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Abstract

Non-linear normal modes (NNMs) are used in order to derive accurate reduced-order

models for large amplitude vibrations of structural systems displaying geometrical non-

linearities. This is achieved through real normal form theory, recovering the definition

of a NNM as an invariant manifold in phase space, and allowingdefinition of new co-

ordinates non-linearly related to the initial, modal ones.Two examples are studied: a linear

beam resting on a non-linear elastic foundation, and a non-linear clamped-clamped beam.

Throughout these examples, the main features of the NNM formulation will be illustrated:

prediction of the correct trend of non-linearity for the amplitude-frequency relationship, as

well as amplitude-dependent mode shapes. Comparisons betwen different models –using

linear and non-linear modes, different number of degrees offreedom, increasing accuracy

in the asymptotic developments– are also provided, in orderto quantify the gain in using

NNMs instead of linear modes.

Keywords:Non-linear normal modes, normal form, geometrical non-linearities.
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1. INTRODUCTION

Large amplitude vibrations of continuous structures are described by non-linear Partial

Differential Equations (PDEs), which can display a number of different dynamical be-

haviour [1℄. Analysis of such non-linear vibrations is generally performed by substituting

a reduced-order model of the lowest possible dimension in place of the original infinite-

dimensional problem. The usual tools available to perform these model reductions are

generally inherited from linear concepts. Galerkin projection onto the linear normal modes

(LNMs) is basically the most employed one. A great amount of work deals with accomo-

dations of the basic idea, which consists in finding the best suited ansatz functions so as

to separate space and time variables, as well as to limit the number of degrees of freedom

(dof) of the system. Among these ones, proper orthogonal decomposition (POD) is an effi-

cient tool, especially when the LNMs of the system are unknown [2–6℄. For linear systems,

proper orthogonal modes converge to the LNMs as the amount ofavailable data increases

[3; 5; 7; 8℄. The idea is, in essence, linear, and for non-linear systems, POD can be seen as

the best linear fit to NNM curved motions in phase space[3; 5℄.

Non-linear normal modes (NNMs), defined as invariant manifold in phase space[9; 10℄,

are aimed at extending the usual linear decomposition to non-linear regimes, hence avoid-

ing the usual pitfalls related to a too severe Galerkin truncation, using for instance a single

LNM [11–14℄. Due to the loss of invariance of linear eigenspaces in the non-linear range,

using a single LNM for non-linear motions omit providing amplitude-dependent mode

shapes, and may predict an incorrect trend of non-linearityfor the amplitude-frequency

response[13; 15℄. This kind of problem has been encountered in circular cylindrical shell

vibrations for a long time (see for example[16℄ and references therein), in non-linear vi-

brations of buckled beams[17℄, as well as in suspended cables[18℄.
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Several different methods have been proposed during the last decade in order to compute

the NNMs (see for example[9; 10; 19–24; 37℄ and references therein), most of which are

based on an asymptotic approach to the non-linear mode. In this paper, real normal form

theory is used in order to provide an asymptotic non-linear change of co-ordinates, allow-

ing definition ofnormal co-ordinates, linked to the representation of dynamics in curved

invariant subspaces[15; 24℄. With this formulation, it bears resemblance with the usual

decoupling of current use at linear order by diagonalization.

This article is focused on the validation of reduced-order models using NNMs, for ap-

plication to large amplitude vibrations of continuous structures. Two examples are studied;

for each of them, comparisons between different models, using an increasing number of

LNMs versus a single NNM, or higher-order single NNM, are compared. It is empha-

sized that NNM formulation must be used because it overcomesthe errors associated to too

severe truncations using a single LNM, and for the same complexity at hand (a single oscil-

lator is simulated). Moreover, significative computation time savings are obtained, since a

single NNM can replace numerous LNMs. However, it is pointedout that under its asymp-

totic formulation, NNMs does not seem to provide a reliable and powerful alternative to

crude numerical computations using numerous dof, mainly because of the deterioration of

the results in strongly non-linear regimes.

