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COMPARISON OF NUMERICAL METHODS IN THE CONTRAST
IMAGING PROBLEM IN NMR

Bernard Bonnard, Mathieu Claeys, Olivier Cots and Pierre Martinon

Abstract— In this article, the contrast imaging problem in
nuclear magnetic resonance is modeled as a Mayer problem in
optimal control. A first synthesis of locally optimal solutions is
given in the single-input case using geometric methods based
on Pontryagin’s maximum principle. We then compare these
results using direct methods and a moment-based approach,
and make a first step towards global optimality. Finally, some
preliminary results are given in the bi-input case.

INTRODUCTION

A classical problem in Nuclear Magnetic Resonance
(NMR) spectroscopy is to control, using a magnetic field,
a spin-1/2 particle in a dissipative environment whose dy-
namics is governed by the Bloch equation

dMx

dτ
= −Mx/T2 + ωyMz −∆ωMy

dMy

dτ
= −My/T2 − ωxMz + ∆ωMx

dMz

dτ
= (M0 −Mz)/T1 + ωxMy − ωyMx

(1)

where the state variables correspond to the magnetization
vector M = (Mx,My,Mz), T1 and T2 are the relaxation
rates, ∆ω is the resonance offset and τ is the time. In this
model the control is the magnetic field ω = (ωx, ωy, 0) which
is bounded here by |ω| ≤ ωmax = 32.3Hz. In order to set
the equilibrium of the free motion to (0, 0, 1), we normalize
the coordinates to q = (x, y, z) = (Mx,My,Mz)/M0, and
q belongs to the Bloch ball |q| ≤ 1. We then normalize
the control by u = ω/ωmax and the normalized time is
t = τ ωmax. In this paper, we analyze the simplified model,
∆ω = 0, where homogeneity of the magnetic fields is
assumed and we have the following normalized system

dx

dt
= −Γx + u2z

dy

dt
= −Γy − u1z

dz

dt
= γ(1− z) + u1y − u2x,

(2)
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where Γ = 1/(ωmaxT2) and γ = 1/(ωmaxT1). In the contrast
problem, we consider two uncoupled spin-1/2 systems cor-
responding to different particles, each of them solutions of
the Bloch equation (22) with respective damping coefficients,
(γ1,Γ1) and (γ2,Γ2) and controlled by the same magnetic
field. By denoting each system by dqi

dt = Fi(qi,Λi, u),
Λi = (γi,Γi) and qi = (xi, yi, zi) the magnetization vector
for each spin particle, this leads to consider the system

dq1
dt

= F1(q1,Λ1, u),
dq2
dt

= F2(q2,Λ2, u)

which is written shortly as dx
dt = F (x, u), where x = (q1, q2)

is the state variable.
The contrast problem by saturation is the following opti-

mal control problem (OCP ): starting from the equilibrium
point x0 = ((0, 0, 1), (0, 0, 1)), reach in a given transfer time
tf the final state q1(tf ) = 0 (corresponding to zero magne-
tization of the first spin, called saturation) while maximizing
|q2(tf )|2, the contrast being |q2(tf )|. The contrast problem
can be stated as a Mayer problem given by the following
smooth conditions:

1) A system dx
dt = F (x, u), x ∈ X ⊆ Rn, with

X = {x = (q1, q2) ∈ Rn : |q1| ≤ 1, |q2| ≤ 1},

with fixed initial state x(0) = x0 and where the control
belongs to the control domain U = {u ∈ R : |u| ≤ 1}.

2) A terminal manifold to reach,

Xf = {x = (q1, q2) ∈ Rn : q1 = 0, |q2| ≤ 1} ⊂ X,

defined by f(x) = 0, where f : Rn → Rk.
3) A cost to be minimized of the form minu(·) c(x(tf ))

where c : Rn → R is a regular mapping and tf is the
final time.

