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Abstract

This article is dev oted to an experimental v alidation of a theoretical model presented in an earlier
contribution by the same authors. The non-linear forced v ibrations of circular plates, with the excitation
frequency close to the natural frequency of an asymmetric mode, are investigated. The experimental set-up,
which allows one to perform precise measurements of the v ibration amplitudes of the two preferential
configurations, is presented. Experimental resonance curves showing the amplitude and the phase of each
configuration as functions of the driv ing frequency are compared to the theoretical ones, leading to a
quantitativ e v alidation of the predictions giv en by the model. Finally, all the approximations used are
systematically discussed, in order to show the scope and relevance of the approach.

1. Introduction

In an earlier paper [1], (hereafter referred to as Part I), a theoretical model of a circular plate
subjected to geometrically non-linear forced vibrations, when the driving frequency is close to the
natural frequency of an asymmetric mode of the plate, was derived. This article presents a series of
measurements performed on asymmetrically forced circular plates, in order to validate the
theoretical developments presented in Part I.
Asymmetric non-linear vibrations of circular plates have received little attention, as opposed to

the axisymmetric case, which has been widely treated theoretically and experimentally [2–5].



For the asymmetric case, the pioneering work of Tobias et al. seems to be the only one to give a
comprehensive study, of both the theoretical and experimental viewpoints [6–8]. But some
features were not elucidated at that time, as it is mentioned by the open questions left at the end of
Ref. [7]. Moreover, crucial physical parameters such as damping were neglected. More recently,
mainly theoretical developments have been performed. Subharmonic oscillations of an
asymmetric eigenmode of a circular plate has been studied in Ref. [9]; asymmetric modal
coupling has been taken into account in Ref. [10]. In contrast, experimental validations remain
seldom seen. Yasuda and Asano show experimental measurements on a rectangular plate in which
degenerated modes occur, i.e., one-to-one internally resonant modes [11]. But to the authors’
knowledge, only the contribution of Raman and Mote [12], concerned with experiments
performed on circular plates subjected to asymmetric vibrations, has been published since the
work of Tobias et al.
As the plate is forced with a frequency close to the natural frequency, the deflection of the plate

is governed by the corresponding modal shape(s) only. If the mode is asymmetric, two modes,
called preferential configurations, with slightly different modal shapes and natural frequencies, are
involved in the vibration [1,8]. The experimental set-up made in our laboratory with a brass
circular plate is presented. This set-up enabled us to measure the deflections of an antinode of
each preferential configuration, so that their respective contributions in the vibration are
identified. Experimental resonance curves showing the amplitude and the phase of each
configuration as functions of the driving frequency are analyzed. Jump phenomena are exhibited,
as well as energy exchanges between the two configurations due to non-linear coupling. This
coupling leads to a rotating travelling wave, predicted in Part I and mentioned in Refs. [6–8]. The
resonance curves are compared to the ones derived from the model of Part I, leading to a
quantitative validation of the predictions of the theory. Finally, all approximations used are
systematically discussed.

2. Experimental details

In the experiments, a circular plate of outer diameter 2a ¼ 220 mm; thickness h ¼ 1:6 mm;
made of brass of density r ¼ 7974 kg m�3; Young’s modulus E ¼ 85� 109 Pa and Poisson ratio
n ¼ 0:38 is used. Three small holes (of diameter 2 mmÞ at the rim allow us to hang up the plate
with nylon threads.

2.1. Apparatus

The apparatus used during the experiments is shown in Fig. 1 and the references of the different
measuring devices are listed in Table 1.
The plate is excited by means of a magnet, glued with beeswax and driven by a coil (Fig. 2). The

location of the magnet was chosen to be on a nodal diameter of one preferential configuration, so
that it mainly excites the other configuration (Fig. 3). The coil is fed through a power amplifier by
an harmonic signal of frequency O generated by a synthetizer. Because this signal is not purely
sinusoidal, its harmonics (of frequencies 2O; 3O;yÞ are eliminated by a low-pass filter.
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A calibration procedure of the coil/magnet system has been carried out, in order to evaluate the
force acting on the magnet, as a function of the intensity of the current in the coil. The details are
shown in Appendix A. It has been found that the force is proportional to the intensity, under the
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Fig. 1. Experimental apparatus.

Table 1

Devices used during experiments

Accelerometer 1 & 2 Bruel & Kjær 4374

Charge amplifier Bruel & Kjær Nexustm

Low-pass filters Rockland 1042F

Voltmeters Philips PM2519

Signal synthetizer Fluke PM5193

Power amplifier Crown Macrotech 2400

Ammeter Hewlett-Packard 3478A

22

27 8

magnet preferential position

coil magnet coil magnet

current

6

bees wax

plate

d

(d=-1)

Fig. 2. Electromagnetic exciter. Distance d is measured from the right side of the coil to the middle of the magnet, at

rest. The magnet is radially centred in the coil cavity. Dimensions are in mm.
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condition that the magnet has a constant position with respect to the coil. The proportionality
coefficient K depends on the position of the magnet with respect to the coil, and especially to the
distance d between the side of the coil and the middle plane of the magnet (Fig. 2). As the magnet
follows the plate oscillations during experiments, the force is actually not purely proportional to
the intensity. In particular, when the current is sinusoidal, harmonic distortion of the force signal
occurs. The distance d ¼ �1 mm has been chosen as the position at rest of the magnet, because K
is a locally symmetric function around this position. With this choice, the harmonic distortion is
the weakest and is composed mainly of odd order components. This position is also the maximum
of K : The magnet is radially centred on the symmetry axis of the coil.
The proportionality coefficient between the force and the intensity slightly depends on the

frequency O of the signal, probably because a fraction of the driving energy is dissipated in the
magnet by Foucault’s current (Appendix A). This feature has been previously noticed by Kung
and Pao [3]. An average value of the ratio between the force and the intensity is K ¼ 0:23 N A�1;
for frequencies O=2p between 50 and 200 Hz: This value will be used in the following to estimate
the force acting on the plate by measuring the intensity of the current in the coil.
Two accelerometers are used to measure the oscillations of both preferential configurations.

