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In mixing-layers between two parallel streams of different densities, shear and gravity effects
interplay; buoyancy acts as a restoring force and the Kelvin—Helmholtz mode is known to be
stabilized by the stratification. If the density interface is sharp enough, two new instability modes,
known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been
studied in the temporal instability framework. The present paper analyzes the associated spatial
instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids
with a piecewise linear broken-line velocity profile. We show how the classical scenario for
transition between absolute and convective instability should be modified due to the presence of
propagating waves. In the convective region, the spatial theory is relevant and the slowest
propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions
of spatial linear theory are compared with mixing-lay€r G. Koop and F. K. Browand, J. Fluid
Mech. 93, 135(1979] and exchange flolG. Pawlak and L. Armi, J. Fluid Mecl876, 1 (1999 ]
experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an
asymptotic expansion that predicts the absolute instability domain at large Richardson number.
© 2002 American Institute of Physic§DOI: 10.1063/1.1485078

I. INTRODUCTION function of the vertical coordinatg] which compares locally
buoyancy forces to inertia, is everywhere greater than 1/4.
Statically stable stratified shear layers have been widelyhis result has been generalized by %itho shows that the
documented due to their interest in geophysical and indussame criterion holds when density discontinuities are
trial situations. In the strait of Gibraltar, a stratified shearpresent. However, Howard and MasloWweave shown that
flow is generated between the heavier hot and salty watestratification effects are, in general, more complex since
exiting the Mediterranean sea and the lighter cold Atlanticstable stratification adds a restoring force that constrains the
water entering into the sgarmi and Farmeh. The Strait of  vertical displacement of particles, and the instability depends
Gibraltar is a prominent location where exchange flows natuen the details of the velocity and density profiles. A large
rally exist. A similar flow, called wedge flow, exists in fjords research effort has been devoted to understanding the effect
or in estuaries when fresh water enters the ocean §Pave-  of buoyancy forces on shear instability by laboratory
lak and Armi? Farmer and Freelafid Stratified shear flows experiments®~*2 numerical studie$>'* and theoretical
also arise in atmospheric or oceanographic gravity currentanalysis:®> Based upon the totality of these numerical or the-
resulting from the transient encounter of fluid masses wittoretical studies, which have focused on primarily temporal
different densities, e.g., sea or mountain breezes, katabatitability of the stratified shear flows, we knbwhat if the
winds? snow avalanches or turbidity currents on the ocearcharacteristic thicknesses of the velocity shear and density
floor (Simpson). In all these situations, instabilities are interface are similar, the instability is stationary with respect
known to develop at the interface between the different fluido the mean flow, as in homogeneous flow, and is called
streams and to control the mixing that occurs at the interfacekelvin—Helmholtz instability. For a piecewise velocity pro-
Miles® and Howard have proven that stability of an inviscid file and a two-layer step density model Holmbbieas found
continuous stratified flow is assured if the gradient Richardtheoretically that the shear layer is primarily unstable either
son numberR;(y)=—[g/(p(dU/dy)?)](dp/dy) [whereg to Kelvin—Helmholtz waves or to two traveling waves, one
represents the gravity, the densityU(y) the velocity as a moving upstream and the other downstream with respect to
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the mean speed of the shear layer. In contrast to Kelvin— Us
Helmholtz modes, those traveling modes called Holmboe
moded’ in the inviscid approximation, are not restabilized
when the stratification increases. Browand and Wang
brought experimental evidence of the existence of Holmboe
waves using a stratified water channel. Considering the ini- A i
tial development, they measured the temporal amplification
rates and found a fair agreement on the location of the neu- d ¢ z
tral curve predicted by linear theot§.Downstream evolu-
tion of the perturbations has been reported by Browand and
Winant1® When the bulk Richardson numbéralue of the
gradient Richardson number at=0) is low enough,
Kelvin—Helmholtz waves develop, roll up and break. When U !
the bulk Richardson number is increased, the roll up is in- ) ) ] ) )