In practical experiments we consider two cases:
a) The bi-input case where x = (q1, q2) ∈ R6 ∩ X and
|u| = (u21 + u22)1/2 ≤ 1.

b) The single-input case where the system is restricted to
x1 = x2 = 0, the control field is restricted to the real
field, i.e., u2 = 0, and each spin is restricted to the plane
qi = (yi, zi).

The use of particular pulse sequences (i.e. control law
u(·)) in the contrast problem is not new since this question
was raised at the beginning of the development of Magnetic
Resonance Imaging (MRI) in the seventies. Different strate-
gies based on intuitive reasoning have been proposed such
as the Inversion Recovery Sequence. Recently, S. J. Glaser
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introduced the optimal control point of view [10] and anal-
ysed the problem in his group using an adapted numerical
scheme (the GRAPE algorithm [9]). A different approach
based on Pontryagin’s Maximum Principle was recently
used to select minimizers in the single input case [5]. This
leads to a numerical investigation described in [6] using
the HAMPATH11 software, based on the indirect methods:
shooting and differential continuation.

One objective of this article is to compare these results
with a direct method implemented with the BOCOP22 toolbox
[2]. This approach relies on a time discretization of the state
and control variables, using a high order implicit formula.
The resulting nonlinear programming problem is then solved
by interior point techniques, with automatic computation of
the sparse derivatives. Direct methods fall in the classe of
local optimization, like indirect approaches, but are typically
easier to initialize. Their main drawback is that due to the
discretization, solutions tend to be coarser than the ones
obtained by indirect methods.

A distinguishing feature of the contrast problem are its
many locally optimal solutions, which can be computed by
the previously described direct and indirect methods. An
important question is then to assert global optimality. The
second objective of this paper is to use a moment/Linear
Matrix Inequality (LMI) technique [8], [12] to compute such
an estimate. In fact, the method allows to build a hierarchy
of relaxations of the original problem, that is compute lower
bounds on the true cost, each in the form of a convex
LMI problem. Because of this convexity, the relaxations can
be solved by off-the-shelf software (we used Sedumi [13])
without any expert knowledge besides problem formulation.
In particular, no specific inital point needs to be supplied.

The paper is organized in four sections. The first one set-
tles the necessary conditions applied to the contrast problem.
The second section details the three numerical methods used
in the third and fourth sections, which present the results
respectively in the single-input and bi-input cases.

I. NECESSARY OPTIMALITY CONDITIONS

In this section we briefly recall the theoretical framework,
see [5] for the details.

A. Maximum principle

Proposition 1. If u∗ with corresponding trajectory x∗ is
optimal then the following necessary optimality conditions
are satisfied. Denoting H(x, p, u) = 〈p, F (x, u)〉 as the
pseudo-Hamiltonian, there exists p∗(·) such that for almost
every t ∈ [0, tf ],

(i) dx∗

dt = ∂H
∂p (x∗, p∗, u∗), dp∗

dt = −∂H∂x (x∗, p∗, u∗)

(ii) H(x∗, p∗, u∗) = maxv∈U H(x∗, p∗, v) (maximization
condition)

and the following boundary conditions

(iii) f(x∗(tf )) = 0

1http://cots.perso.math.cnrs.fr/hampathhttp://cots.perso.math.cnrs.fr/hampath
2http://bocop.orghttp://bocop.org

(iv) p∗(tf ) = p0
∂c
∂x (x∗(tf )) +

∑k
i=1 σi

∂fi
∂x (x∗(tf )), σ =

(σ1, . . . , σk) ∈ Rk, p0 ≤ 0 (transversality condition)

Definition 1. The solutions of conditions (i) and (ii) of
Prop. 11 are called extremals and BC-extremals if they satisfy
the boundary conditions.

B. Application to the contrast problem

State space: Since the Bloch ball is invariant for the
dynamics of each spin particle, the state constraints can
be omitted for analysis, and the maximum principle can be
applied.

