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Abstract

Non-linear normal modes (NNMs) are used in order to derivauate reduced-order
models for large amplitude vibrations of structural systesisplaying geometrical non-
linearities. This is achieved through real normal form tigeeecovering the definition
of a NNM as an invariant manifold in phase space, and allovdefinition of new co-
ordinates non-linearly related to the initial, modal orilB8o examples are studied: a linear
beam resting on a non-linear elastic foundation, and a imea#l clamped-clamped beam.
Throughout these examples, the main features of the NNMdtation will be illustrated:
prediction of the correct trend of non-linearity for the ditygle-frequency relationship, as
well as amplitude-dependent mode shapes. Comparisongbelifferent models —using
linear and non-linear modes, different number of degredseefiom, increasing accuracy
in the asymptotic developments— are also provided, in aalguantify the gain in using

NNMs instead of linear modes.

Keywords:Non-linear normal modes, normal form, geometrical noedirities.



1. INTRODUCTION

Large amplitude vibrations of continuous structures aseideed by non-linear Partial
Differential Equations (PDEs), which can display a numbkdiferent dynamical be-
haviour[1]. Analysis of such non-linear vibrations is generally perfed by substituting
a reduced-order model of the lowest possible dimensiondnepbf the original infinite-
dimensional problem. The usual tools available to perfonesé model reductions are
generally inherited from linear concepts. Galerkin proggctonto the linear normal modes
(LNMs) is basically the most employed one. A great amount ofkndeals with accomo-
dations of the basic idea, which consists in finding the beis¢td ansatz functions so as
to separate space and time variables, as well as to limituhrbar of degrees of freedom
(dof) of the system. Among these ones, proper orthogonalrdposition (POD) is an effi-
cient tool, especially when the LNMs of the system are unkm@6]. For linear systems,
proper orthogonal modes converge to the LNMs as the amouanaiiible data increases
[3, 5, 7, 8]. The idea is, in essence, linear, and for non-linear syste@® can be seen as
the best linear fit to NNM curved motions in phase sp@ce].

Non-linear normal modes (NNMs), defined as invariant madhifio phase spacg, 10],
are aimed at extending the usual linear decomposition teinear regimes, hence avoid-
ing the usual pitfalls related to a too severe Galerkin tatino, using for instance a single
LNM [11-14]. Due to the loss of invariance of linear eigenspaces in timelinear range,
using a single LNM for non-linear motions omit providing ditype-dependent mode
shapes, and may predict an incorrect trend of non-linedwoitythe amplitude-frequency
responsé13, 15]. This kind of problem has been encountered in circular dyigal shell
vibrations for a long time (see for examgl] and references therein), in non-linear vi-

brations of buckled beani$7], as well as in suspended cableg].
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Several different methods have been proposed during thédaade in order to compute
the NNMs (see for exampl®, 10, 19-24, 37] and references therein), most of which are
based on an asymptotic approach to the non-linear mode.ispaiper, real normal form
theory is used in order to provide an asymptotic non-linémmnge of co-ordinates, allow-
ing definition ofnormal co-ordinates, linked to the representation of dynamicsuived
invariant subspaced 5, 24]. With this formulation, it bears resemblance with the usual
decoupling of current use at linear order by diagonalizatio

This article is focused on the validation of reduced-ordexdets using NNMs, for ap-
plication to large amplitude vibrations of continuous stwes. Two examples are studied;
for each of them, comparisons between different modelsiguah increasing humber of
LNMs versus a single NNM, or higher-order single NNM, are pamed. It is empha-
sized that NNM formulation must be used because it overcahgesrrors associated to too
severe truncations using a single LNM, and for the same aaxiiplat hand (a single oscil-
lator is simulated). Moreover, significative computationd savings are obtained, since a
single NNM can replace numerous LNMs. However, it is poirgatthat under its asymp-
totic formulation, NNMs does not seem to provide a reliabid powerful alternative to
crude numerical computations using numerous dof, maintabee of the deterioration of

the results in strongly non-linear regimes.

2. THEORETICAL FRAMEWORK

In this section, the main steps of the computation of asytigpidNMSs through applica-
tion of real normal form theory are summarized. The intetseader can find the details

in [15, 24].