2. THEORETICAL FRAMEWORK

In this section, the main steps of the computation of asymptotic NNMs through applica-

tion of real normal form theory are summarized. The interested reader can find the details

in [15; 24℄.
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2:1: EQUATIONS OF MOTION

Large-amplitude undamped free vibrations of continuous thin structures subjected to

geometrical non-linearities are governed by PDEs of the form:

�
w+ L(w(x; t)) +N

2

(w(x; t)) +N

3

(w(x; t)) = 0; (1)

with the associated boundary conditions.w denotes a vector of unknown displacement,x

is the spatial co-ordinates,t represents time, and overdot indicates a derivative with respect

to time. L is a linear spatial operator, which is assumed to be self-adjoint, N
2

andN
3

are respectively quadratic and cubic non-linear spatial and temporal operators. Only these

non-linear terms are kept in usual models such as Von Kármán type equations for beams,

arches, plates, shells (see for examples[25℄). Throughout the paper, damping will not be

considered. The main reason lies in the fact that dynamically important modes are the

lightly damped ones, which have very long evolution time constants (seee.g. [35; 36℄).

Hence the framework considered is for lightly damped structures, fow which the modal

damping coefficient�
p

is negligible as compared to the eigenfrequency!

p

.

Analysing the linear operatorL with the associated boundary conditions allows one to

substitute the problem defined by Eq. (1) for the following:

8 p = 1; :::;+1 :

�

X

p

+!

2

p

X

p

+

+1

X

i=1

+1

X

j�i

g

p

ij

X

i

X

j

+

+1

X

i=1

+1

X

j�i

+1

X

k�j

h

p

ijk

X

i

X

j

X

k

= 0; (2)

where it has been postulated that:

w(x; t) =

+1

X

p=1

X

p

(t)�

p

(x): (3)

X

p

is the usualmodalco-ordinate, and�
p

the associatedlinear mode, whose eigenfre-

quency is!
p

.

Strong reduction of the dimension of problem governed by Eq.(2) is then pursued. For

example, it has been usual for a long time to retain only thep

th equation in (2) to study
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non-linear vibrations of the directly excited mode�
p

. Unfortunately, this methodology can

produce incorrect results since linear eigenspaces described bymodalco-ordinates are not

invariant. Thus, residual excitation of non-directly excited modes is present, and neglecting

it may lead to erroneous quantitative as well as qualitativeresults[11–13; 15℄. In other

words, linear modal co-ordinates are not the most appropriate ones to describe motions

in the non-linear range. Non-linear normal modes, defined asinvariant manifold in phase

space, are used to remedy this problem.

2:2: NON-LINEAR CHANGE OF CO-ORDINATES

Normal form theory allows definition of new co-ordinates that describe invariant mani-

folds, as well as the non-linear relationship between thesenewnormalco-ordinates and the

initial, modal ones. At third order, it reads:

X

p

= R

p

+

N

X

i=1

N

X

j�i

(a

p

ij

R

i

R

j

+ b

p

ij

S

i

S

j

)

+

N

X

i=1

N

X

j�i

N

X

k�j

r

p

ijk

R

i

R

j

R

k

+

N

X

i=1

N

X

j=1

N

X

k�j

u

p

ijk

R

i

S

j

S

k

; (4a)

Y

p

= S

p

+

N

X

i=1

N

X

j=1



p

ij

R

i

S

j

+

N

X

i=1

N

X

j�i

N

X

k�j

�

p

ijk

S

i

S

j

S

k

+

N

X

i=1

N

X

j=1

N

X

k�j

�

p

ijk

S

i

R

j

R

k

: (4b)

N is the number of retained modes in the linear analysis, and isassumed to be as large

as wanted. The newnormalco-ordinates(R
p

; S

p

) define thepth NNM [15; 24; 26℄. Dy-

namics in phase space spanned by invariant manifolds is thengiven, up to third order, by:

8p = 1; :::; N :

_

R

p

=S

p

; (5a)
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�

N

X

j>p

h
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p
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+
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+
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5

: (5b)
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Coefficients(Ap

ijk

; B

p

ijk

) arise from the cancellation of non-resonnant quadratic terms.