Boundary conditions: In the contrast problem, x =
(q1, q2), f = 0 is the set q1 = 0, and the cost to minimize
is c(x) = −|q2|2. Hence, splitting the adjoint vector into
p = (p1, p2), we deduce from the transversality condition
that p2(tf ) = −2p0q2(tf ), p0 ≤ 0. If p0 is nonzero, it can
be normalized to p0 = −1/2.

Next, we compute the extremal curves, solutions of the
maximum principle.

Bi-input case: The system is written as dx
dt = F0(x) +

u1F1(x)+u2F2(x), |u| ≤ 1 and the maximization condition
in Prop. 11 leads to the following parameterization of the
extremal controls:

u1 =
H1√

H2
1 +H2

2

, u2 =
H2√

H2
1 +H2

2

,

where Hi = 〈p, Fi(x)〉 are Hamiltonian lifts outside the
switching surface Σ : H1 = H2 = 0. Plugging such a
u into the pseudo-Hamiltonian gives the true Hamiltonian
Hn = H0 + (H2

1 + H2
2 )1/2. The smooth solutions of the

corresponding vector field are called extremals of order zero.

The single-input case: Consider the case where the
control is restricted to a single input and the system is written
dx
dt = F (x) + uG(x), where x belongs to a 4-dimensional
space X and |u| ≤ 1. We denote HF and HG to be the
respective Hamiltonian lifts.

Applying the maximization condition, there are two types
of extremals.
• Regular extremals: The control is given by u(t) =

sgnHG(z(t)), z = (x, p). If the number of switchings
is finite, it is called bang-bang.

• Singular extremals: Since the system is linear in u,
the maximization condition leads, in the singular case,
to the condition HG(z(t)) = 0. The corresponding
singular control is

us = −{{HG, HF }, HF }
{{HG, HF }, HG}

, (3)

where {·, ·} is the standard Poisson bracket.
According to the maximum principle, an optimal solution

is the concatenation of bang and singular arcs and the
complexity of this sequence is measured by the number of
concatenated arcs. This leads to the following lemma:

http://cots.perso.math.cnrs.fr/hampath
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Lemma 1. In the contrast problem, the simplest BC-extremal
is of the form BS, that is a Bang arc followed by a Singular
arc.

A straightforward computation gives the following result.

Proposition 2. The extremals of the single-input case are
extremals of the bi-input case.

A limit case in the contrast problem is the case where the
transfer time tf is exactly the time Tmin to transfer the first
spin to zero, the optimal control producing a final contrast
|q2(Tmin)|2. We have the following proposition

Proposition 3. The time-minimal solution of the first spin
system can be embedded as an extremal solution of the
contrast problem with p0 = 0 in the transversality condition
of Prop. 11.

II. THE NUMERICAL METHODS

In this section we present the three numerical methods
used for the resolution of the contrast problem.

A. HAMPATH

The HAMPATH software is described in details in [6].
It is based upon indirect methods: shooting, differential
continuation methods, and computation of the solutions of
the variational equations. We give in this section a summary
of the principles used to solve the contrast problem in the
single-input case, excerpted from [6], [4]. In this case, the
geometrical study of the contrast problem ensures that the
optimal solution is a concatenation of bang and singular
arcs. We note nBS a structure composed by n Bang-Singular
sequences.

The strategy is to first regularize the problem in order
to detect the BS-sequences and find a good approximation
of the solution. We use the following regularization which
transforms the Mayer problem in the Bolza form with cost:

c(x(tf )) + (1− λ)

∫ tf

0

|u|2−λdt, λ ∈ [0, 1],

with fixed final time tf . The regularized Hamiltonian is

H(x, p, λ) = p0(1−λ)|u(·)|2−λ+HF (x, p)+u(·) HG(x, p),

where u(·) stands for u(x, p, λ) and

u(x, p, λ) = sgn(HG(x, p))

(
2|HG(x, p)|

(2− λ)(1− λ)

) 1
1−λ

.