hibited and the interface starts being deformed by waveglf'd; ;/ielo.c'ty and density profiles. An abrupt change in density occurs at
. . . . . . ty interface; it is located wt=0. Abrupt changes in velocity gra-
traveling in opposite directions, which form peaks protrudinggientdu/dz defined the vorticity interfaces locatedyat * d.
into the upper and lower layer. Numerical simulations of a
temporally evolving stratified mixing-layer by Smyth, Klas-
sen, and Peltiéf have substantiated both the breaking ofspatial instability results from a combination of Kelvin—
Kelvin—Helmholtz waves and the development of both trav-Helmholtz and Holmboe instabilities. However, they have
eling waves. Assuming hyperbolic tangent velocity and denaddressed neither the effect of the mean advection nor the
sity profiles, Hazéef has studied the stability as a function of systematic study of the variations with the Richardson num-
the ratio of the scale of the shear thickness to the densitger.,
interface thickness. He shows applying the Miles—Howard  The purpose of the present paper is to extend Pawlak and
criterior?’ that a ratio greater than two is a necessary condiArmi?2 analysis to cases where the velocity of both streams
tion for instability whatever the value of the bulk Richardsonare varied independently. Velocities may be in the same di-
number. However, appreciable growth rates for the Holmbogection as in the mixing-layer or in opposite directions
modes are numerically observed for a ratio greater tha@s in exchange flows. On a model profile, we will systemati-
2518 cally determine the domain where the instability is absolute
Previous analysis was focused upon the temporal instaand where resonances are supposed to occur, varying the
bility of a stratified shear flow. However, in each field or mean flow and the bulk Richardson number. This allows us
laboratory situation a reference frame is singled out byto discuss the absolute and convective transitions for propa-
boundary conditions and therefore, one should refer to thgating modes. A similar case has been encountered in binary
concept of absolute or convective instability to understandiuid mixtures® but in the present case the mean advection
the dynamics of the flowsee Huerre and Monkewitzfor a s not zero and the discussion is more complex than for
review). Convectively unstable flows are known to behave aspinary convection. When the instability is convective,
noise amplifiers and their dynamics are described by the spapatial growth rates will be determined. We will discriminate
tial theory. In contrast, absolutely unstable flows exhibit self-petween flows where Kelvin—Helmholtz waves are stable
sustained oscillations even in the absence of external pertusnd only the two Holmboe waves are unstatdecase not
bations, since the zero group velocity wave is amplified intreated by Pawlak and Arﬁﬁ and cases where the three
the selected frame. For exchange flows, the frame is given bynodes are simultaneously unstable and interact. An
the earth since the flow is in the mean, stationary in thisasymptotic analysis will allow us to identify the physical
frame. For gravity currents, the selected frame will movemechanism that leads to the destabilization of Holmboe
with the head of the gravity current that sets up the sheawaves and will explain the domain of absolute instability
flow. In laboratory mixing-layer facilities, the frame which is associated to those waves. Finally, we will compare the
singled out is defined by the splitter plate at the end of whictpresent theory to field and laboratory experiments and pro-
the two different fluids streams are set in contact. Studies qﬁose some predictions of the present model that might be
the absolute or convective instability in stratified sheareckasily tested in new experiments.
flows are not extensive in the literature and limited to cases
where the only primary instability is stationafie., when
the shear and density thicknesses are identi€ais case has
been studied by Lin and PierrehumB8end Triantafyllou?®
Only recently has the spatial stability theory been addressed As sketched in Fig. 1, we consider two immiscible, in-
by Pawlak and Arnf? in the case of wedge flow where the viscid fluids of constant densitigs, and p, (p;>p,) under
upper stream is assumed to be at rest, in which the scale ttie Boussinesq approximati¢see Drazin and Reitf,p. 35.
the density stratification is smaller than the scale of the shearhe layers are considered infinite and surface tension effects
and for small bulk Richardson number. They clearly demon-are neglected. The index(tesp 2) denotes the lower layer
strate that the spatial theory differs strongly from the tempo{resp the upper layer The dimensionless variables are
ral theory. The most amplified modes are different and théased on half the vorticity thickness half the shear inten-