2.1. EQUATIONS OF MOTION

Large-amplitude undamped free vibrations of continuous #tructures subjected to

geometrical non-linearities are governed by PDEs of theafor
w + L(w(x,t)) + No(w(x,t)) + N3(w(x,t)) =0, (1)

with the associated boundary conditions.denotes a vector of unknown displacement,
is the spatial co-ordinatesrepresents time, and overdot indicates a derivative witheaet
to time. L is a linear spatial operator, which is assumed to be setfiati\V> and N3
are respectively quadratic and cubic non-linear spatidltamporal operators. Only these
non-linear terms are kept in usual models such as Von Karggmequations for beams,
arches, plates, shells (see for examp®s$). Throughout the paper, damping will not be
considered. The main reason lies in the fact that dynargigadportant modes are the
lightly damped ones, which have very long evolution timestants (see.g. [35, 36]).
Hence the framework considered is for lightly damped stmes, fow which the modal
damping coefficient, is negligible as compared to the eigenfrequetagy

Analysing the linear operatof with the associated boundary conditions allows one to

substitute the problem defined by Eqg. (1) for the following:

. +00 400 +00 +00 +00
Vp=1,.,400 1 Xp+wrXp+> > ghXiX;+> > > XXX, =0, (2)
i=1 j>i i=1 j>i k>j
where it has been postulated that:
+o0o
w(x, 1) =) X, (1) Pp(x). ®3)
p=1

X, is the usuaimodal co-ordinate, andp, the associatetinear mode, whose eigenfre-

quency isw,.

Strong reduction of the dimension of problem governed by &yis then pursued. For

example, it has been usual for a long time to retain onlyptheequation in (2) to study
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non-linear vibrations of the directly excited modig. Unfortunately, this methodology can
produce incorrect results since linear eigenspaces feschiymodalco-ordinates are not
invariant. Thus, residual excitation of non-directly ¢&dimodes is present, and neglecting
it may lead to erroneous quantitative as well as qualitat@salts[11-13, 15]. In other
words, linear modal co-ordinates are not the most apprigpdaes to describe motions
in the non-linear range. Non-linear normal modes, definedwasiant manifold in phase

space, are used to remedy this problem.

2.2. NON-LINEAR CHANGE OF CO-ORDINATES

Normal form theory allows definition of new co-ordinatestttlascribe invariant mani-
folds, as well as the non-linear relationship between thegenormalco-ordinates and the

initial, modal ones. At third order, it reads:

Xp: Rp + Z Z(aijiRj + bijiSj)

i=1 j>1
= N N N N
ZZ Zr”kR RjRy + ZZ > up; RiS;Sk, (4a)
i=1j2>ik>j i=1j=1k>j
N N N N
Y;’_S +ZZ’YZRS _I_ZZZ/J’Z]]{; ZZZVZ]kSRRk (4b)
i=1j=1 1=1j>1 k>j 1=1j=1k>j

N is the number of retained modes in the linear analysis, asdssmed to be as large
as wanted. The newormal co-ordinates R, S,) define thep!” NNM [15, 24, 26]. Dy-

namics in phase space spanned by invariant manifolds isgikien, up to third order, by:

Vp=1, .., N:
R, =S,, (5a)
; 2 2
Sp = —wy Ry — (Af,, + hgpp)R — By RS,
N
p p p 2 yY 2 p D p 2 4 2
— I [Z [(Am + Ay + b)) B + BPJ]SJ] Z [ (Ajip + Apii + higy) Bi + BpyS;
)1>p 1<p
N
> Bj,RiSi+ > Bl RiS:| - (5b)
1>p <p

|
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BP

Coefficients(A” ik

ks ) arise from the cancellation of non-resonnant quadratimser
Egs. (5) bear now the invariance property, and it is now [pes$o truncate the system to

a low-dimensional subspace without neglecting interastio

2.3. SINGLE NON-LINEAR MODE MOTION

The simplest truncation consists in studying a single moddan. Restricting the mo-

tion on thep'” linear eigenspace leads to a dynamics governed by the followinijasc:

X, +wlX, + gh, X2+ hE X3 =0, (6)

and hence an amplitude-frequency relationshi:

i | 10g5,”
WNL = w, (1 + 1“,,a2) , With Ty = = (3h§,,,, - 355 , ()
p p

wherewy, is the non-linear angular frequency, which depends on th@ide o consid-
ered. If one considers now the motion onto e NNM, the dynamics is now governed
by:

Ry +w2R, + (AP, + R,

3 2
ppp ppp)Rp + B, R,S, =0, (8)

ppp

and the amplitude-frequency relationship writes:

_ 3(AP 4+ hP )+ w2BP
WNT = Wp (1 + FpaQ) , WwithT, = (Ab é’i’;) p__ppp. (9)
p

Hence, for different values of the non-linear coeﬁicie@%,hfjk), the trend of non-
linearity predicted by Eq. (7) or (9) may be oppogit8].

