 2. are now a consequence of Lemma 6.1.

The solution to the mean-variance problem is provided by Theorem 4.1.
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Theorem 6.3. We suppose Assumption 5. The variance-optimal capital V0 and the variance-optimal hedg-

ing strategy ϕ, solution of the minimization problem (2.2), are given by Theorem 4.1 and Theorem 3.30,

Proposition 3.25 together with the expressions given below:

l̃t : = σse
−λ(Td−t),

γ(z, t) : =
zσ2

l + κΛ((z + 1)l̃t)− κΛ(zl̃t)− κΛ(l̃)t

σ2
l + κΛ(2l̃t)− 2κΛ(l̃t)

,

η(z, t) : =

[
zmt +

z2σ2
l

2
+ κΛ(zl̃t)− γ(z, t)

(
mt +

σ2
l

2
+ κΛ(l̃t)

)]
dt ,

λt =
mt +

σ2
l

2 + κΛ(l̃t)

σ2
l + κΛ(2l̃t)− 2κΛ(l̃t)

.

Remark 6.4. Previous formulae are practically exploitable numerically. The last condition to be checked is

2σs ∈ DΛ. (6.14)

1. Λ1 is a Normal Inverse Gaussian random variable; if σs ≤ α−β
2 then (6.14) is verified.

2. Λ1 is a Variance Gamma random variable then (6.14) is verified; if for instance σs <
−β+

√
β2+2α

2 .

7 Simulations

We are interested in comparing, in simulations, the Variance Optimal (VO) strategy to the Black-Scholes

(BS) strategy when hedging a European call, with payoff (ST −K)+, on an underlying stock with log-prices

Xt = log(St) that have independent but non Gaussian increments. More precisely, we assume that the

underlying is an electricity forward contract St = S0,Td
t = e−r(Td−t)(FTdt − FTd0 ) with delivery date Td equal

to the maturity of the call Td = T .

First, we consider the case where the log-price process X is an exponential of a Lévy process, continuing the

analysis of [24], then we consider the non stationary case. We make use of different simulated data according

to the underlying model, stationary in one case, non stationary in the second one.

Our simulations investigate two features which were not considered in [24] (even in the stationary case):

first the robustness of the BS hedging strategy w.r.t. the underlying price model, second the sensitivity of

the continuous VO strategy w.r.t. to the discreteness of the trading dates.

The VO strategy knows the real incomplete price model (with the real values of parameters) whereas the

BS strategy assumes (wrongly) a log-normal price model (with the real values of mean and variance). Of

course, the VO strategy is by definition optimal, w.r.t. the quadratic norm. However, both strategies (VO

and BS) are implemented in discrete time, hence our goal is precisely to analyze the hedging error outside of

the theoretical framework of a continuously rebalanced portfolio. Moreover, we are interested in interpreting

quantitatively the differences between both strategies w.r.t. to some characteristics such as the underlying

log-returns distribution or the number of trading dates.

The time unit is the year and the interest rate is zero in all our simulations. The initial value of the underlying

is s0 = 100 Euros. The maturity of the option is T = 0.25 i.e. three months from now.

7.1 Exponential Lévy

In this subsection, we simulate the log-price process X as a NIG Lévy process with X1 ∼ NIG(α, β, δ, µ).

Five different sets of parameters for the NIG distribution have been considered, going from the case of
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almost Gaussian returns corresponding to standard equities, to the case of highly non Gaussian returns.

The standard set of parameters is estimated on the Month-ahead base forward prices of the French Power

market in 2007:

α = 38.46 , β = −3.85 , δ = 6.40 , µ = 0.64 . (7.15)

Those parameters imply a zero mean, a standard deviation of 41%, a skewness (measuring the asymmetry)

of −0.02 and an excess kurtosis (measuring the fatness of the tails) of 0.01. The other sets of parameters are

obtained by multiplying the parameter α by a coefficient C, (β, δ, µ) being such that the first three moments

are unchanged. Note that when C grows to infinity the tails of the NIG distribution get closer to the tails of

the Gaussian distribution. For instance, Table 1 shows how the excess kurtosis (which is zero for a Gaussian

distribution) is modified with the five values of C chosen in our simulations.

Coefficient C = 0.08 C = 0.14 C = 0.2 C = 1 C = 2

α 3.08 5.38 7.69 38.46 76.92

Excess kurtosis 1.87 0.61 0.30 0.01 4. 10−3

Table 1: Excess kurtosis of X1 for different values of α, (β, δ, µ) insuring the same three first moments.