P2

Il. THE MODEL AND THE LINEAR DISPERSION
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(a) (b)
5 T T r T T 0.08 ‘ -
43 0.07f FIG. 2. (a) Stability diagram, (b)
o i zoom of the stability diagram foR;
006k lower than 0.08. In the dark gray re-
’ gion, Kelvin—Helmholtz modes are
3sr T unstable, in the light gray region,
0.05F Holmboe modes are unstable. The
3 neutral ] S AR asymptotic behavior calculated in
: L (13) is represented by a dotted curve
R,i 251 g R,, 0.04 - : on (a). The locus of the most amplified
& wave number k.., defined by
2t '.." . 003k : dw;ildk(Kma) =0 is presented as a solid
: X curve with circles on the zoonfb).
15k i ‘ The transition between the most am-
X 0.02 \ plified Kelvin—Helmholtz mode and
i | the most amplified Holmboe mode is
; denoted by a dotted line aR!
os neutral | 001 ' =0.0461.
% 1 2 3 4 5 6 % 02 04 0.6 0.8 1
k k

sity AU=(|U,—U,|)/2, and the mean densityp{+p,)/2.  where

The mean velocity is defined ly,,=(U;+U,)/2. The den- R X e 45k (25k—1)2

sity interface is located at=0 and the diffusive layer for the n,= > and ()
stratifying agent(salt or temperatupeis supposed infinitely sk 4k

thin for all time (immiscible approximation In our model, R, (e 2K+ 25k—1)2

the gradient Richardson numbeee Drazin and Reitf, p. Nop=— with s=sgn(k,). 4

_ . ,
323, Ri(y) = —[9/(p(dU/dy)2)](dp/dy) has a Dirac func- sk 4k

tion behavior aty=0, and is not useful. This flow is charac-
terized in terms of the bulk Richardson numbr={(p,

_ 2 . . - _
l_p_z)/(p.l;pzé]gd/AU ’bWh'Cr? V]YI'" be relferrgdf.fordsl;m h The temporal instability theory considers waves homo-
plicity Richardson number. The flow is also defined by t egeneous in spaceke R) which develop in timgweC, o

dlmgnsmnless mean advection that will be useful only in theZ w.+iw). It correctly describes tilted tank experiments
spatial theory

(Thorpe?” Pouliquen, Chomaz, and Hueffewhere two lay-

Upn ers of fluid initially at rest in a horizontal layer are set into
a= AU 1) relative motion by tilting the tank. We find an expression for
the roots of(2) as follows:

_ n2k2i Al/Z 1/2
2 L

lll. TEMPORAL INSTABILITY

Considering the stability of two-dimensional parallel flows

for three-dimensional disturbances, Yhgeneralized Squire w=ak+(
theorem?* without neglecting variations of density or viscos- -
ity, which may be continuous or discontinuous, he concluded, ;

that the fastest growing mode is two-dimensional. Therefore,

we restrict our attention to two-dimensional perturbations of A= (n,k?)2—4nek*. (6)

the stream function which are decomposed ?nto normall-he mean advectioa [Eq. (1)] in the temporal case acts
modes of the formp(y)exp(k(x—ct)), where the eigenfunc- only as a Doppler shift in frequency, as shown in Egj.and

tion ¢ is governed by Rayleigh's equatiok, denotes the i agects only the real part ofs in the temporal theory.

dimensionless wave number andhe phase velocity. In o~ paretore. temporal instability will be fully described by
der to ensure that the perturbations decay at infigiy) IS qnsidering the intrinsic frequency of the temporal mode,

chosen ay—xc to be of the form expfsky(+ fory  gyefined as the frequency of the wave seen by an observer

——®,~ for y—+), wheres=sgnk) (k is the real part moving with the local mean flow} = », —ak as a function

of k). Imposing the continuity of displacement and Pressureyt - Eurthermore, sinces) is invariant under the change
at the vorticity and density interfaces give dispersion relation ™