The homotopic function h : Ω ⊂ Rn × [0, 1) → Rn given
by the transversality conditions is

h(p0, λ) =

(
q1(tf , x0, p0, λ)

q2(tf , x0, p0, λ)− p2(tf , x0, p0, λ)

)
,

with x0 = ((0, 1), (0, 1)). We first solve h(p0, λ)|λ=0 = 0
and then use differential continuation to get the initial adjoint
vector for λ = λf = 1− ε, with a small ε > 0. We use the
solution at λf as an initial condition for the resolution of
the contrast problem, i.e. at λ = 1, by multiple shooting
method. Up to this point, the transfer duration tf is fixed to

an arbitrary value. Finally, we use a differential continuation
technique in order to to study the behavior of the solutions
regarding to the parameter tf .

An important issue in the contrast problem is to deal with
the many local solutions, such that, for a given value tf of
the parameter, we must compare the cost associated to each
component of {h = 0} ∩ {tf = tf}, where each branch
of {h = 0} is called a path of zeros. This global aspect
is responsible for a possible loss of regularity on the value
function tf 7→ c(x(tf )) and on the globally optimal path of
zeros.

An important remark is that these methods provide at best
local optimal solutions. To ensure the local optimality we
can check, in the regular case and for BS structure, sufficient
optimality conditions of order two. These can be computed
quite easily. On the other hand, it is a very difficult task to
ensure global optimality.

B. BOCOP

The so-called direct approach transforms the infinite
dimensional optimal control problem (OCP ) into a
finite dimensional optimization problem (NLP ). This is
done by a discretization in time applied to the state and
control variables, as well as the dynamics equation. These
methods are usually less precise than indirect methods
based on Pontryagin’s Maximum Principle, but more robust
with respect to the initialization. Also, they are more
straightforward to apply, hence their wide use in industrial
applications.

Summary of the time discretization:

t ∈ [0, tf ] → {t0 = 0, . . . , tN = tf}
z(·), u(·) → X = {z0, . . . , zN , u0, . . . , uN−1, tf}
Criterion → min c(zN )
Dynamics → (ex : Euler) zi+i = zi + hf(zi, ui)
Adm. Cont. → −1 ≤ ui ≤ 1
Bnd. Cond. → Φ(z0, zN ) = 0

We therefore obtain a nonlinear programming problem on
the discretized state and control variables

(NLP )

{
min F (z) = c(zN )
LB ≤ C(z) ≤ UB

All tests were run using the BOCOP software [2]. The
discretized nonlinear optimization problem is solved by the
well-known IPOPT solver [14] with MUMPS [1], while the
derivatives are computed by sparse automatic differentiation
with ADOL-C [15] and COLPACK [7].

C. LMI

The moment approach is a global optimization technique
that transforms a non-linear, possibly infinite-dimensional
optimization problem into convex, finite-dimensional
relaxations in the form of Linear Matrix Inequalities (LMI).
We follow [12] for the specific case of optimal control with
bounded controls and [11] for the main steps of the method.



The first step is to embed problem (OCP ) into a Lin-
ear Program (LP ) on measures, by the use of so called
occupation measures encoding admissible trajectories. For
each admissible control u(t), define its corresponding time
occupation measure µ[u(t)] ∈M+(K := [0, tf ]×U×X),
a positive Radon measure, as:

µ[u(t)](A,B,C) :=

∫
[0,tf ]∩A

δu(t)(B) δx[u(t)](t)(C) dt.

Here, δx∗ is the Dirac measure located at x∗, and A, B
and C are Borel subsets of resp. [0, tf ], U and X. That
is, µ[u(t)] measures the time “spent” by the admissible
triplet (t, u(t), x[u(t)](t)) on Borel subsets of K. Similarly,
we define the final state occupation measure µf [u(t)] ∈
M+(Xf ) for the same admissible control as:

µf [u(t)](C) := δx[u(t)](tf )(C).