7.1.1 Strike impact on the initial capital and the hedging ratio

Figure 2 shows the initial capital (on the left graph) and the initial hedge ratio (on the right graph) produced

by the VO and the BS strategies as functions of the strike, for three different sets of parameters C =

0.08 , C = 1 , C = 2. We consider N = 12 trading dates, which corresponds to operational practices on

electricity markets, for an option expiring in three months. One can observe that BS results are very similar

to VO results for C ≥ 1 i.e. for almost Gaussian returns. However, for small values of C, for C = 0.08,

corresponding to highly non Gaussian returns, BS approach under-estimates out-of-the-money options and

over-estimates at-the-money options (for K = 99 Euros the BS initial capital is equal to 8.65 Euros i.e. 122%

of the VO initial capital, while for K = 150, it vanishes to 23 Cents i.e. only 57% of the VO initial capital).
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Figure 2: Initial capital (on the left) and hedge ratio (on the right) w.r.t. the strike, for C = 0.08 , C = 1 , C = 2.

7.1.2 Hedging error and number of trading dates

Figure 3 considers the hedging error (the difference between the terminal value of the hedging portfolio and

the payoff) w.r.t. the number of trading dates, for a strike K = 99 Euros (at the money) and for five different
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sets of parameters C given on Table 1. The bias (on the left graph) and standard deviation (on the right

graph) of the hedging error have been estimated by Monte Carlo method on 5000 runs. Note that we could

have used the formula stated in Theorem 4.3 to compute the variance of the error, but this would have

given us the limiting error which does not take into account the additional error due to the finite number of

trading dates.

In terms of standard deviation, the VO strategy seems to outperform noticeably the BS strategy, for small

values of C ( for C = 0.08 the VO strategy allows to reduce 10% of the standard deviation of the error).

As expected, one can observe that the VO error converges to the BS error when C increases. This is due

to the convergence of NIG log-returns to Gaussian log-returns when C increases (recall that the simulated

log-returns are almost symmetric). On Figure 3, the hedging error (both for BS and VO) decreases with the

number of trading dates and seems to converge to a limiting error. Here, it is interesting to distinguish two

sources of incompleteness, the rebalancing error due to the finite number of trading dates and the intrinsic

error due to the price model incompleteness. For instance, one can observe that for small values of C ≤ 0.2,

even for small numbers of trading dates, the intrinsic error seems to be predominant so that it seems useless

to increase the number of trading dates over N ≥ 12 trading dates. Moreover, surprisingly one can observe

that for a small number of trading dates N ≤ 12 and for large values of C ≥ 1, BS seems to outperform

the VO strategy, in terms of standard deviation. This can be interpreted as a consequence of the central

limit theorem. Indeed, when the time between two trading dates increases the corresponding increments of

the Lévy process converge to a Gaussian variable. Similarly to the observation of [16], section 5., in term

of hedging errors, BS strategy seems to be quite close to VO strategy. The same kind of conclusions were

obtained in the discrete time setting by [1].

In term of bias, the over-estimation of at-the-money options (observed for C = 0.08, on Figures 2) seems

to induce a positive bias for the BS error (see Figure 3), whereas the bias of the VO error is negligible (as

expected from the theory).
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Figure 3: Hedging error w.r.t. the number of trading dates for different values of C and for K = 99 Euros (bias, on

the left and standard deviation, on the right).

7.2 Exponential of additive processes

In this subsection, we simulate the log-price process X as an additive process such that

Xt =

∫ t

0

σse
−λ(T−u)dΛu where Λ is a Lévy process with Λ1 ∼ NIG(α, β, δ, µ) .
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The standard set of parameters (C = 1) for the distribution of Λ1 is estimated on the same data as in the

previous section (Month-ahead base forward prices of the French Power market in 2007):

α = 15.81 , β = −1.581 , δ = 15.57 , µ = 1.56 .

Those parameters correspond to a standard and centered NIG distribution with a skewness of −0.019. The

estimated annual short-term volatility and mean-reverting rate are σs = 57.47% and λ = 3. The other sets

of parameters considered in simulations are obtained by multiplying parameter α by a coefficient C, (β, δ, µ

being such that the first three moments are unchanged).

The results are comparable to those obtained in the case of the Lévy process, on Figure 4.
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Figure 4: Hedging error w.r.t. the number of trading dates for C = 0.08 and C = 1, for K = 99 Euros (bias, on the

left and standard deviation, on the right).
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