(cf. Drazin and Reid? or Pouliquen, Chomaz, and Hueite (k) ==o(=k) (where ~denotes complex conjugatibn
: ' ’ ’ without any loss of generality we consider only positive
betweenk and w=Kkc, the frequency of the wave

wave numbers. The temporal analysis has already been ad-
D(k,w;R;,a)=(w—ak)*+ n,k?(o—ak)?+nyk*=0, dressed by Lawrence, Browand, and Redekdppr a par-
(2)  ticular broken-line velocity profile in the asymmetric case:

®
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gating to the right and to the left witlw;>0). When k
=k.,, the phase speeds of the two Holmboe modes vanish
and two stationary unstable Kelvin—Helmholtz modes ap-
pear, the most amplified being the continuation of the homo-
geneous mode found by Rayleiéfhthe less amplified being
) generated by the stratificatidilotted curves on Figs.(8
T : . : . , and 3b)]. At k=k.3, the sequence reverses: the growth rates
heka " ke T " gy of the two Kelvin—Helmholtz modes become equal and the
character of the instability changes from stationary to oscil-
latory. These new Holmboe modes have the same growth
rate but propagate in opposite directions with respect to the
mean flow[Fig. 3(b)]. For k=k.,, the growth rate of the
Holmboe modes vanishes and four neutral waves appear. On
Fig. 3@), the temporal growth rate presents two relative
A - e maxima kA" and k., associated respectively to Kelvin—
ko1 kea ke g kea Helmholtz and Holmboe modes. FB =0.04, the Kelvin—
FIG. 3. (a) Temporal growth rates; and (b) intrinsic frequencyw; =w Helmholtz mode is the most unstakgee Fig. 3 On Fig.
—ak with respect to the real wave Inumbefor R;=0.04. The dotterd currve 2(b), we have plotted .the l.OCUS of the most unstable wave
shows the Kelvin—Helmholtz modes. number as a curve with circles. FR{=0.0461, the most
amplified mode switches over from Kelvin—Helmholtz-type
to Holmboe type.
the density interface is displaced with respect to the velocity
interface and by Smyth and Pelfiéfor a hyperbolic tangent  \\, AgsoL UTE AND CONVECTIVE INSTABILITIES
velocity profile. We have plotted on Fig(& the stability
diagram derived fron(2). Without stratificationR; =0, there As described in the Introduction in all the laboratory or
is a unique unstable mode studied by Raylé&igstationary field situations where the stratified shear flow may be as-
with respect to the mean flow. When the Richardson numbegumed stationary in a particular frame, one should look for
increases, the structure is more complex. To get a better uithe appearance of self-sustained oscillations associated with
derstanding of the unstable modes which exist, we discusiie absolute nature of the instability in a portion of that
the sign ofA. WhenA>0 andn,>0 then we obtain fronts)  flow.*® These so-called global modes arise from the building
two unstable, stationary modes. The most amplified one igip of energy fluctuation due to the temporal amplification of
the continuation of the mode found by Raylef§ithe sec- a wave that does not propagéaté zero group velocity in the
ond one is generated by stratification. These instabilitiesframe where the mean flow is stationaryrhis idea, first
which we call following Smyth and Pelti€ Kelvin—  developed in plasma physi¢Briggs? Bers), is fully dis-
Helmholtz waves, are stationary with respect to the meagussed in Huerre and Monkewitzand leads to a discrimi-
flow and, correspond to the dark gray region on Fifp)2 nation between convective or absolute instability. According
When A<O0, the unstable modes have intrinsic frequenciego a well established criterion the absolute/convective insta-
with a nonzero real part. Moreover, since under the Bousshility distinction is obtained by studying the behavior of spa-
inesq approximation, the basic flow is invariant under thetial branchesk=k, +ik; complex,w real), or more generally
following reflections,x— —x andy— —y, if o(k) is a so-  spatio-temporal branche& and w=w,+iw; complex; w;
lution thenw(—Kk) is also a solution and as a consequencevarying andw; being constant The transition occurs when a
—w(k) is a solution(in the temporal casé is rea). Thus ~ Saddle point of the dispersion relatioky(wo) crosses the,
when a mode propagating downstream is amplified, a symaXIS