Accelerometer 1 (resp. 2) is located on a node of configuration 2 (resp. 1), so that the contribution
of both configurations are properly discriminated (Fig. 3). The signals of the accelerometers are
sent to a charge amplifier. An oscilloscope and a spectrum analyzer are used to observe the
modulation and the FFT spectrum of the two signals. Two multimeters give the root mean square
(r.m.s.) value of the signals amplitudes, and an oscilloscope is used to measure the phase between
the two oscillations. The phase between configuration 1 and the driving force is measured with
another oscilloscope, fed by the terminal voltage of the ammeter. This device is equivalent to a
small constant resistance, which implies that its terminal voltage is proportional to the intensity in
the coil, and then to the driving force.
When the plate undergoes deflection amplitudes of the order of a millimeter, the signals

delivered by the accelerometers are not pure sine waves (of frequency OÞ; as would be expected for
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Fig. 3. (a): Fixation of the plate with nylon threads; relative positions of the accelerometers, the magnet and the nodal

radii of the two preferential configurations. (b, c): 2-D views of the shapes of the two preferential configurations,

resulting from an experimental modal analysis of the plate in situ (the grey zones correspond to the maxima of

amplitude, and the white zones to the minima).
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a linear system. Harmonic components, of small, but not negligible magnitude compared to the
fundamental, often disturb the measurements of amplitude and phase, because the resulting shape
of the signals are not perfectly sinusoidal (see for example Fig. 10). It was decided to add a low-
pass filter, so that all quantitative measurements are made on the fundamental component of the
accelerations. This is justified by the fact that the theoretical curves exhibited in Part I stem from a
first order multiple scale development. Hence, the comparison with experimental results are to be
done on the fundamental component of the signals. Moreover, the measurements of the phase
differences are easier, and the results given by the multimeters are good estimates of the r.m.s.
value of the amplitude of the fundamental components (the multimeters do not calculate the real
r.m.s. value of the signal, but give a good estimates of it if the signal is perfectly sinusoidal). As a
conclusion, the measurements (amplitudes and phases) presented in the following sections will
refer to the fundamental component of the signals delivered by the accelerometers.

2.2. Preferential configurations of the plate

The plate was hung up by two threads only, in order to avoid an unwanted pre-stretching of the
mid-plane of the plate due to the tension in the threads (Fig. 3(a)). The edge of the plate is then
assumed to be free, under the assumption that the threads disturb the motion of the edge as little
as possible.
The asymmetric mode (2,0) (2 nodal radii, no nodal circles) has been chosen for the experiments

of this paper. A preliminary modal analysis of the plate, focused around the two preferential
configurations, has been carried out by means of a laser vibrometer (OMETRON, VPI sensor).
This study gives the modal shapes of the two preferential configurations, depicted by the views
(b,c) of Fig. 3. For a perfect plate with perfectly free boundary conditions, the position of the
nodal radii are arbitrary. The presence of the hanging threads sets boundary conditions that are
not perfectly free everywhere on the edge, and thus fixes the position of the nodal radii. The
addition of the magnet and the accelerometers glued on nodes and/or antinodes does not change
radically the nodal pattern. The position of the nodal radii can be measured by the two angles f1

and f2; with respect to the vertical symmetry. In particular, the nodal radii of one configuration
does not fall exactly midway between the radii of the other. This imperfection is measured by
jf1 � f2j: This is a consequence of: (i) the structural imperfections of the plate, (ii) the deviation
from the exact vertical symmetry of the nylon threads, and (iii) the position of the added masses
glued on the plate. The exact value of the angular shift jf1 � f2j and angles f1 and f2 are of the
order of one degree.
The position of the accelerometers and the magnet must be carefully adjusted. This can be

carried out in two steps. First, the modal shapes of Figs. 3(b,c) allow one to roughly locate the
nodal radii. Secondly, the best position for the accelerometers and the magnet is finely adjusted, so
that the signal delivered by accelerometer 2 is as low as possible when the magnet drives
configuration 1. It has been found very difficult to drive only configuration 1, even if the magnet is
precisely located on the nodal radii of configuration 2, mainly because the area of the magnet in
contact with the plate is finite.
The natural frequencies f1 and f2 of the two preferential configurations are slightly different,

and depend on the previously enumerated experimental conditions (i, ii and iii). Table 2 gives an
example of the variation of the natural frequencies with the presence and location of the added
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masses. These frequencies were measured by means of the spectrum analyzer, with the plate
subjected to free vibrations. The added masses are located as shown in Fig. 3(a). A magnet (of
mass 6 gÞ glued on an anti-node of configuration 1, at 1 cm of the edge, lowers its natural
frequency f1 by approximately 2 Hz: An accelerometer (of mass 0:6 gÞ; at a similar location,
lowers the frequency by 0:5 Hz: In order to obtain a difference of natural frequencies that is not
too large, a ballast (of mass 11 gÞ can be glued on an anti-node of configuration 2. It lowers f2 by
1:5 Hz:
The variations of nodal patterns and natural frequencies considered above have been previously

noticed in Ref. [8] and taken theoretically into account in Ref. [13] and in the model presented in
Part I [1].