In the following, this prediction will be confirmed on a camibus system possessing
guadratic and cubic non-linearities. Then, comparisotwéden the numbeN of LNMs
retained (from Eq. 2) and the numbaf of NNMs retained after truncation in Eqg. (5)
are performed, in order to test the accuracy obtained véhgusomputing time saved by

simulating a few NNMs.
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3. EXAMPLE 1: ALINEAR BEAM ON A NON-LINEAR ELASTIC
FOUNDATION
3.1. EQUATIONS OF MOTION

A linear Euler-Bernoulli beam, hinged at its two ends, argtingg on a non-linear elas-
tic foundation with quadratic and cubic distributed namehrities, is considered. In non-
dimensional form, the undamped transverse vibrations @rerged by13]:

0? ot
8—7;” + 8—;: + asw? + azw® = 0. (20)

w(z,t) is the transverse displacement; and a3 are two parameters. The considered

boundary conditions write:

0*w(z,t)

w(z,t) =0, 922

=0 for z=0,1. (11)
The linear analysis provides the eigenmodes as well as geafeequencies:
®,(z) = V2sin(nrz), (12)
wn, = n’m2. (13)

Denoting X, the modal co-ordinate associated to pfelinear mode, the projection yields

the following problem, equivalent to Eq. (10) f&f -+ +oc0:Vp =1, ..., N:

N N
Xp+wpXp+ > @XiX;+ Y i XiX;Xp =0 (14)
b,j=1 i,),k=1

where:
1 ~ 1
@ = o /0 By(2)D; () By (x) dz, RL, = as /0 B, (2)®;(2) By, (), (z) dz. (15)

Eqg. (14) is then made similar to Eq. (2) by considering the etyims of the nonlinear

quadratic and cubic terms.g.for j > i, g}; = g}; + ¢%; andg; = 0).

Due to the particular expression of the eigenfrequencies)enous internal resonances

are present. They are taken into account in the model by kgdpithe normal form
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resonant terms that cannot be cancelled through the nearlichange of co-ordinates.
Table 1 summarizes the internal resonances for the tenifiesirl modes, as well as the
associated coefficients in the dynamical equations. Sontkesk coefficients are equal
to zero (right column of Table 1), which means that the irdérasonance does not exist
since the corresponding coupling terms are not presentrticplar, second-order internal
resonances (linked to the quadratic terms), are not preshatcubic coefficients that have
to stay in the normal form are also given, with the usual natatif hfjk is not equal to

zero, then a term of the for; R; Ry, has to be kept ip?* equation of the normal form (Eq.

(5)). As already pointed out ifi5], these coefficients doesn'’t involve invariant-breaking

terms. Hence single NNM motions can be studied.

3.2. NUMERICAL SIMULATIONS

Regions of hardening or softening behaviour in the paranptdee(as, a3 ) are different
if one considers a single linear mode or a single non-lineademl 5]. Fig. 1 shows these
regions for mode 2 and 3 (the difference between the two negionegligible for mode 1).
For mode 2, a single linear mode truncation predicts thantrelinearity will be of the
hardening type for any positive values (@f,, a3) sinceg?, = 0. Considering the second
NNM shows that there is a region in the parameter plane fochvtiie behaviour will be
of the softening type.

Numerical simulations are conducted in order to verify ¢hetatements. In each case,
a reference solution is computed by simulating Eq. (14) ftarge numberV of modes
retained. In practice, it has been found that from 6 LNMs,dtvaputed vibration signals
are equivalent. To get confidence in the reference solufors 10 LNMs are used. A
time-integration fourth-order Runge-Kutta scheme is ugéth sufficient accuracy in the

time step and a total length equal to ten periods.
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For mode 2 and 3, three different solutions are compd(igdhe reference solutiorgii)
the NNM solution, andiii) the single LNM solution. In each case, numerical solutions
are computed for increasing values of initial conditionsie Trequency is then estimated
by measuring the time gap between two zero crossings, méagdvan ten periods. For
(i) and (iii), analytical solutions derived from Eqgs (9) and (7) are alson. Figure 2
summarizes the results with the so-called backbone curves.