Eqs. (5) bear now the invariance property, and it is now possible to truncate the system to

a low-dimensional subspace without neglecting interactions.

2:3: SINGLE NON-LINEAR MODE MOTION

The simplest truncation consists in studying a single mode motion. Restricting the mo-

tion on thepth linear eigenspace leads to a dynamics governed by the following oscillator:

�

X

p

+ !

2

p

X

p

+ g

p

pp

X

2

p

+ h

p

ppp

X

3

p

= 0; (6)

and hence an amplitude-frequency relationship[15℄:

!

NL

= !

p

�

1 +

~

�

p

a

2

�

; with ~

�

p

=

1

8!

2

p

 

3h

p

ppp

�

10g

p

pp

2

3!

2

p

!

; (7)

where!
NL

is the non-linear angular frequency, which depends on the amplitudea consid-

ered. If one considers now the motion onto thep

th NNM, the dynamics is now governed

by:

�

R

p

+ !

2

p

R

p

+ (A

p

ppp

+ h

p

ppp

)R

3

p

+B

p

ppp

R

p

S

2

p

= 0; (8)

and the amplitude-frequency relationship writes:

!

NL

= !

p

�

1 + �

p

a

2

�

; with �

p

=

3(A

p

ppp

+ h

p

ppp

) + !

2

p

B

p

ppp

8!

2

p

: (9)

Hence, for different values of the non-linear coefficients(g

p

ij

; h

p

ijk

), the trend of non-

linearity predicted by Eq. (7) or (9) may be opposite[15℄.

In the following, this prediction will be confirmed on a continuous system possessing

quadratic and cubic non-linearities. Then, comparisons between the numberN of LNMs

retained (from Eq. 2) and the numberM of NNMs retained after truncation in Eq. (5)

are performed, in order to test the accuracy obtained versusthe computing time saved by

simulating a few NNMs.
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3. EXAMPLE 1: A LINEAR BEAM ON A NON-LINEAR ELASTIC
FOUNDATION
3:1: EQUATIONS OF MOTION

A linear Euler-Bernoulli beam, hinged at its two ends, and resting on a non-linear elas-

tic foundation with quadratic and cubic distributed non-linearities, is considered. In non-

dimensional form, the undamped transverse vibrations are governed by[13℄:

�

2

w

�t

2

+

�

4

w

�x

4

+ �

2

w

2

+ �

3

w

3

= 0: (10)

w(x; t) is the transverse displacement,�
2

and�
3

are two parameters. The considered

boundary conditions write:

w(x; t) = 0;

�

2

w(x; t)

�x

2

= 0 for x = 0; 1: (11)

The linear analysis provides the eigenmodes as well as the eigenfrequencies:

�

n

(x) =

p

2 sin(n�x); (12)

!

n

= n

2

�

2

: (13)

DenotingX
p

the modal co-ordinate associated to thep

th linear mode, the projection yields

the following problem, equivalent to Eq. (10) forN ! +1 : 8p = 1; ::: ; N :

�

X

p

+ !

2

p

X

p

+

N

X

i;j=1

~g

p

ij

X

i

X

j

+

N

X

i;j;k=1

~

h

p

ijk

X

i

X

j

X

k

= 0 (14)

where:

~g

p

ij

= �

2

Z

1

0

�

i

(x)�

j

(x)�

p

(x)dx; ~

h

p

ijk

= �

3

Z

1

0

�

i

(x)�

j

(x)�

k

(x)�

p

(x)dx: (15)

Eq. (14) is then made similar to Eq. (2) by considering the symetries of the nonlinear

quadratic and cubic terms (e.g. for j > i, gp
ij

= ~g

p

ij

+ ~g

p

ji

andgp
ji

= 0).