2.3. Measuring the resonance curves

In what follows, experimental resonance curves for both preferential configurations will be
presented (Figs. 5–7, 13, 14). The amplitude of the excitation of the plate, denoted by Tdr; is held
fixed, the frequency O is slowly varied up and down around the natural frequencies of both
configurations, and the deflections w1 and w2 of both configurations are plotted. Thus, the signal
of the accelerometers must be integrated twice. As explained in Section 2.1, the r.m.s. amplitudes
s
ðr:m:s:Þ
1 and s

ðr:m:s:Þ
2 and phases j1 and j2 of the filtered signals given by the accelerometers are

measured. Assuming that those signals are pure sine waves (of frequency OÞ; the two integrations
are equivalent to the following equations:

a1 ¼

ffiffiffi
2

p
O2

s
ðr:m:s:Þ
1 ; a2 ¼

ffiffiffi
2

p
O2

s
ðr:m:s:Þ
2 ; ð1aÞ

g1 ¼ j1 þ p; g1 ¼ j2 þ p; ð1bÞ

where ða1; g1Þ and ða2; g2Þ are the amplitude and phase with respect to the driving force TðtÞ; of the
deflections w1 and w2 respectively. Their mathematical expressions can be written as

TðtÞ ¼ Tdr cosOt; ð2Þ

w1 ¼ a1 cosðOt � g1Þ; w2 ¼ a2 cosðOt � g2Þ: ð3Þ

In the following, all the numerical results denoting amplitudes (of deflection or forcing) are
related to the measured real amplitudes, and not to the r.m.s. ones.

Table 2

Measured natural frequencies of both preferential configurations

Configuration 1: f1 (Hz) Configuration 2: f2 (Hz)

Hanged ‘‘naked’’ plate 108 111

Both accelerometers 107.5 110.5

Magnet 106 111

Magnet and accelerometers 105.5 110.5

Ballast, magnet and accelerometers 105.5 108
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3. Non-linear coupling between preferential configurations

In this section, a typical case of non-linear coupling between the preferential configurations of
the plate is considered. Only a one-to-one combination resonance is addressed here. It excludes
the excitation of higher order modes, which are likely to be observed for higher forcing than those
presented in this paper. This kind of problem is treated for example by Lewandowski [14] with a
numerical model.
The magnet and the accelerometers are located as specified in Fig. 3(a). A ballast (of mass 11 gÞ

is added on an antinode of configuration 1, in order to lower the difference of natural frequencies.
This operation is necessary to obtain the coupling phenomenon between the two configurations
for driving forces of magnitude small enough so that the one-to-one combination resonance
assumptions are fulfilled (larger forces lead to excitate other modes than the preferential
configurations. See Part 1 for the influence of the internal detuning on the instability region). The
resulting measured natural frequencies are those of the last row of Table 2. The directly excited
configuration is the first one, of natural frequency f1 ¼ 105:5 Hz; lower than f2 ¼ 108 Hz; the
natural frequency of the other configuration. The internal detuning is positive, which leads to
s1 > 0 in the model of Part I.
In what follows, the response of the plate is analyzed for two different levels of forcing. As a

preliminary, Fig. 4 shows the theoretical single-degree-of-freedom solution (s.d.o.f., see Ref. [1]),
for the corresponding level of forcing. One can notice that as the s.d.o.f. curve (denoted by (1)) for
the lowest forcing does not enter the instability region, no coupled solution between the two
configuration is expected. On the contrary, the s.d.o.f. solution (curve number (3)) for the largest
forcing enters into the instability region. Thus, a coupled regime between the two configurations is
predicted, leading to an energy transfer from the directly excited configuration (the first one) to
the other. Fig. 4 shows in particular that a minimum forcing (curve (2)) is necessary to obtain a
coupled solution (see Ref. [1]).
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Fig. 4. Theoretical s.d.o.f. solutions and instability region for three different forcing. (1): Tdr ¼ 9:9� 10�3 N; (2):
56� 10�3 N and (3): 0:17 N: (1) and (3) corresponds to the two experimental situations of Figs. 5 and 6; (2) corresponds

to the minimum forcing magnitude which is necessary to obtain the coupled solution.

6



3.1. Experimental observations

Fig. 5 shows the amplitudes and phases of w1 and w2 for a constant forcing amplitude
of 9:9� 10�3 N; corresponding to curve (1) in Fig. 4. Even if the magnet drives mainly
configuration 1, a weak resonant excitation of configuration 2 can be noticed around 108 Hz: The
responses w1 and w2 of the two configurations can be denoted as uncoupled, as they exhibit typical
resonance curves of two uncoupled forced s.d.o.f. systems [17]. The amplitude a1 ða2Þ passes
through a resonance peak, while the phase g1 ðg2Þ changes from 0 to p rad; in a localized forcing
frequency range centred on the natural frequencies of configuration 1 (2), f1 ¼ 105:5 Hz ðf2 ¼
108 HzÞ: The forcing is enough for w1 to exhibit the classical jump phenomena of a weakly non-
linear system, while w2 stays in the linear range.
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Fig. 5. Experimental resonance curves of the two preferential configurations, for a force amplitude of 9:9� 10�3 N: 3:
increasing frequencies; W: decreasing frequencies. ðw1; g1Þ and ðw2; g2Þ denotes the deflection and the phase with respect

to the force, as measured by accelerometers 1 and 2 respectively.
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A similar experiment is reported in Fig. 6. It is conducted with a forcing amplitude of 0:17 N;
which correspond to curve (3) in Fig. 4. With this magnitude of forcing, a coupled regime is
expected. The experiment will now be described. Starting with a driving frequency of 104 Hz; only
one solution for w1 and w2 is possible, that corresponds to points O and O0 respectively. This
solution will be denoted by z1; for which a2 nearly equals zero. As the frequency is increased,
points A and A0 are reached, and a2 starts to increase. It can be explained by a non-linear coupling
between the two configurations, the first (directly excited) one giving energy to the second. From
this point, a1 and a2 increase jointly until they reach points B and B0: The two deflections w1 and
w2 are nearly in phase, with g1 and g2 slowly increasing from point O to point A: At the beginning
of the coupling, g2 quickly decreases, so that w2 becomes in quadrature of phase with respect to
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w1: The quadrature is held during all the coupling stage, until points B and B0 are reached. As the
frequency is increased further, a jump from point B ðB0Þ to point C ðC0Þ occurs, so that a1 ða2Þ
falls down to nearly zero and g1 ðg2Þ jumps to p rad: A second solution for w1 and w2 is then
reached, which is denoted by z2:
If the experiment is started at a frequency larger than the one of point C; only the