Proposition 4 (Measure embedding). Control problem
(OCP ) can be reformulated equivalently in terms of oc-
cupation measures:

Jµ = inf
µ[u(t)],µf [u(t)]

< c(·), µf [u(t)] > (4)

such that, ∀v(t, x) ∈ C1([0, tf ]×X),

< v(tf , ·), µf [u(t)] > −v(0, x0) =<
∂v

∂t
+
∂v

∂x
·F, µ[u(t)] > .

(5)
That is, Jµ = JOCP the original criterion of (OCP ).

Consider the following relaxation of problem (44)-(55),
where the decision variables are now any measure µ ∈
M+(K) and µf ∈M+(Xf ) instead of occupation measures
generated by admissible controls:

JLP = inf
µ,µf

< c(·), µT > (6)

such that, ∀v(t, x) ∈ C1([0, tf ]×X),

< v(tf , ·), µf > −v(0, x0) =<
∂v

∂t
+
∂v

∂x
· F, µ > . (7)

In ill-posed problems, there could be a strict gap induced by
the relaxation, i.e. JLP < Jµ, but for the problem at hand,
we have the following result:

Proposition 5 (No relaxation gap).

JLP = Jµ

Proof. The set of admissible vector fields for dynamics F
is convex for any x ∈ X, such that theorem 3.6 (ii) of [12]
holds.

Unfortunately, there is no generic tractable method to solve
LP problem (66)-(77), and additional structure on problem
data is required. For optimal control problem (OCP ), this
structure is provided by the polynomial cost and dynamics,
as well as the basic semi-algebraic characterization of the
compact sets X and Xf . It is then possible to manipulate
measures by their moments in a given polynomial basis,
which yields a Semi-Definite Program (SDP ) on countably

many moments, with cost JSDP = JLP. Truncation of
those moment sequences up to degree 2d yields the order
d relaxation in the form of a tractable LMI problem, with
cost JdLMI. These LMI relaxations yield tighter lower bounds
on the true cost as relaxation order is increased, converging
monotonically to the solution of (OCP ), i.e

Proposition 6 (Monotone convergence).

JnLMI ↑ JSDP = JLP = Jµ = JOCP, n→∞

Note that the passage to a given LMI relaxation starting
from measure problem (66)-(77) can be fully automated using
the GLOPTIPOLY toolbox. To ease exposition, we refer to
[8] as well as the toolbox manual for the details of the LMI
formulation.

The strong feature of the method is that those LMIs
generate lower bounds on the true cost, and can therefore
be used as certificates of global optimality. On the other
hand, the weak points of the method are its poor algorithmic
complexity for unstructured problem, as well as for the
special case of optimal control, the unavailability of a generic
method to recover controls.

III. NUMERICAL RESULTS, SINGLE-INPUT CASE

We present here the results about the single-input case.
From the experimental point of view we are interested in
the following cases, the parameters being the relaxation times
given in seconds.
a) Fluid case.

Spin 1: Cerebrospinal fluid: T1 = 2, T2 = 0.2;
Spin 2: Water: T1 = 2.5 = T2.

b) Blood case.
Spin 1: Deoxygenated blood: T1 = 1.35, T2 = 0.05;
Spin 2: Oxygenated blood: T1 = 1.35, T2 = 0.2.

A. HAMPATH

The results presented in the following part are excerpted
from [6]. We give the synthesis of locally optimal solutions
obtained in the blood and fluid cases. For the blood, we show
on Fig. 11 (left) the contrast for five different components of
{h = 0}, for final times tf ∈ [1, 2]Tmin. The three black
branches are made only of BS solutions while the two others
are made of 2BS and 3BS solutions. For maximizing the
contrast, the best policy, drawn as solid lines, is: BS for
tf ∈ (1, 1.294)Tmin and 3BS for tf ∈ (1.294, 2]Tmin. In the
special case tf = Tmin, the solution is 2BS. For the fluid,
on Fig. 11 (right), we represent four different branches with
2BS and 3BS solutions. The two greatest values functions
intersect around tf = 1.035Tmin and the best policy (solid
lines) switches between 2BS and 3BS strategies.