Due to the particular expression of the eigenfrequencies, numerous internal resonances

are present. They are taken into account in the model by keeping in the normal form
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resonant terms that cannot be cancelled through the non-linear change of co-ordinates.

Table 1 summarizes the internal resonances for the ten first linear modes, as well as the

associated coefficients in the dynamical equations. Some ofthese coefficients are equal

to zero (right column of Table 1), which means that the internal resonance does not exist

since the corresponding coupling terms are not present. In particular, second-order internal

resonances (linked to the quadratic terms), are not present. The cubic coefficients that have

to stay in the normal form are also given, with the usual notation: if hp
ijk

is not equal to

zero, then a term of the formR
i

R

j

R

k

has to be kept inpth equation of the normal form (Eq.

(5)). As already pointed out in[15℄, these coefficients doesn’t involve invariant-breaking

terms. Hence single NNM motions can be studied.

3:2: NUMERICAL SIMULATIONS

Regions of hardening or softening behaviour in the parameter plane(�
2

; �

3

) are different

if one considers a single linear mode or a single non-linear mode[15℄. Fig. 1 shows these

regions for mode 2 and 3 (the difference between the two regions is negligible for mode 1).

For mode 2, a single linear mode truncation predicts that thenon-linearity will be of the

hardening type for any positive values of(�

2

; �

3

) sinceg2
2 2

= 0. Considering the second

NNM shows that there is a region in the parameter plane for which the behaviour will be

of the softening type.

Numerical simulations are conducted in order to verify these statements. In each case,

a reference solution is computed by simulating Eq. (14) for alarge numberN of modes

retained. In practice, it has been found that from 6 LNMs, thecomputed vibration signals

are equivalent. To get confidence in the reference solution,N = 10 LNMs are used. A

time-integration fourth-order Runge-Kutta scheme is used, with sufficient accuracy in the

time step and a total length equal to ten periods.
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For mode 2 and 3, three different solutions are compared:(i) the reference solution,(ii)

the NNM solution, and(iii) the single LNM solution. In each case, numerical solutions

are computed for increasing values of initial conditions. The frequency is then estimated

by measuring the time gap between two zero crossings, mean valued on ten periods. For

(ii) and (iii) , analytical solutions derived from Eqs (9) and (7) are also shown. Figure 2

summarizes the results with the so-called backbone curves.

For each values of the parameters, the NNM solution predictsthe correct trend of non-

linearity, whereas the single linear mode solution can giveerroneous qualitative results.

This is a confirmation of earlier results obtained for a two d.o.f. system[15℄. It clearly

shows that single-NNM solution have to be considered if one wants to obtain results with

a single oscillator that predicts the correct trend of non-linearity for a continuous structure.

These results can be applied for example to circular cylindrical shells vibrations where the

correct softening type behaviour is obtained by considering a large number of linear modes

[16; 27℄. Finally, the single-NNM solution fails to predict the correct frequency for high

vibration amplitudes. This is a typical feature of the present formulation of the NNMs,

which relies upon an asymptotic development that diverges from the exact solution upon a

certain threshold.

It has been shown that a single NNM is more accurate that a single linear mode trunca-

tion. The main reason is that the NNM formulation, based uponinvariant manifolds, takes

into account the bending of the phase space; and thus the effect of a priori non-retained

modes in the truncation is not neglected. The question of howmany linear modes are

needed to obtain the same accuracy than that obtained with a single NNM is now adressed.

Numerous simulations have been conducted for mode 2 and 3. Aninteresting one is
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shown on Figure 3, with�
2

= 20 and�
3

= 3. Backbone curves for a single NNM, a

single LNM, two LNMs and the reference solution, are represented. For moderately large

amplitude, the 2 LNMs simulation is as accurate as the singleNNM for the frequency

estimation. Single NNM solution becomes incorrect fora > 1:5, amplitude for which the

curvature of the backbone curve changes.