second solution z2 is obtained. The detail of Fig. 6 is shown in Fig. 7. When decreasing
the frequency, points C and C0 are passed, and the solution reaches points D and D0; with a
noticeable increasing of a2 as the driving frequency approaches the natural frequency
of configuration 2. If the driving frequency is further decreased, a second jump phenomenon
occurs, from point D0; to point E0: Another solution for w1 and w2 is reached, and is denoted
by z3: The jump is mainly noticeable for a2 and g2; while a1 and g1 have a nearly continuous
variation. At this stage, two ways are possible. First, if the frequency is decreased again, a1 slowly
increases, points F and F 0 are reached, and another jump phenomenon occurs. The solution
gets points G and G0; and reaches the first solution z1: Secondly, if the frequency is
increased from point E0; a2 increases until point H 0 is reached. With a slight increase of
frequency, a jump phenomenon occurs, a2 decreases to point I 0; and solution z2 is reached
again.
In the coupled solution range, i.e., between points A; A0 and B; B0 of solution z1; the phase of

the deflection of configuration 1 with respect to the phase of configuration 2 is very close to
p=2 rad: As mentioned in Part I, the superposition of the motion of the two configurations leads
to a travelling wave, rotating anticlockwise. This remarkable feature has been noticed during the
experiments by lighting the plate with a stroboscope, driven by a frequency very close to the
frequency of the forcing.
It can be noticed that solution z1 is somewhat singular, in the sense that it exhibits the

coupled phenomenon between the two preferential configurations, a2 remaining nearly zero
around f2 ¼ 108 Hz; with no resonance. On the contrary, solutions z2 and z3 are very similar
to a solution in which w1 and w2 would be uncoupled, since w1 is similar to the lower
stable solution of a Duffing oscillator [2], while w2 exhibits a typical non-linear resonance
in the vicinity of f2: These specific features, which were not taken into account in Ref. [1], are
due to the residual forcing of the second preferential configuration discussed in the next
subsection.
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3.2. Effect of non-zero Q2

The main difference between the theoretical resonance curves shown in the previous paper [1]
and those measured on a real plate is that one cannot ensure that the forcing Q2 of the second
configuration is strictly equal to zero (see [1, Eq. (31b)]). Hence the study of the dynamical system
governing the evolution of the amplitudes and the phases of the response [1, Eq. (40)] has to be
completed with a small residual value for Q2: This makes the analytical computations quite
impossible since Q2a0 implies a2a0; hence any calculations have to be done in the complete
four-dimensional phase space and are generally unmanageable analytically. The solution branches
are then computed numerically by means of the DsTool software [15].
Considering a forcing Q2 that is small compared to Q1 does not affect the qualitative results

obtained with Q2 ¼ 0: The instability region still exists, but is no more contained in the plane
ða2 ¼ 0Þ: As a2a0; all the branches of solutions are separated from the s.d.o.f. resonance curve.
In particular, the resonance of a2; corresponding to the excitation of the s.d.o.f. oscillator
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a1 corresponding to the case Q2 ¼ 0 has been plotted in the plane a2 ¼ 0 to remind its position, although it is not

solution branch. The instability region, computed with Q2 ¼ 0; has also been represented. The resonance for a2;
occurring on the lower branch of a1; is clearly visible. The forcing Q2 is strong enough to exhibit the non-linearity linked

with the second oscillator.
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[1, Eq. (31b)] by Q2; must correspond to a specific value for a1: This occurs for small values of a1;
and hence is linked to the lower solution branch for a1; as can be seen in Fig. 8, where only the
stable states have been reported. The branches z2 and z3 are associated with the resonance for a2:
This explains why the resonance for a2 is experimentally observed only when the excitation
frequency O is decreased. When increasing O; the upper branch z1 is followed, and no resonance
occurs for a2:
The case considered with the experimental values leads to the appearance of a supplementary

branch, denoted z4 in Fig. 8. This occurs at s2 ¼ 92 through saddle-node bifurcation. The z4 curve
is very close to z1 for the amplitude values a1 and a2; but differs from z1 by the angle value g2: This
can be seen in Fig. 9 where the phases with respect to the forcing of the different branches have
been represented. One can observe in particular that g1 for the z4 branch is nearly equal to g1 for
the z1 branch. This is not the case for g2: the two branches exhibits a phase difference nearly equal
to p rad:
When slowly increasing the excitation frequency O; the observed solution is the one given

by branch z1: Those theoretical curves predict that if a perturbation occurs when s2 > 92; it
could be possible for the a2 solution to jump from z1 to z4: This should be visible on the phase
g2 of the solution. And this has been effectively experimentally observed, by simply knocking on
the plate when a2 is excited. The time histories of the acceleration of both configurations are shown,
for z1 and z4; in Fig. 10. The positive or negative quadrature clearly appears, and the amplitudes,
from one solution to the other, are nearly equals, as it is predicted by the theory (Fig. 8).
Theoretical predictions exhibited by the model have been carefully checked. To conclude with

this case, the general fittings are plotted.
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3.3. Model fitting to the experiments

The goal of this subsection is to estimate the parameters of the model so that the theoretical
resonance curves fit the experimental ones. Then, the values stemming from this fitting are
compared to measurements. It is shown that the two sets of values are of the same order.
The parameters to estimate are defined in [1, Eq. (31)], namely the natural frequencies %o1 and