015 T ——

o1f B

mas .

metric mode propagating upstream is also unstable with the D(Ky,wg;R;,a)=0 @)
same growth rate. These propagating unstable modes will be '
called Holmboe waves. They exist in the light gray regionon  dD(Ko,wq;R;,a)=0, )

Fig. 2(b). When the Richardson number increases, two un- .
stable Holmboe regions develop at low and high wave num- 9uD(ko, @0;R;,2)#0, ©)
bers. ForR;=0.07, the Kelvin—Helmholtz region disappears with Kk, the absolute wave numbemnd w, the absolute fre-
and the two Holmboe regions merge. Ryrlarger than 0.07, quency For shear flow, the dispersion relation contains the
the Holmboe region moves to largkrbut never vanishes non analytic function sgkf [see Egs.(3)—(5)]. The sign
[Fig. 2@)]. function arises from the constraint that perturbations should
For further references, we illustrate the structure of thedecay aty=*o. In order to obtain an analytic function for
modes wherR;<0.07, we consider the caseRf=0.04. We the dispersion relation5) in k, we restrict the study td,
plot on Fig. 3 the growth rate; and the intrinsic frequency >0 as in Huerre and MonkewitZ,invoking the symmetry
oy as a function of the wave numbkr Close tok=0, four = w(k)=—w(—k) and thens=sgnf,)=1 in (2)—(4). If the
neutral waves exist, two propagating to the right >0),  imaginary part ofwy, Zm(w,), is positive, the flow is abso-
two to the left(w* <0). Whenk=k;, the waves merge two lutely unstable. Conversely ffim(wg) is negative, the flow is
by two and give rise to two unstable Holmboe mo@@®pa- convectively unstable. Condition&)—(9) are not explicit
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(a) R; < 0.07
8 t (a) ¢ (b)
T \ / W
R; i
4 7 &
2
0 z 0 T
¢ @ ! s a<l1 a>1
(b)
R; > 0.07
t (c) ¢ (d) t (e)
A ¢
% 0.1 0.2 03 04 05 0.6 0.7 0.8 0.9 1
a 0 T 0 T 0 x
a < a.(R;) 1 <a<ac(R) a>1

FIG. 4. (a) In light gray, absolute instability, A, in white convective insta-
bility, C, in the @,R;) plane. The asymptotic behavior calculated4) is
represented by a dotted curv@g) zoom of the absolute and convective
domains forR;<0.2.

FIG. 5. Sketch of the impulse response in tixet) plane. ForR;<0.07 a
single wave packef@ absolutely unstable foa<<1 and(b) convectively
unstable fom>1. ForR;>0.07 behavior of the two Holmboe wave packets
for a positive varying as indicated on the figure.

enough, and the saddle point to be considered must also sat-

isfy a pinching condition of two spatio-temporal branchesSt@PIE[Fig. S@]. Fora larger than unity the flow is convec-
k*(w) arising, respectively from the upper and the lowertiVely unstable[Fig. Sb)]. For R;>0.07, two Holmboe

halves of the k. ,k;) pland® (i.e., k>0 andk <0). In the modes destabilize the flow and the impulse response pos-
rty sy 1 I . e . . . .
convective case, the superscriptor — gives the direction sesses two amplified regions with edges moving respectively

of propagation of the wave in the laboratory frarfeee ata—1 anda—.gc(Ri) and ata+aC(Ri.) anda+1. The case
Huerre and Monkewit® for details. of the destabilization by two traveling waves was already

We used the Optimization toolbox ofATLAB to solve investigated at the onset of convection in binary flfitim
the systems7)—(9). Once ko,wo) was found, we system- contrast with binary convection which endows the reflec-

. - 19
atically checked the pinching condition. The domains of ab{ional symmetry k- —x) (see Huerreet al,™ Kolodner,

solute and convective instability are plotted on Fig. 4 in theSUrko. and Wiliams), the free mean advection parameter,