Generally speaking, it has been found that a simulation with3 LNMs is always as good,

or better, as a single NNM, mainly because the approximationis spatially more precise.

Figure 4 shows the vibration of the beam at its center, for an inital amplitude ofR
2

(t =

0) = 1. The single linear mode solution is not represented becauseit doesn’t predict the

existence of a drift in the solution, and thus the displacement at this point is zero[15℄. The

NNM solution is more precise in amplitude than the two LNMs simulation, hence resulting

in a smaller global error for the beam displacement.

4. EXAMPLE 2: A NON-LINEAR BEAM
4:1: GOVERNING EQUATIONS

A clamped clamped beam vibrating with moderately large amplitude is considered. In

non-dimensional form, the transverse displacementw, which has been choosen such that

w = 1 in the model means a displacement equal to the thicknessh, is solution of:

�

2

w

�t

2

+

�

4

w

�x

4

�

"

2

"

Z

1

0

�

�w

�x

�

2

dx

#

�

2

w

�x

2

= 0; (16)

with boundary conditions:

w(0; t) = w(1; t) = w

;x

(0; t) = w

;x

(1; t) = 0: (17)

The parameter" is equal to:" = Ah

2

I

, whereA andI are the cross-section area and moment

of inertia. Linear normal modes write:

�

k

(x) = K

�

os �

k

x � osh�

k

x+

sin�

k

+ sinh�

k

os �

k

� osh�

k

(sin�

k

x � sinh�

k

x)

�

; (18)
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whereK is such that
Z

1

0

�

k

(x)

2

dx = 1. Natural angular frequencies are solutions of

os �

k

=

1

osh �

k

, where!
k

= �

2

k

. The PDE (16) is then projected onto the natural modes

basis, and symmetric non-linear cubic terms are gathered. The resulting temporal problem

to solve reads:8p = 1; :::; N :

�

X

p

+ !

2

p

X

p

+ "

N

X

i=1

N

X

j�i

N

X

k�j

�

h

p

ijk

X

i

X

j

X

k

= 0: (19)

In the following, a squared cross-section is assumed, so that " = 12. The numberN of

LNMs retained for the reference solution is equal to 20. A fewvalues of the coefficients

�

h

p

ijk

are given in Table 2, showing that the non-linear terms have very large magnitudes in

the following simulations.

4:2: MODE SHAPES

An interesting feature of the NNM formulation is its abilityto predict amplitude-dependent

mode shapes. These are shown on Figure 5 for the first three modes and for different ampli-

tudes. The corresponding linear mode shape is also shown forcomparison. These figures

have been computed for a zero velocity (S

p

= 0), and a maximum of the correspond-

ing normal co-ordinateR
p

, for p = 1; 2; 3. The same kind of dependence on amplitude

has been found by applying a completely different method, the hierarchical finite element

method, to the same problem[28℄.

When oscillating along a single NNM, the mode shape vary continuously with time. This

is illustrated on Figure 6, where the mode shapes for the firsttwo modes are represented at

three different instant of time, choosen in the first quarter-period of motion.
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4:3: HIGHER-ORDER APPROXIMATION OF THE DYNAMICS

One major drawback of the formulation of the NNMs used in thisstudy is that it relies

upon an asymptotic development for computing the geometry of the phase space, as well

as the normal dynamics. Their formal expressions, up to order three, are given by Eqs. (5)

and (4).

For a problem with quadratic and cubic non-linearity, the order-three normal dynamics

allows correction due to the bending of the phase space contained within the quadratic

terms. This is responsible for the difference of hardening or softening behaviour detected

when considering a single linear mode or a single NNM (see Eqs(6) and (8)).

For a problem with only cubic non-linearity like the non-linear beam, a single LNM and

a single NNM up to order three are governed by the same oscillator. Hence the differences

between the two truncation will be only visible in the geometry of the manifold, and thus

only in the spatial computed responsew(x; t) and not in the approximated frequency. To

obtain better accuracy in the computed frequency, a higher-order approximation of the

dynamics onto the invariant manifold is seeked.