%o2; the non-linearity coefficient G; the damping coefficient %m; and the forcing coefficients Q1 and
Q2: Unlike in Ref. [1], the dimensionless variables are denoted here with overbars, and their
relation with the physical variables are given by the following formulae:

r ¼ a%r; ai ¼
h2

a
R20ð%rmesÞ %ai; ð4a;bÞ

e ¼
12ð1� n2Þh2

a2
; ð4cÞ

fi ¼
h

2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ð1� n2Þr

s
%oi; fdr ¼

O
2p

¼
h

2pa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

12ð1� n2Þr

s
ð %o1 þ es2Þ; ð4d; eÞ

m ¼
h3

a4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� n2ÞE

r

s
%m; ð4fÞ

Q1 ¼
a5

Eh7
R20ð%rdrÞTdr; ð4gÞ
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Fig. 10. Measured accelerations, not filtered, of both configurations, for a driving force of frequency 112 Hz and

magnitude 0:17 N; for the two solutions z1 (a) and z4 (b).
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where ai ði ¼ 1; 2Þ are the amplitudes defined in Eq. (1a), fi denote the natural frequencies in Hz, m
is the damping coefficient (in s�1Þ and Tdr is the driving force magnitude (in N). Moreover, %rmes

and %rdr denote the radii of the locations of the accelerometers and driving force respectively. These
latter are besides assumed to be glued close to antinodes, so that w and Q depend only on the
radial shape R20 of mode (2,0) of the plate, defined in Appendix A.1 of Part I.
The parameter estimate is done in two steps. First, the parameters are roughly estimated, either

from a theoretical treatment ðf20;GÞ described in Appendices A and B of Part I, or derived from
measurements ðf1; f2;Tdr;m1; m2Þ: The values of these parameters are summarized in the first two
columns of Table 3. Secondly, the parameters are finely adjusted so that the experimental
resonance curves fit to the theoretical ones. Fig. 11 shows the result of the fitting, and the third
column of Table 3 gives the resulting values of the parameters used in the model fitting.
Now compare all the parameter values, row after row of Table 3. First, the discrepancies

between theoretical and measured values of the natural frequencies, due to imperfections of the
plate, are discussed in Section 2.2. Secondly, the use of the ESPRIT method [16] shows that both
configurations have different damping coefficients, of values m1 ¼ 0:36 s�1 and m2 ¼ 0:62 s�1: This
feature is not taken into account in the model, in which both configurations have equal damping
coefficients. It has been found experimentally that the beeswax used to glue the added masses on
the plate tends to damp the vibration. The presence of the ballast at an anti-node of
configuration 2 explains probably that m2 is greater than m1: Finally, the coefficient G stemming
from the fitting (third column of Table 3) is slightly lower (in absolute value) than that calculated
from the perfect plate model of Part I (first column). This is explained by all the imperfections of
the experimental plate, namely the added masses and the boundary conditions not perfectly free.
Fig. 11 shows that even if the experimental points lie close to the curves resulting from the

model, the frequency of the collapsing jump ðfdr ¼ 117 HzÞ is lower than the one predicted by the
model ð127 HzÞ: Using the software DsTool, it has been noticed that the basin of attraction of the
present coupled solution (called z1 in Section 3.2) is significantly reduced as the driving frequency
approaches the collapse point. The step by step increase of frequency from one experimental point

Table 3

Physical and model parameters

Perfect plate modela Measurementb Result of fitting

Natural frequencies f20 ¼ 109:2 Hz f1 ¼ 105:5 Hz f1 ¼ 105:25 Hz

ð %o20 ¼ 5:09Þ ð %o1 ¼ 4:9Þ
f2 ¼ 108 Hz f2 ¼ 108:2 Hz

ð %o2 ¼ 5:05Þ
Forcing — Tdr ¼ 0:17 N Tdr ¼ 0:17 N

ðQ1 ¼ 1323Þ
— — Q2CQ1=10 ¼ 150

Damping — m1 ¼ 0:36 s�1 m1 ¼ 0:4 s�1

— m2 ¼ 0:62 s�1 m2 ¼ m1
Non-linearity coefficient G ¼ �1:90 — G ¼ �1:65

aFrom Ref. [1, Appendices A,B].
b fi and mi measured in free vibration, with the ESPRIT method [16]; Tdr calculated from the measured intensity

(Section 2.1).

13



to the next probably yields a perturbation that is sufficient for the solution to leave its basin of
attraction, before the collapse frequency predicted by the model is reached. This feature is also a
consequence of the fact that the value of m ¼ 0:4 s�1 used in the model is lower than m2 ¼ 0:62 s�1:
As a conclusion, it has been shown through this section that all the qualitative features

exhibited during the experiments (jump phenomena, occurrence of the non-linear resonance for a2

only in the backward experiment, existence of the z4 solution) are predicted by the model.
Quantitatively, the differences between the experimental curves and the theoretical ones are rather
small.

4. The case of a negative internal detuning

4.1. Theoretical features

The case of a negative internal detuning has been investigated by simply adjusting the position
of the driving magnet at an antinode of the configuration with highest eigenfrequency. Thus, the
directly excited configuration is now the second one, whose shape is shown in Fig. 3(c), and whose
deflection magnitude is denoted by a2: This amounts to consider s1o0 in the model.
A specific feature of this case, is that the instability region stays on the left side of the s.d.o.f.

resonance curve. Hence, the crossing of the s.d.o.f. resonance curve with the instability region is
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only possible for an amplitude of the driving force Tdr greater than the one considered in the
previous case, s1 > 0; discussed in Section 3. This is shown in Fig. 12, that can be compared to
Fig. 4. In particular, curve (3) in Fig. 12 is located just beneath the instability region, whereas it
crossed the instability region (curve also denoted (3) in Fig. 4) in the case of a positive internal
detuning. Hence no coupled solutions arise. It has been necessary to increase Tdr to 0:45 N (curve
(4) in Fig. 12) to observe the coupling between the configurations.
Another important feature is that the s.d.o.f. solution becomes stable again, as it leaves the

instability region, as soon as s2 > sðeÞ2 : Thus, for s2 > sðeÞ2 ; the coexistence of two stables solutions
is observable. The coupled solution is obtained by increasing the frequency from s2osðeÞ2 ; whereas
the s.d.o.f. one can be observed when decreasing the frequency from the lower stable branch, as in
a usual s.d.o.f. experiment.
Numerical computations of the coupled solutions in the case investigated here show that the

amplitude of the companion configuration ða1Þ is greater than that of the excited one ða2Þ: This
fact is experimentally observed (see Fig. 13). A parallel can be established between this case and
the internal resonance investigated in Ref. [17], in which the non-excited modes have a greater
amplitude than the directly excited one.
Finally, the branch z4 depicted in the previous case ðs1 > 0Þ for coupled solutions is also present.