(a,R)) plane. Due to the symmetry of the problem, wizeis a, of the present mo_del ﬂoyv, br_eaks the reflectio_nal symme-
changed to—a, y is changed to-y, so we focus in the try.and makes the discussion richer. Three possible configu-
following discussion ora>0. rations may be encountered depending on the valua of
As could be seen on Figs.(a& and 4b), when both pqsitive (the casea<0 being symmetric For a<a.(R;)
streams move in the same directian1), the flow is con-  LF19- 5(€)] the wave packets move away from the source to

vectively unstable whatever the value of the Richardsorine eft and the other to the right and the flow is, therefore,
number, i.e., no matter how strong the stratification. WherfOnvectively unstabl¢white region on the left of the Fig.
the streams propagate in opposite directions:1), two  4@] Whenac(R;)<a<1[light gray region in Fig. &)] the
cases must be distinguished. When both Kelvin—Helmholt2€ft moving wave packet is now making the flow absolutely
and Holmboe modes are unstable, R 0.07, the flow is unstable since it is exponentially growing at the impulse lo-
absolutely unstable in the whole domai@, 1. Whereas, cation[Fig. 5(d)]. The absolute instability is, therefore, trig-
when only Holmboe modes are unstable, R>0.07, the gered by the Holmboe wave associated with the lower layer.
flow is convectively unstable for mean advection smaller/hena>1, both waves packets propagate to the righg.

than a threshold value.(R;), and absolutely unstable in a 5(e)], a”O_' thg fl9W is again convectively unstadleght
range, B.(R;),1[. The structure of Fig. 4, may be easily white region in F'Q- f‘a)]: . )
understood referring to the impulse response of the flow Two chargcterlstlcs n the flow be;hawor V's'b!e_ on Fig. 4
(Fig. 5. Since the impulse response is invariant under GaiShould be pointed out. _Flrsa:__l defines a transition fr_om
lilean transformation, its shape is the same whatever th@PSolute to convective instability for & . Fogr R;=0, this
value of the advection parameter. Therefore, a change in tHESUlt was obtained by BafSaand by Bechert’ In Sec. VI,
mean advection paramet@corresponds to a change of Gal- a Iargek asymptotic expansion will explain the.partlcular
lilean frame. ForR;<0.07, the absolute—convective transi- Significance of thea=1 value. Second, the transition Bf
tion is associated with the classical picture: a single ampli-0-07 from a single wave packet to a double wave packet is
fied domain for the impulse response. However, the structur@erpt as the Kelvin—Helmholtz modes become stable.

of the wave packet is complicated. It is a result of an hybrid-
ization of the Kelvin—Helmholtz and Holmboe modes. TheV' SPATIAL INSTABILITY

edges of the impulse wave packet move at velogityl and Spatial waves have been much debated due to their un-
a+1. Fora smaller than unity, the flow is absolutely un- bounded behavior dix|— (Drazin and Reid! pp. 147—
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Bk kp ek | w; =0.125
1 wi =0.113
0.1
Wy 0.08— i 3 —
0.06— —
0.04— -
0.02— -
GO
0.0
0.05
0.04
0.03
ki oo wi = 0.125
0.01
° FIG. 6. In dotted curve, Kelvin—Helmholtz branches. In
oo solid curve Holmboe branchéa) temporal growth rate
’ w; function of the wave numbé, for R;=0.04; spatio-
temporal branches foR;=0.04 anda=1.1 w, varies
between 0 and 1.5 by small incremerity for w;
=0.125, (c) pinching of amplified branches and ex-
change of branches fas; =0.113, andd) hybrid spa-
tial branchesw;=0.
¢ w; = 0.113
k; w; =0

153. However when the flow is convectively unstable, they0.07. The cas&;<0.07 will be more complex since Kelvin—
appropriately describe the asymptotic response-ag to a  Helmholtz and Holmboe modes that are well separated in the
spatially localized harmonic source turned on at the origin okemporal theory will mix and following Pawlak and Ari,
time (see Choma?). In this case, initial transients, due to \ye will name the domaifR: <0.07, the hybrid region.