Deriving the general order-five equations for the non-linear change of co-ordinates as

well as the normal dynamics has not been realized because of the complexity involved in

the calculations. However, considering a motion involvingonly thepth NNM allows one

to compute easily the dynamics up to order five, for an initialproblem with only cubic

non-linearities. Assume that thepth NNM only is involved in the vibration. Thus8k 6=

p; R

k

= 0. We can then substitute for:

8k 6= p : X

k

= r

k

ppp

R

3

p

+ u

k

ppp

R

p

S

2

p

; (20a)

X

p

= R

p

; (20b)

in the original equations: Eq. (2) without quadratic terms.As we are interested only in
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the dynamics up to order five, the third-order development (Eq. (20)) is sufficient. Indeed,

one has just to retain the quintic resonant terms introducedby the cubic non-linear change

of coordinates to obtain the dynamics onto the manifold. it is a general feature of these

developments that the level of accuracy obtained for the dynamics is one order higher than

that of the change of coordinates. This leads to the following equation for a single NNM

dynamics:

�

R

p

+ !

2

p

R

p

+ h

p

ppp

R

3

p

+ �

p

R

5

p

+�

p

R

3

p

S

2

p

= 0; (21)

where:

�

p

=

N

X

k>p

r

k

ppp

h

p

ppk

+

X

k<p

r

k

ppp

h

p

kpp

; (22a)

�

p

=

N

X

k>p

u

k

ppp

h

p

ppk

+

X

k<p

u

k

ppp

h

p

kpp

: (22b)

As the two supplementary quintic terms in Eq. (21) are resonant, they can’t be eliminated

through a non-linear change of co-ordinate. Thus Eq. (21) isthe accurate dynamics, up to

order five, for a single NNM motion.

It is also possible to derive an approximation of the dynamics onto the manifold up to

order seven, by retaining the order seven terms in the abovepresented calculation. But

only an approximation will be obtained. For deriving the right equation governing the

dynamics for a single NNM up to order seven, one has to computethe complete calculation

up to order five, because the elimination of non-resonant quintic terms through a fifth order

change of co-ordinates will reintroduce other seventh-order terms. However, this seventh-

order approximation has been computed and tested in the simulations.

Figure 7 shows a simulation realized for a motion initiated along the first NNM with

initial conditionsR
1

= 0:8, S
1

= 0. The vibration at the quarter of the beam is shown,

and for different order of simulation. The reference solution is obtained by simulating the

complete system withN = 20 linear modes and a numerical Runge-Kutta time integration
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scheme. One can see that the third order NNM predicts a higherfrequency than the ref-

erence solution. The seventh-order approximation is the most accurate, and is used in the

subsequent simulations.

Numerous simulations have then been conducted for testing the accuracy of a single

NNM simulation versus an increasing number of linear modes retained in the original dy-

namics. Figure 8 shows the results of a simulation conductedwith initial conditionR
1

=

0:8, S
1

= 0, and for two positions on the beam : vibration at center (firstrow) and at one

tenth of the beam (second row). An estimation of the error committed has been computed

with the following criterion:

e =

jjw

ref

(x; t) � w

mod

(x; t)jj

2

jjw

ref

(x; t)jj

2

; (23)

wherewref

(x; t) is the reference solution andwmod

(x; t) refers to the solution obtained

with one reduced-order model : single NNM, single LNM or few number of LNMs. The

jj : jj

2

is the euclidean norm, computed for a given duration of 1 of adimensional time, and

for different positionx on the beam. The results are given in Table 3. The NNM solutionis

very accurate untilR
1

= 1 is reached, and then becomes worst than the 3 LNMs solution.

A simulation withR
1

= 1:4 is shown on Figure 9, observed atx = 0:05, showing that

for too large amplitudes, the seventh-order NNM fails to predict the correct frequency.