We now compare these results with the direct and LMI
methods, in order to assess the optimality of these two sub-
optimal synthesis.

B. BOCOP

We present here the results for the direct approach. The
only a priori information is the value of the minimum
time transfer from [6], used to set the final time in the
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Fig. 1: Hampath. Contrast for various tf . Best policy drawn
as solid lines, local solutions as dashed lines.

[Tmin, 2Tmin] range. The state and control variables are
initialized as constant functions, with the values y1(·) = 0,
z1(·) = 0.5, y2(·) = 0, z2(·) = 1, and ux(·) = 0.1. Each
optimization uses this same initial point, and there is no
continuation applied here. The discretization methods used
are 4th order Gauss or 6th order Lobatto, with 500 to 1000
time steps depending on the problem.

Overall comparison. We show on Fig. 22 the solutions
found with BOCOP plotted over the branches identified with
HAMPATH in [6]. In most cases the direct solutions belong to
one of the already found branches, although some additional
branches seem to appear as well. This confirms the complex
structure of the extremals for this problem, with several
families of local solutions. However, no new solutions with
a better contrast were found, which suggests the practical
validity of the continuation strategy used with HAMPATH.
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Fig. 2: BOCOP and HAMPATH: Blood and Fluid cases.

Blood case. Depending on the final time, we find solutions
with either structure BS or 3BS. For small values of tf , BO-
COP converges to the optimal solution found by HAMPATH.
Above 1.3Tmin, however, BOCOP stays with the BS solution
altough we know that the 3BS solutions give a better contrast.
Finally, around 1.6Tmin, BOCOP switches to 3BS solutions,
but usually the slighlty worse one of the two (dashed branch
on Fig. 22).
Fig. 33 shows both the BOCOP and HAMPATH solutions
for tf = 1.1Tmin. The trajectories for the two spins are
identical, and the control is the same, with the exception
of some oscillations at the end of the direct solution. These
oscillations actually average the ”correct” control, which can
happen when the system is linear in the control.
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Fig. 3: BOCOP and HAMPATH: Blood case, tf = 1.1Tmin

Fluid case. The situation in the fluid case is a bit more
complicated, and BOCOP converges rather randomly to so-
lutions on different branches, either BS or 3BS. We show
on Fig. 44 the solutions for tf = 1.5Tmin, where BOCOP
actually finds the best known structure. We observe that both
solutions are extremely close, save for a few isolated spikes
in the control at the switching times.
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Fig. 4: BOCOP and HAMPATH: Fluid case, tf = 1.5Tmin

Initializing HAMPATH from BOCOP. We pick now one
case where BOCOP converges to the best solution known, and
try to use this data to initialize a shooting in Hampath. More
precisely, we recover the control structure and the switching
times ti for the bang/singular arcs, as well as x(ti), p(ti). We
recall that the adjoint states correspond to the multipliers
for the discretized dynamics equations in (NLP ). With
this initialization, we managed to obtain the convergence
for the shooting method in HAMPATH, without resorting
to continuation techniques. Table I compares the solutions



from both methods in the blood case, for Tf = 1.1Tmin and
Tf = 1.54Tmin. We see that the constrast and switching
times are extremely close. We also compute the relative
difference between the renormalized adjoint vector p(0) and
the corresponding multipliers. This difference is as low as a
few percent for half the components, and does not exceed
50% in the worst case. Using higher order discretization
formulas and/or more discretization steps may give an even
better approximation of p(0).

TABLE I: BOCOP and HAMPATH comparison: Blood
case.

tf Method Contrast Switching times ti/tf
1.1Tmin HAMPATH 0.453 0.0211

BOCOP 0.453 0.02
1.54Tmin HAMPATH 0.487 (0.005,0.348,0.395,0.814,0.855)

BOCOP 0.487 (0.004,0.349,0.394,0.815,0.853)

tf ∆p(0) between BOCOP and HAMPATH
1.1Tmin (9.81%, 3.45%, 33.75%, 0.61%)
1.54Tmin (1.1%, 49.37%, 29.62%, 1.68%)

C. LMI
We apply now the LMI method to the contrast problem,

in order to obtain upper bounds on the true contrast.
Comparing these bounds to the contrast of our solutions
then gives an insight about their global optimality.