All those theoretical predictions are confirmed below, in the next subsection.

4.2. Experimental observations

Figs. 13 and 14 are similar to Figs. 6 and 7, with a larger forcing amplitude ð0:45 NÞ and a
negative internal detuning. The two natural frequencies are now f1 ¼ 107:8 Hz and f2 ¼ 109:2 Hz:
The reader must keep in mind that the directly excited configuration is now configuration 2,
whose deflection magnitude is a2: As mentioned in the previous subsection, the s.d.o.f. solution is
stable for driving frequencies larger than 108:6 Hz; and corresponds to the branch ðJLÞ in Figs. 13
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and 14. This solution can be reached after the jump phenomenon from points F ; F 0 to points
G; G0:When following this solution by decreasing the driving frequency, points J; J 0 are reached,
the s.d.o.f. solution become unstable, and a jump phenomenon occurs. The coupled solution is
then reached, by points K ; K 0: The special feature of the present case in which the internal
detuning is negative is that a1 is greater than a2: This fact can be observed in Fig. 14. The classical
jump phenomenon between the upper and the lower s.d.o.f. solutions is denoted by points L and
M for a2; whereas a1 remains nearly zero.
In addition, it can be noticed that no non-linear resonance occurs for a2; in contrast to the case

of a positive internal detuning (jump phenomena D0-E0 and H 0-I 0 of Fig. 7).
A fitting of the theoretical model of Part I to the present experiments has been found

impossible. It can be explained by the fact that for the large forcing considered here, the
second order effects cannot be neglected anymore in the model. It will be explained in the next
section.

5. Discussion

5.1. Even order harmonic distortion

In all the experiments carried out on the plate, the presence of a second harmonic (of frequency
2OÞ in the acceleration spectrum has been noticed. As the theoretical model involves equations
with cubic non-linearities, only harmonics of odd order (of frequencies 3O; 5O;y) should have
been present. This feature have been previously encountered by Kung and Pao [3], whose
measured signals show an asymmetric period shape, which is characteristic of an even components
harmonic distortion. Bennouna and White noticed in Ref. [18] and studied in Ref. [19] the
presence of a second harmonic in their measurements, and did not find a theoretical explanation
for this. A number of conjectures can be made in attempting to explain this phenomenon.
This even component harmonic distortion can be caused first by a loss of symmetry of the

vibrating structure in the deflection direction, i.e., normal to the mid-plane of the plate. This
normal symmetry, perfect in the case of an ideal plate with perfect boundary conditions, can be
broken by (i) the added masses glued only on one side of the plate, (ii) a defect of flatness, and (iii)
a defect of symmetry caused by the threads.
Other sources of the presence of even order components have been explored theoretically by

Ribeiro in Ref. [20]. This study is devoted to beams, but its conclusions can be extended in the
present case, since only cubic non-linearities are involved. This author shows that an even order
harmonic distortion is produced if the excitation force (i) is harmonic and not purely transverse,
or (ii) if it is transverse harmonic with a constant term.
Finally, the even components present in the measured deflections can be caused directly by an

harmonic distortion of the exciting force signal. Section A.3 in Appendix A presents
measurements of the harmonic distortion of the force signal as a function of the amplitude of
the oscillations of the magnet. It is shown that even if the mean position of the magnet is carefully
adjusted at the preferential position d ¼ �1 mm; an even order harmonic distortion is present in
the force signal. For the largest deflections encountered in the measurements of Sections 3 and 4,
of order 1:5 mm; the magnitude of the second harmonic component is lower than �40 dB with
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respect to the fundamental, which leads to a total harmonic distortion (THD, see Appendix A for
the definition) of less than 1%.
A quantitative study is necessary to precisely identify the exact causes of the even component

harmonic distortion observed in our measured signals. In particular, the estimation of the even
order components magnitude in the deflection of the plate, as a function of the excitation force, is
not obvious: a negligible second harmonic of �40 dB in the force spectrum is likely to cause a
larger distortion in the deflection of the plate. This kind of investigation goes beyond the scope of
the present article, as only the fundamental component of the signals has been addressed.

5.2. Scaling of the measured deflection

The theoretical model follows from a first order multiple scale analysis (see Section 6 of Part I).
It is theoretically valid for a dimensionless deflection %w of order Oð1Þ; only if the small parameter e
is small compared to 1 (see Section 2.3 of Part I). This involves w ¼ ðh2=aÞ %w; and the maximal
deflection recommended by the theory is then h2=a ¼ 0:023 mm: Nevertheless, Section 3 shows
that the model predicts each qualitative feature and that the quantitative features stay in a narrow
range, even if the measured deflection is of order 1 mm:
In the case of a much larger forcing of 0:45 N; described in Section 4, even if all the qualitative

features are predicted by the model, it has been found difficult to quantitatively fit the model to
the experiments. These difficulties can be explained by second-order effects that cannot be
neglected for this large magnitude of the driving force. This point is discussed in the next
subsection.
As a conclusion, even if the model has been written as a correction to the linear small deflection

theory (see Section 2.3 of Part I), it is still valid for a deflection range much larger than that
recommended by the mathematics. In particular, the behaviour of the plate is well predicted when
it is subjected to deflections w of order of half of its thickness, h=2 ¼ 0:8 mm: This brings a new
light on the theoretical work by Nayfeh et al. in Refs. [2,10,17], since the present experiments
validate their theory in a larger range of experimental conditions. Nevertheless, a theoretical
precise limit of validity of the model is difficult to estimate, although an experimental limit, in
terms of the magnitude of driving force, is determined in the next subsection.