Generally speaking, and forR
1

� 1, it has been found that the 4 LNMs solution is as

accurate as the NNM simulation, and the 6 LNMs solution is undistinguishable from the

reference solution.

4:4: MULTI-MODE SOLUTIONS

Simulations with initial conditions involving two nonlinear modes have also been con-

ducted. As the complete change of co-ordinates allowing to pass from the modal co-

ordinates to thenormal ones is provided, these kind of simulations are directly available,
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which constitutes one of the main advantage of using Normal Form theory. This is con-

trary to the methods based on center manifold reduction, where the reduction to a four-

dimensional invariant manifold has first to be computed[29; 30℄. Due to the large number

of terms that have to be retained, the fifth-order normal dynamics for two NNMs have not

been calculated. Hence the simulations presented are up to cubic order.

Figure 10 shows the result obtained for an initial conditionR

1

= 0:5, R
2

= 0:5, and

no initial velocities. As the precision is at third order, the NNM simulation doesn’t predict

very well the frequency. And the four LNMs simulations give much more accurate results.

Numerous simulations have been performed for different inital values and the gain in using

NNMs instead of linear modes has never been found to be very important.

5. DISCUSSION

The aim of the present study was to run several numerical simulations in order to quantify

the gain of using NNMs as reduced-order models of large-scale structural systems. The

long-term goal of this research is to define efficient and accurate methods that improve

significantly finite element codes for non-linear vibrations, through definition of non-linear

modal analysis/synthesis.

In this paper, asymptotic non-linear normal modes, defined as invariant manifold in phase

space, and computed with normal form theory, are used. This formulation provides a theo-

retical framework which allows thinking the NNMs as a natural extension of the traditional

linear decoupling through diagonalization, mainly because a global non-linear change of

co-ordinates is defined. As shown on the diagram representedon figure (11), the reduction

of the phase space dimension through distinction between master and slave co-ordinates

allows definition of a clean framework for non-linear modal analysis/synthesis.

Simulations have shown that NNM formulation must be used forperforming severe trun-
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cation in the PDEs. In any case, using a single NNM is much better than using a single

LNM. It allows prediction of the correct trend of non-linearity for a problem with quadratic

and cubic coefficients. For the non-linear beam problem, higher-order asymptotic devel-

opments enables to recover a good estimation of the frequency. Acquiring precision in the

change of co-ordinates has to be related with the accurate location of the invariant mani-

folds, and thus with slight spatial differences in the computed deflections. Precision in the

normal dynamics (Eq. (5)) is related to dynamical information, and, at first glance, to the

estimation of the non-linear oscillation frequency.

Unfortunately, the cubic order asymptotic development is not enough accurate and the

results deteriorates at higher vibration amplitudes. Slight improvements are possible for a

better approximation of the normal dynamics, as it has been shown on the non-linear beam.

But deriving general higher-order expressions is messy andalgebraically quite intractable.

The question of how many linear modes are needed in order to obtain the same level of

accuracy than that obtained with a single NNM has also been adressed. The two examples

studied showed that 3 LNMs is better for example 1, and 4 for example 2. The same

number of modes seems necessary in the case of suspended cables[18℄. This number should

be bigger for two-dimensional structures, as it can be inferred from recent studies with

large number of dofs on circular shell vibrations (where seven modes were kept to obtain

accurate results)[27℄, or circular cylindrical panels (11 LNMs were necessary)[31℄. But

once again, at very high amplitudes, the results deteriorates and using a single asymptotic

third order NNM is meaningless. These results corroboratesearlier results obtained by

Boivin, Peshecket al. [32; 29; 30℄.