For each values of the parameters, the NNM solution pretlietorrect trend of non-
linearity, whereas the single linear mode solution can greneous qualitative results.
This is a confirmation of earlier results obtained for a two.fd. system[15]. It clearly
shows that single-NNM solution have to be considered if oaate/to obtain results with
a single oscillator that predicts the correct trend of nnedrity for a continuous structure.
These results can be applied for example to circular cyittatishells vibrations where the
correct softening type behaviour is obtained by considegitarge number of linear modes
[16, 27]. Finally, the single-NNM solution fails to predict the cect frequency for high
vibration amplitudes. This is a typical feature of the pradermulation of the NNMs,
which relies upon an asymptotic development that diverges the exact solution upon a

certain threshold.

It has been shown that a single NNM is more accurate that ¢éedingar mode trunca-
tion. The main reason is that the NNM formulation, based upeariant manifolds, takes
into account the bending of the phase space; and thus the effa priori non-retained
modes in the truncation is not neglected. The question of mamy linear modes are
needed to obtain the same accuracy than that obtained wiitilgla 8iNM is now adressed.

Numerous simulations have been conducted for mode 2 and 3intAresting one is
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shown on Figure 3, witlvy = 20 and a3 = 3. Backbone curves for a single NNM, a
single LNM, two LNMs and the reference solution, are repnésg. For moderately large
amplitude, the 2 LNMs simulation is as accurate as the sihNglé for the frequency
estimation. Single NNM solution becomes incorrectdor 1.5, amplitude for which the
curvature of the backbone curve changes.

Generally speaking, it has been found that a simulation &1tNMs is always as good,
or better, as a single NNM, mainly because the approximatiapatially more precise.
Figure 4 shows the vibration of the beam at its center, foméaliamplitude ofRy (¢t =
0) = 1. The single linear mode solution is not represented becaasesn't predict the
existence of a drift in the solution, and thus the displaagraéthis point is zer¢l5]. The
NNM solution is more precise in amplitude than the two LNMusglation, hence resulting

in a smaller global error for the beam displacement.

4, EXAMPLE 2: A NON-LINEAR BEAM
4.1. GOVERNING EQUATIONS

A clamped clamped beam vibrating with moderately large &oqge is considered. In
non-dimensional form, the transverse displacementvhich has been choosen such that

w = 1 in the model means a displacement equal to the thickigisssolution of:

Pw  tw e !/ ow\? 0w

WJFW_iVO () dx]w—o’ (16)
with boundary conditions:

w(0,t) = w(l,t) = wg(0,t) = wy(1,t) = 0. a7)

. 2 .
The parameter is equal toe = %, whereA and! are the cross-section area and moment
of inertia. Linear normal modes write:

sin B, + sinh G,
cos B — cosh (B

®r(z) = K |cos Bz — cosh Bz + (sin Bz — sinh Bpz)|, (18)
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1
where K is such that/ ®,(x)?>dz = 1. Natural angular frequencies are solutions of
0
cos B, = m wherew;, = B2. The PDE (16) is then projected onto the natural modes
basis, and symmetric non-linear cubic terms are gathered rdsulting temporal problem

to solve readsYp =1, ..., N:

N N N

Xp+wpXp+ey D> ML XiX; X, =0. (19)
i=15>i k2]

In the following, a squared cross-section is assumed, sa:tha 12. The numberN of
LNMs retained for the reference solution is equal to 20. A falues of the coefficients
Efjk are given in Table 2, showing that the non-linear terms havg karge magnitudes in

the following simulations.

4.2. MODE SHAPES

An interesting feature of the NNM formulation is its ability predict amplitude-dependent
mode shapes. These are shown on Figure 5 for the first threesnaod for different ampli-
tudes. The corresponding linear mode shape is also showaofioparison. These figures
have been computed for a zero velocity, (= 0), and a maximum of the correspond-
ing normal co-ordinat&?,, for p = 1,2,3. The same kind of dependence on amplitude
has been found by applying a completely different methoel hilerarchical finite element

method, to the same proble28].

When oscillating along a single NNM, the mode shape varyinontsly with time. This
is illustrated on Figure 6, where the mode shapes for thetficstnodes are represented at

three different instant of time, choosen in the first quapteiod of motion.
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4.3. HIGHER-ORDER APPROXIMATION OF THE DYNAMICS

One major drawback of the formulation of the NNMs used in #tigdy is that it relies
upon an asymptotic development for computing the geomdttiyeophase space, as well
as the normal dynamics. Their formal expressions, up tordhdee, are given by Egs. (5)
and (4).