5.3. Second order effects

Second order effects in perturbative methods can substantially modify the study [21]. The
amplitude–frequency relation is first modified [22], which will be discussed below. Secondly, the
introduction in the theory requires taking into account the contribution of all the modes that are
not excited by the load or by an internal resonance. The result is that the natural linear modes mix
with one to another and give non-linear modes, whose shapes are slightly dependent on the
deflection amplitude [23]. This effect seems to be significant only at large deflection amplitude [19],
larger than the plate thickness, and does not change the quantitative behaviour of the system.
Second order effects appear naturally in the amplitude–frequency relation for the conservative

Duffing oscillator. Considering the equation

.X þ o2
0X þ eGX 3 ¼ 0; ð5Þ
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the period T can be calculated by a simple integration in the phase-space trajectory between two
turning points (points of maximal elongation where ’X ¼ 0Þ: Let V ðX Þ be the potential derived
from Eq. (5), and E the energy of the considered trajectory. Then

T ¼ 2

Z X
ð2Þ
t

X
ð1Þ
t

dXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE � V ðX ÞÞ

p ; ð6Þ

where X
ð1Þ
t and X

ð2Þ
t are the two turning points [22,24]. Substituting E and V for the appropriate

values, the integral is:

T ¼
2p
o0

1� e
3G
8o2

0

X 2
t þ e2

57G2

256o4
0

X 4
t þ Oðe2Þ

� �
: ð7Þ

Eq. (7) yields the backbone curve defined by the locus of the peak amplitudes of the resonance
curve.
The backbone curve has been experimentally measured in the case of a negative internal

detuning ðs1o0Þ; with the values of the natural frequencies of Section 4. As the upper branch of
the s.d.o.f. solution is not completely contained in the instability region, it is possible, when
decreasing the frequency, to jump on the upper s.d.o.f. branch. Then increasing the forcing
frequency allows one to determine, for a fixed level of the forcing amplitude, the locus ðfdr; a1Þ of
the peak amplitude and hence the backbone curve. This measurement is shown in Fig. 15.
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In this latter figure, theoretical backbone curves, limited to first order and to second order
(according to Eq. (7)), are also presented. These curves can be useful to determine the level of
forcing above which second order effects cannot be neglected. Here, one can see that it is the case
of a driving force of amplitude greater than 0:16 N; which corresponds to deflections of order half
of the plate thickness, h=2 ¼ 0:8 mm: It gives a limit to the validity range of the theoretical model
of Part I, and shows that a second order multiple scales development is necessary to quantitatively
predict the cases of deflections of order of the plate thickness h: In particular, these considerations
explain why it has been found difficult to fit the model to the experiments of a forcing amplitude
of 0:45 N discussed in Section 4. However, first order solutions are not completely false in this
case since crucial changes such as bifurcations in the phase space due to the second order terms
(see Ref. [21]) have not been reached for the level considered in our work.

6. Conclusion

In this paper, experimental results are compared to a model developed in Ref. [1]. Both papers
provide a complete study of the forced weakly non-linear vibrations of a circular plate, when the
deflection is of the order of the thickness of the plate, and when its motion is governed by the two
preferential configurations of an asymmetric modal shape only. It is shown that the model
predicts each qualitative features exhibited experimentally, such as jump phenomena, resulting
from the multivaluedness of the response curves, and a range of driving frequencies in which the
motions of the two preferential configurations are coupled. A precise quantitative prediction of
the phenomena is obtained when the input parameters of the model are carefully estimated. A
method for estimating the parameters is presented. It is based on a fitting of the model to
experimental resonances curves.
The limits of validity of the model are discussed. The experiments presented in this paper have

shown in particular that the theory of Part I is valid for a maximum plate deflection of order of
half of its thickness ðh=2Þ; which is much larger than the theoretical limitations exposed in Part I
and by Nayfeh et al. in Refs. [10,17]. For deflections of order of the plate thickness, it has been
shown that second order effects cannot be neglected anymore.
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Appendix A. Calibration of the electromagnetic exciter

The amplitude of the force applied to the magnet by the coil depends on the position of the
magnet in the non-permanent magnetic field created by the coil. Consequently, a harmonic
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distortion of the force signal appears when the position of the magnet is not constant. A similar
feature has been noticed and studied by Tomlinson [25] in the case of an electro-dynamic
vibration exciter, although the geometry of this latter is different from our coil/magnet system.

A.1. Apparatus

In order to examine the characteristics of the electromagnetic exciter used in the present paper,
a special device has been built, shown in Fig. 16. It is composed of a moving assembly, free to
move in translation with the help of a bearing traveller, in order to minimize friction. Two
prestressed springs create a restoring force, so that the system is equivalent to a one-degree-of-
freedom mass–spring–damper oscillator. The moving assembly is driven by the magnet/coil
system under study. An impedance head (Br .uel & Kjær 8001, composed of two piezoelectric
transducers), fixed between one end of the moving assembly and the magnet, is used to measure
both the acceleration of the moving assembly and the force applied by the magnet. The axial
position of the coil can be adjusted with a micrometer screw, not shown in Fig. 16.
As the force transducer is mounted between the magnet and the moving assembly, the measured

force N is actually the force F applied by the coil upon the magnet minus the inertia force created
by the mass m of the magnet, so that

N ¼ F � mg; ðA:1Þ

where g is the acceleration of the magnet. In the following experiments, a mass compensation
process is used, by subtracting numerically a signal proportional to the signal given by the
acceleration transducer of the impedance head to the signal delivered by the force transducer. The
force F created by the coil upon the magnet is then properly measured.