the switching on of the harmonic forcing, are advected away

from the forcing excitation. The spatially amplified waves o Hyhrid region

radiated from the source are left behind this transient wave . .

packet and may be interpreted in terms of spatial causality. [n o Ri<<0.07, and in the particular case of wedge flows
absolutely unstable flows, transients exponentially growing@=1), Pawlak and Arnff found numerically, using the

in time do not propagate away and overwhelm the forcingTaylor—Goldstein equation, two propagating spatially grow-
response. As for temporal theory, the structure of spatial ining modes. They called therybrid modes since in the
stability branches will differ forR; larger or smaller than spatial case no straightforward criteria discriminates between
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Kelvin—Helmholtz and Holmboe modes. In order to gain (a)
some insight into these hybrid modes, and to illustrate the
existence of saddle points in the dispersion relation that dc 0
not lead to an absolute—convective transition, we considelki o5l
the deformations of the spatio-temporal branches aswthe
contour is lowered from high values af; toward w; =0, in

the caseR;<0.07 anda>1. We plot on Figs. 6)—6(d), only

05

the downstream amplified branches. All the branches are ob ke (b)
tained by solving numerically the dispersion relati@ us- 0s P
ing MATLAB Optimization routines for a particular set of 0 o

fixed parameter®;, R;, anda and with w, varying. These
branches are parametrized by which varies by small in-

i OSr

crementgsee Loiseleux, Chomaz, and Huerre for detdils -ir

Figure 8a) reproduces Fig. (3 and presents the temporal
growth rate forR;=0.04 anda=1.1. Whenw;=0.125, the

L

2 = 1.00000)

! s
0.5 1

L L . s
25 3 35 4 4.5 5

kr

wave numberg,, ks, ks, andk, belonging to the unstable
temporal branche$-ig. 6(a)], also belong to the downstream FIG. 7. (a) Comparison between the most amplified spatio-temporal
spatio-temporal branches far, =0.125 plotted on Fig. ®). branches in soli_d curve at small values @f and between the spatial
Ve note two downstream ampified branches on Fig).6 “EhERTD 1 Sotee s 1 e bates ok o100 e
For the first branch, the two unstable parts in the dotteGq) for r=004 and fora=1.1, a=1.01 and a=1.0001, anda
curve betweerk,; andk, and in the heavy curve betwe&R  =1.000001:k, is the neutral wave number defined on Fig. 3.

andk,, may be associated respectively to Kelvin—Helmholtz

and Holmboe modes. The second downstream unstable

branch is unstable betweén andk,, which corresponds to ishes, the branch becomes singuldptted curve on Fig.

the most spatially amplified Holmboe branch. The least am7(a)] and seems to cross ktk; . Clearly, the limitw;=0 is
plified Kelvin—Helmholtz branch is associated with a singular since the most unstable spatial branch collapses on
damped spatio-temporal brancfi.e., k;>0) since w; thek;=0 axis atk=k; [Fig. 7(a)]. Thereforek=k; is only a
=0.125 is larger than its maximum growth ratev;( pseudo-intersection of the most unstable branch withkthe
~0.113). While lowering thew; contours, we may follow =0 axis sinc&k=k; is never reached. The dispersion relation
the deformations of those branches. In this process, a sadd|®) exhibits a square root behavior at the neutral wavenum-
point is encountered fow; slightly larger than 0.113, but it ber, k., (see also Fig. 8 Therefore, a branch cut lies from
does not involve an interaction between two branches arising., to infinity (Fig. 7) in the k plane. This singular behavior
from different part of theék; plane. This saddle point does not is reponsible for the=1 transition. Whera decreases from
contribute to the impulse responSelhe branches plotted on a=1.1 toa=1.000 001[Fig. 7(b)], the pseudo-intersection,
Fig. 6(c) are a result of this interaction. The effect of this k;, of the hybrid branch with the branch cut moves to large
saddle point has been to “hybridize” the two Kelvin— value. Ata=1, k; tends to infinity, and the pinching of the
Helmholtz modes with the two Holmboe modes, but all fourreal axis occurs at-e and not as usual at a finite saddle
modes keep propagating information downstream. Finallypoint. In fact, an infinity of spatial branches, shown on Fig.
on Fig. 6d), we obtain the two downstream amplified spatial
brancheqgw real). Another saddle point which is once again