For a problem with quadratic and cubic non-linearity, theéemithree normal dynamics
allows correction due to the bending of the phase space inedtavithin the quadratic
terms. This is responsible for the difference of hardeningaftening behaviour detected
when considering a single linear mode or a single NNM (see(&gand (8)).

For a problem with only cubic non-linearity like the nondar beam, a single LNM and
a single NNM up to order three are governed by the same dscilldence the differences
between the two truncation will be only visible in the geometf the manifold, and thus
only in the spatial computed responséx, t) and not in the approximated frequency. To
obtain better accuracy in the computed frequency, a higtder approximation of the
dynamics onto the invariant manifold is seeked.

Deriving the general order-five equations for the non-lingzange of co-ordinates as
well as the normal dynamics has not been realized because abmplexity involved in
the calculations. However, considering a motion involvardy the p”* NNM allows one
to compute easily the dynamics up to order five, for an injiedblem with only cubic
non-linearities. Assume that th¢” NNM only is involved in the vibration. Thusk #

p, R; = 0. We can then substitute for:

Vk#p: Xp=rk R +ub RS2 (20a)
X, = Ry, (20b)

in the original equations: Eq. (2) without quadratic termds we are interested only in
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the dynamics up to order five, the third-order development (£0)) is sufficient. Indeed,

one has just to retain the quintic resonant terms introdbgetie cubic non-linear change
of coordinates to obtain the dynamics onto the manifolds & igeneral feature of these
developments that the level of accuracy obtained for theuhjos is one order higher than

that of the change of coordinates. This leads to the follgvgquation for a single NNM

dynamics:
R 2R hP R3 :RS TR3S2:0 21
p‘|‘(.dp p’l' PDPD P+‘_‘P p+ pEipPp ) ( )
where:
N
= _ k k
Bp=2 oo ipph + > Topp tkpp? (22a)
k>p k<p
N
_ k k
Tp - Z uppphgpk + Z u:ﬂppthp' (22b)
k>p k<p

As the two supplementary quintic terms in Eq. (21) are respribey can't be eliminated
through a non-linear change of co-ordinate. Thus Eq. (2tdsaccurate dynamics, up to
order five, for a single NNM motion.

It is also possible to derive an approximation of the dynanainto the manifold up to
order seven, by retaining the order seven terms in the abesepted calculation. But
only an approximation will be obtained. For deriving thehtiggquation governing the
dynamics for a single NNM up to order seven, one has to conthateomplete calculation
up to order five, because the elimination of non-resonamttiguierms through a fifth order
change of co-ordinates will reintroduce other seventteotdrms. However, this seventh-
order approximation has been computed and tested in théadions.

Figure 7 shows a simulation realized for a motion initiatéshg the first NNM with
initial conditionsR; = 0.8, S; = 0. The vibration at the quarter of the beam is shown,
and for different order of simulation. The reference solutis obtained by simulating the

complete system wittv = 20 linear modes and a humerical Runge-Kutta time integration
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scheme. One can see that the third order NNM predicts a higbguency than the ref-
erence solution. The seventh-order approximation is thet meccurate, and is used in the
subsequent simulations.

Numerous simulations have then been conducted for tedtie@dcuracy of a single
NNM simulation versus an increasing number of linear moéégimed in the original dy-
namics. Figure 8 shows the results of a simulation conduetgdinitial condition R; =
0.8, S; = 0, and for two positions on the beam : vibration at center (fivat) and at one
tenth of the beam (second row). An estimation of the errorrodtad has been computed

with the following criterion:

et — i )l
e Gl

(23)

wherew"/ (x,t) is the reference solution and™(x, t) refers to the solution obtained
with one reduced-order model : single NNM, single LNM or feunmber of LNMs. The

|| - ]]2 is the euclidean norm, computed for a given duration of 1 ahadsional time, and

for different positionx on the beam. The results are given in Table 3. The NNM solugsion
very accurate untiR; = 1 is reached, and then becomes worst than the 3 LNMs solution.
A simulation with R, = 1.4 is shown on Figure 9, observed at= 0.05, showing that

for too large amplitudes, the seventh-order NNM fails todpethe correct frequency.
Generally speaking, and fd®; < 1, it has been found that the 4 LNMs solution is as
accurate as the NNM simulation, and the 6 LNMs solution isistimuishable from the

reference solution.