A.2. Force amplitude measurements

The first series of measurements are done with the moving assembly fixed with respect to the
coil, by replacing the springs by two fixed length ‘‘O’’ tubes. The idea is to measure the force
applied by the coil upon the magnet, without any displacement of the magnet. A similar apparatus

Impedance head

Current

Coil

Bearing traveller

Moving assembly N

γ

A
F

Magnet

Fig. 16. Sketch of the mass–spring–damper oscillator.
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to the one in Fig. 1 is used for the excitation, with the ammeter measuring the r.m.s. value of the
intensity amplitude of the current in the coil.
A sinusoidal current is sent to the coil, and the force created on the magnet is measured. The

radial position of the magnet is carefully adjusted in the middle of the coil cavity, as shown in Fig.
2 (left). The different positions of the magnet are marked by the distance d between the side face
of the coil and the middle plane of the magnet (Fig. 2). First, the linearity between intensity and
force is checked by comparing the two corresponding Fourier spectra. With a perfect sinusoidal
current, no harmonics have been noticed in the force signal. Secondly, the proportionality
coefficient K between the force and the intensity is calculated from the measured amplitude of the
intensity and the force signals (read respectively on the ammeter and a voltmeter, fed by the signal
of the force transducer):

iðtÞ ¼ Im cosOt; F ðtÞ ¼ Fm cosOt; ðA:2Þ

K ¼
Fm

Im

: ðA:3Þ

The dependence of K on the position d of the magnet is shown in Fig. 17. One can notice that
around the position d ¼ �1 mm; K is a symmetric (even) function of d: Consequently, only an
odd order component harmonic distortion is expected [26]. This is also the position where K is
maximum. For these two reasons, d ¼ �1 mm is the preferential mean position that has been
used in the measurements of this article (see Section 2.1).
In order to estimate the variations of K as a function of the frequency O of the excitation signal,

a low-pass filtered white-noise signal is sent to the coil. The Fourier spectrum of K is obtained
from the transfer function between force and intensity. The intensity is estimated by measuring
the terminal voltage of the ammeter, which is equivalent to a small resistance. Fig. 18 shows K as
a function of the frequency, for O=2pA½1; 200
 Hz: One can see that K slightly depends on the
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frequency, probably because of the presence of Foucault’s currents in the magnet that bring
dissipations. A mean value for K is 0:23 N A�1 around O=2p ¼ 100 Hz; which is the frequency
range used in the present article.

A.3. Force distortion

The aim of the present second series of experiments is to estimate the harmonic distortion of the
force, as a function of the amplitude of the oscillations of the magnet. The system of Fig. 16 is
now used with the springs, and free to oscillate. A sinusoidal signal of frequency O is sent to the
coil, and the force created on the magnet is measured. The amplitude of each harmonic
component Hn of order n is estimated with the modulus of the FFT of the force at the frequencies
nO ðnAf1y4gÞ: It can be noticed that the frequency O must meet one of the discrete frequencies
of the FFT. The amplitude of the oscillations of the magnet is obtained by integrating twice the
acceleration.
In order to obtain significant amplitudes of vibration of the magnet (up to 6 mmÞ; frequency O

is chosen as close as possible to the resonant frequency Or of the mass–spring–damper system. For
the same reason, the stiffnesses of the springs are chosen so that Or is sufficiently low (for a mass–
spring–damper system, if the mass, the damping constant and the amplitude of the external force
are fixed, the lower the stiffness is, the larger the amplitude of the oscillations are, at resonance).
The experiments presented in the following have been done with Or=2pCO=2p ¼ 21:25 Hz; so
that the maximum amplitude of the oscillations obtained without distortion of the amplifier
output voltage is 6 mm:
The amplitude an of each harmonic Hn has been measured, as a function of the amplitude of

the oscillations of the magnet, for two different mean positions ðd ¼ �1 and 0 mmÞ: Different
amplitudes of the oscillations are obtained by varying the amplitude of the current in the coil.
Fig. 19 shows an in dB, with respect to a1; the amplitude of the fundamental component:

an½dB
 ¼ 20 log
an

a1
: ðA:4Þ
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One can see that, as expected, the harmonic content of the force tends to be odd around the mean
magnet position d ¼ �1 mm; because of the symmetry of the curve K ¼ f ðdÞ (Fig. 17) around this
position. On the contrary, the force has a full harmonic content around d ¼ 0 mm:
The total harmonic distortion (THD) has also been calculated, by the following formula (from

Ref. [26]):

THD ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 þ?þ a2

N

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 þ a22 þ?þ a2

N

q : ðA:5Þ

It is shown in Fig. 20.
This leads to the conclusion that the position d ¼ �1 mm corresponds to the least harmonic

distortion and that the mean position of the magnet must be carefully adjusted, in order to
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Fig. 19. Amplitude of the first four harmonic components as a function of the oscillation amplitude of the magnet, in

dB with respect to the fundamental component.
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minimize the harmonic distortion. Moreover, for the amplitudes of the oscillations of the magnet
encountered in the experiments of Sections 3 and 4, the amplitude of the harmonic components is
less than �40 dB; corresponding to a THD less than 1%.

Appendix B. Nomenclature

a radius of the plate
h thickness of the plate
r density of the plate
n Poisson ratio
E Young’s modulus
f1; f2 natural frequencies of the two configurations
f1; f2 angular positions of the nodal radii of the two configurations

%o1; %o2 dimensionless angular frequencies of the two configurations
s1 internal detuning between the two preferential configurations
m1; m2 damping coefficients of the two configurations

%m1; %m2 dimensionless damping coefficients of the two configurations
d distance between the side of the coil and the middle plane of the magnet
K proportionality coefficient between force and intensity
TðtÞ; Tdr signal and amplitude of the exciting force
O; fdr angular frequency and frequency of the force signal
s2 detuning between the excitation angular frequency and the pulsation of the first

configuration
Q1; Q2 forcing coefficients of the two configurations

%rdr dimensionless radial position of the forcing
R20 theoretical radial shape of the mode (2,0) of a free-edge circular plate
w1; w2 deflections of the two configurations
a1; a2 deflection amplitudes of the two configurations

%a1; %a2 dimensionless deflection amplitudes of the two configurations
g1; g2 deflection phases of the two configurations, with respect to the force signal

s
ðr:m:s:Þ
1 ; s

ðr:m:s:Þ
2 acceleration r.m.s. amplitudes of the two configurations

j1; j2 acceleration phases of the two configurations, with respect to the force signal

%rmes dimensionless radial position of the accelerometers
z1; z2; z3; z4 solution branches
e dimensionless small parameter
G coefficient of the cubic non-linear terms in the theoretical model of Part I
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