Table IIII shows the evolution of the upper bound on
the contrast in function of LMI relaxation for the blood
case with tf = Tmin. The first relaxation gives the trivial
upper bound, while higher orders yield a monotonically
non-increasing sequence of sharper bounds, as expected.
Relaxations of orders 5 and 6 yield very similar bounds,
but this should not be interpreted as a termination criterion
for the LMI method. Table IIII also shows the evolution of
decision variables involved in each LMI relaxation (before
any eventual substitution) and the computational load. For
all practical purposes, further results from the LMI method
were limited to the fifth relaxation given the prohibitive
computational load of the sixth one.

TABLE II: LMI: Upper bound on contrast
√
−JdLMI, LMI

variables Nd and computation time with respect to the LMI
relaxation order d (Blood case)

d
√

−Jd
LMI Nd CPU time (s)

1 1.0000 49 1
2 0.6092 336 2
3 0.5877 1386 9
4 0.5400 4290 265
5 0.4577 11011 5147
6 0.4442 24752 63613

Fig. 55 compares the evolution of the upper bounds for
different values of tf ∈ [Tmin, 2Tmin] with the best solutions
found by HAMPATH. Also represented is the relative gap
between the methods defined as (CLMI − CH)/CH , where
CLMI is the LMI upper bound and CH is the contrast found

with HAMPATH. At the fifth relaxation, the average gap
is 11%, which given the application is satisfactory on the
experimental level. Fig. 66 shows the same results for the
fluid case. Here, the relative gap on the contrast is about
1% at the fifth relaxation, which strongly suggest that the
solution is actually a global optimum.
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Fig. 5: LMI: Blood case, relaxations 2 to 5
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Fig. 6: LMI: Fluid case, relaxations 1 to 5

IV. NUMERICAL RESULTS, BI-INPUT CASE

We now move on to the bi-input case, with 2 controls and
6 state variables. Here, it is difficult to apply from scratch the
continuation strategy with HAMPATH. Therefore, our aim is
to try first to obtain some solutions with BOCOP, and use
them as a bootstrap for HAMPATH. The LMI method also
faces high computational costs, as the problem involves now
7 measured variables (time, 4 states and 2 controls). The 3rd
relaxation is the limit on current machines, and for this low
relaxation orders, the bounds are essentially the same as for
the single entry case.

We know that single-input extremals are also extremals for
the bi-input case. One important question is whether there
exist better extremals specific to the bi-input case. According
to our first simulations, in the blood case we actually found
only single-input type extremals, as shown on Fig. 77, which is
identical to the one presented in Fig. 33. On the other hand, in
the fluid case, we obtained a bi-input extremal with a slightly
better contrast than the single-input solution, see Fig. 88.

V. CONCLUSION

The direct method is a very interesting alternative to the
regularization procedure (see II-AII-A) in the contrast problem.
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Despite the many local optima, BOCOP allows to get so-
lutions close to the global optimum (see III-BIII-B Fig. 22) in a
more straightforward way than with HAMPATH, which needs
the a priori knowledge of the control structure. This makes
its preferable for all practical interests. However, BOCOP
gives approximations of solutions which can be refined with
HAMPATH (see III-BIII-B Table II) and could be used to initialize
continuation with respect to the final time in order to get the
best possible policy as in III-AIII-A Fig. 11.

The LMI techniques allows in the single-input case to get
an estimate of the global optimum in the contrast problem
which confirms the optimal results obtained previously using
the indirect methods [6] (see the details in III-CIII-C).

The direct method allows to confirm the gap between the
bi-input and the single-input cases. Theorical computations
are necessary to understand this phenomenon (see IVIV for a
complete discussion).
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