4.4. MULTI-MODE SOLUTIONS

Simulations with initial conditions involving two nonliae modes have also been con-
ducted. As the complete change of co-ordinates allowingatss drom the modal co-

ordinates to thewormal ones is provided, these kind of simulations are directlylalke,
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which constitutes one of the main advantage of using NorroainRheory. This is con-
trary to the methods based on center manifold reduction revtie reduction to a four-
dimensional invariant manifold has first to be compugd 30]. Due to the large number
of terms that have to be retained, the fifth-order normal dyiog for two NNMs have not
been calculated. Hence the simulations presented are wbim arder.

Figure 10 shows the result obtained for an initial condit®®n= 0.5, R, = 0.5, and
no initial velocities. As the precision is at third orderetNNM simulation doesn't predict
very well the frequency. And the four LNMs simulations giveich more accurate results.
Numerous simulations have been performed for differetdlinalues and the gain in using

NNMs instead of linear modes has never been found to be vergrimnt.

5. DISCUSSION

The aim of the present study was to run several numericallations in order to quantify
the gain of using NNMs as reduced-order models of largeesstlictural systems. The
long-term goal of this research is to define efficient and mteumethods that improve
significantly finite element codes for non-linear vibragpthrough definition of non-linear
modal analysis/synthesis.

In this paper, asymptotic non-linear normal modes, defisedvariant manifold in phase
space, and computed with normal form theory, are used. dmsuiation provides a theo-
retical framework which allows thinking the NNMs as a nat@eension of the traditional
linear decoupling through diagonalization, mainly beeaaglobal non-linear change of
co-ordinates is defined. As shown on the diagram represemntédure (11), the reduction
of the phase space dimension through distinction betweestemand slave co-ordinates
allows definition of a clean framework for non-linear modaabysis/synthesis.

Simulations have shown that NNM formulation must be usegé&sforming severe trun-
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cation in the PDEs. In any case, using a single NNM is mucheb#tian using a single

LNM. It allows prediction of the correct trend of non-linégirfor a problem with quadratic
and cubic coefficients. For the non-linear beam problemhdrigrder asymptotic devel-
opments enables to recover a good estimation of the freguéoegquiring precision in the
change of co-ordinates has to be related with the accurestidm of the invariant mani-
folds, and thus with slight spatial differences in the cotepudeflections. Precision in the
normal dynamics (Eq. (5)) is related to dynamical informatiand, at first glance, to the
estimation of the non-linear oscillation frequency.

Unfortunately, the cubic order asymptotic developmentasanough accurate and the
results deteriorates at higher vibration amplitudes. Hlignprovements are possible for a
better approximation of the normal dynamics, as it has beews on the non-linear beam.
But deriving general higher-order expressions is messyaigebraically quite intractable.

The question of how many linear modes are needed in ordert&ainoime same level of
accuracy than that obtained with a single NNM has also bemsaed. The two examples
studied showed that 3 LNMs is better for example 1, and 4 fanmgie 2. The same
number of modes seems necessary in the case of suspendes] &bIT his number should
be bigger for two-dimensional structures, as it can be iatefrom recent studies with
large number of dofs on circular shell vibrations (whereepemnodes were kept to obtain
accurate resultgR7], or circular cylindrical panels (11 LNMs were necessdBf). But
once again, at very high amplitudes, the results detegsrahd using a single asymptotic
third order NNM is meaningless. These results corroborateier results obtained by
Boivin, Pesheclet al. [32, 29, 30].

The computational time saved by using these reduced-ordeeisis nonetheless sig-

nificant. But at this point, it does not seem to be enough timéngs for large-scale
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crude numerical simulations. Hence the method has to beneaido become a powerful
tool in non-linear structural dynamics. A solution would toebreak away from asymp-
totic developments. Some significative improvements haanlyealized in this direction
with a formulation based on center manifold theor@g]. A precize non-linear change of
co-ordinate should thus be seeked, but it does not seemgttfaivard since Poincaré’s
theorem, which is the cornerstone of normal form theory,r@/@n with an asymptotic
development (see.qg. [33, 34]). As a conclusion, the asymptotic formulation shows that
NNMs must be used, but also that significative improvememtsaeded in order to deliver

its complete potential, which is here just lightly touched.
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Caption for tables

Table 1. Internal resonance relations between the ten igshfrequencies, and associated

non-linear coefficients; for the linear beam resting on alivear foundation.