The computational time saved by using these reduced-order models is nonetheless sig-

nificant. But at this point, it does not seem to be enough time savings for large-scale
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crude numerical simulations. Hence the method has to be enhanced to become a powerful

tool in non-linear structural dynamics. A solution would beto break away from asymp-

totic developments. Some significative improvements have been realized in this direction

with a formulation based on center manifold theorem[22℄. A precize non-linear change of

co-ordinate should thus be seeked, but it does not seem straightforward since Poincaré’s

theorem, which is the cornerstone of normal form theory, is proven with an asymptotic

development (seee.g. [33; 34℄). As a conclusion, the asymptotic formulation shows that

NNMs must be used, but also that significative improvements are needed in order to deliver

its complete potential, which is here just lightly touched.
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Caption for tables

Table 1. Internal resonance relations between the ten first eigenfrequencies, and associated

non-linear coefficients; for the linear beam resting on a non-linear foundation.

Table 2. Values of the coefficients of the non-linear beam problem for modes 1, 2 and 3.

To be equal to thehp
ijk

defined in Eq. (2), these values have to be multiplied by".

Table 3. Errors committed with several different simulations, for increasing values of the

non-linearity.



23

Caption for figures

Figure 1. Hardening/softening regions in the parameter plane(�
2

; �

3

) for modes 2 and 3.

H=S refers to hardening/softening regions for a single NNM,h=s for a single LNM.�: val-

ues of the parameters retained for Figure 2.

Figure 2. Backbones curves for different values of the parameters(�
2

; �

3

). �: reference

solution,M: single NNM simulation,Æ: single LNM simulation. Analytical first-order so-

lutions are also represented, plain line for the NNM (Eq. (9)), dash-dotted for single LNM

(Eq. (7)). (a):�
2

= 12; �

3

= :5; (b): �
2

= 14; �

3

= 1:8; (c): �
2

= 14; �

3

= 0:001;

(d): �
2

= 5; �

3

= 0:03.

Figure 3. Backbone curves for�
2

= 20 and�
3

= 3, and for different truncations.

Figure 4. Displacement of the beam at its center.�

2

= 20 and�
3

= 3. Initial condition :

R

2

= 1, S
2

= 0. w = 1 in the model means a real displacement equal to the thicknessh of

the beam.

Figure 5. Non-linear Mode shapes at different vibration amplitudes, for mode 1, 2 and 3

(plain line). Dash-dotted lines represent the corresponding linear mode.

Figure 6. Evolution of the mode shape during a quarter-period of motion. Initial condition

for mode 1 :R
1

= 1:5, for mode 2 :R
2

= 1.

Figure 7. Displacement of the beam atx = 0:25 and for an initial condition taken along the
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first NNM : R
1

= 0:8, S
1

= 0. Different order of accuracy in the asymptotic development

for the dynamics are shown.

Figure 8. Displacement of the beam at its center (first row) and atx = 0:1 (second row),

for initial conditionR
1

= 0:8, S
1

= 0. An increasing number of LNM versus a single

NNM are represented. The solution with five linear modes is superposed to the reference

solution (obtained withN = 20 LNMs).

Figure 9. Displacement of the beam atx = 0:05 for an initial conditionR
1

= 1:4. In this

case, the peak-to-peak displacement at center to 4.

Figure 10. Displacement of the beam at its center (first row) and atx = 0:1 (second row),

for initial conditionR
1

= 0:5, R
2

= 0:5.

Figure 11. Non-linear modal analysis/synthesis through NNMs and real normal form.
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R

1

NNM,
x=.5

NNM,
x=.1

1 LNM,
x=.5

1 LNM,
x=.1

3 LNMs,
x=.5

3 LNMs,
x=.1

max(w)

0.5 0.0033 0.0053 0.0462 0.0662 0.0056 0.0125 0.78
0.7 0.0189 0.0245 0.1409 0.1595 0.0193 0.0281 1.10
0.8 0.0354 0.0420 0.2189 0.2345 0.0351 0.0417 1.24
1 0.1047 0.1207 0.3983 0.3995 0.0698 0.0803 1.54
1.2 0.2289 0.2629 0.5743 0.5557 0.1291 0.1414 1.87

Table 3.
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