Table 2. Values of the coefficients of the non-linear beanblera for modes 1, 2 and 3.
To be equal to théfj,C defined in Eq. (2), these values have to be multiplied.by
Table 3. Errors committed with several different simulasipfor increasing values of the

non-linearity.
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Caption for figures

Figure 1. Hardening/softening regions in the parametergylas, a3) for modes 2 and 3.
H /S refers to hardening/softening regions for a single NNk for a single LNM.o: val-

ues of the parameters retained for Figure 2.

Figure 2. Backbones curves for different values of the patars(as, a3). ©: reference

solution, A: single NNM simulatione: single LNM simulation. Analytical first-order so-
lutions are also represented, plain line for the NNM (Eq), (@xsh-dotted for single LNM
(Eq. (7). @):a2 =12, a3 =.5; (b): oy =14, a3 =1.8;(C): ay = 14, a3 = 0.001;

(d) ag =5, az=0.03.

Figure 3. Backbone curves far, = 20 andas = 3, and for different truncations.

Figure 4. Displacement of the beam at its center.= 20 andag = 3. Initial condition :

Ry, =1,5, =0. w = 1inthe model means a real displacement equal to the thicknets

the beam.

Figure 5. Non-linear Mode shapes at different vibration ktongles, for mode 1, 2 and 3

(plain line). Dash-dotted lines represent the correspantihear mode.

Figure 6. Evolution of the mode shape during a quarter-pesfanotion. Initial condition

formode 1 :Ry = 1.5, for mode 2 :Ry = 1.

Figure 7. Displacement of the beamwat 0.25 and for an initial condition taken along the
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first NNM : Ry = 0.8, S; = 0. Different order of accuracy in the asymptotic development

for the dynamics are shown.

Figure 8. Displacement of the beam at its center (first rowd) @ = 0.1 (second row),
for initial condition R; = 0.8, S; = 0. An increasing number of LNM versus a single
NNM are represented. The solution with five linear modes eguosed to the reference

solution (obtained withV = 20 LNMs).

Figure 9. Displacement of the beamuat= 0.05 for an initial conditionR; = 1.4. In this

case, the peak-to-peak displacement at center to 4.

Figure 10. Displacement of the beam at its center (first rowd)ax = 0.1 (second row),

for initial condition R, = 0.5, Ry = 0.5.

Figure 11. Non-linear modal analysis/synthesis throughivisMnd real normal form.
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order-two internal resonances

associated coefs.

Wy = W3 + Wy =0
w1p = Wg + ws =0
order-threeinternal resonances associated coefs.
w1 = Wy + w7 — wg =0
w1 = 2wy — Wy =0
Wy = Wg + Wy — Wy =0

w3:w1+2w2
w6:w2+2w4
w7 = wo + w3 + we
w9 = w1 + wg + wyq
wQZW3+2w6
wg = 2wy + wy

3 1 2
h%227 h2237 h’é23
h%467 h%467 h’§44 6
h2367 h3677 h2677 h237
=0

3 6 9
h6697 h3697 h’366
=0

Table 1.
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1 2 3
hi, =757 hi,=14e5 ki, =-179.6
hl,, =283.3 hlss = 703.1
hyy =1.8e-5  hly, =-481.2

h?,, = 5.4e-5

hiis =703.1
h3,, =-1443.6

h3,, = 1060.3

3y = 2277.3
B34, = 3.9e-5

h2,, = 1.8e-5
2., = 2277.3

h3ss = 4891.1

Table 2.
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max(w)

R, NNM, NNM, 1 LNM,1 LNM,|3 LNMs,3 LNMs,
x=.5 x=.1 x=.5 x=.1 x=.5 x=.1

0.5 0.0033 0.0053 |0.0462 0.0662 |0.0056 0.0125 ||0.78

0.7 ]0.0189 0.0245 |0.1409 0.1595 |0.0193 0.0281 ||1.10

0.8 |0.0354 0.0420 |0.2189 0.2345 0.0351 0.0417 |(|1.24

1 0.1047 0.1207 |0.3983 0.3995 |0.0698 0.0803 ||1.54

1.2 {|0.2289 0.2629 [0.5743 0.5557 10.1291 0.1414 ||1.87

Table 3.

7
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