not a pinch point is encountered far,~0.0099 when the

small wave number Holmboe modes destabilifk
€[ke1,ke2] Fig. 3b)]. This continuous switching of 0
branches justifies the terminology hybrid mode.

The structure of the hybrid branch ndas k; plotted on
Fig. 6(d) is surprising in the sense that a neutral méde,
andk real) is a spatio-temporal wave that belongs both to the b ] 081 \
temporal and to the spatial branches as is the casé for
=k, and k=k.,. Therefore, it should appear both as a
crossing of the temporal branch with the=0 axis[Fig.
6(a)] and as a crossing of the spatial branch with ithe 0
axis [Fig. 6(d)]. But the most amplified branch seems to
cross ak=k; and to have no temporal counterpart. When
is small but nonzero the spatio-temporal branch crosses th

(a) (b)

(1

-2}

\
_2\
\

k;=0 axis close tok=k., as it should, but prior to this
crossing it makes a large turn about closektoand then
reachesk., parallel to thek;=0 axis[continuous curve on

Fig. 7(@]. The smalleww; , the closer this final portion of the rig. 8. (a) Simultanously pinching of several branchesaat1 and R,
=0. (b) Bechert Christmas tre@ef. 33 for a=1 andR;=0.

spatio-temporal branch to the axis. Finally whenw; van-

-3

-3 L
0 0.2

04
Wy

0.6

0.8
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(a) (b)

0.3 0.05

0.2

0.1 0.1
ki 0 . . k; ~0.15
=‘= : ~-0.2
ol g —0.25 FIG. 9. Amplified spatial Holmboe branches f&
~0.2 =0.5. In solid curve Holmboe branch associated with
° 03 ! 13 2 05 ! 13 2 the lower frequency, in dotted curve Holmboe mode
kr (¢) ky (@) associated with the greater frequen@);k; function of
03 0.05 the wave numbek, for a=0.1 and(b) for a=1.2; (¢
0z 0 k; function of the frequencyw, for a=0.1, (d) for a
—0.05 e =1.2.
0.1 . -0.1
ki o L ; ki -0.15
-0.2
ot ~0.25
_0'31 -0.5 o 0.5 - .1 1.5 2 0.5 1 1.5 2 2.5 3
Wy Wy
8(a), go through a similar transition at the same tifirég. w, dw,
8(a)]. Plotted in the k; ,w,) plane for the particular cad® Kk a—kr(kr)N —Ug- (10

=0, these branches evoke an upside down Christmas tree in

Bechert's imaginatiott [Fig. 8b)]. This singularity leads to However, as discussed in a later section, much care must be
an essential singularity of the dispersion relation. In Sec. vitaken using Eq(10) since the Gaster transformation is valid
we will see that this behavior persists for all values of theonly under certain assumptiorfs Figure 9d) presents the

Richardson number. spatial growth rate as a function of the wave frequeagy
Since both waves are propagating downstreamijs posi-
B. Holmboe spatial modes tive, but the range of frequencies associated with the slower

) ) . moving wave is smaller. For the slower moving wakeher

) When R;>0.07, the Kelvm_—HeImhoItz mode is stabi- growth rate and smaller frequengythe eigenfunction is
I!zed and two counterpropag_atlng _I-_|o|r_nboe waves (_:iestab|r-nore intense in the slower moving layifig. 10b)]. Con-

lize the flow. As a result, the instability is convective in two versely, the other spatially unstable branch, with a smaller

distinct domains, @[a<ac(R,i) anda>1 as shov_vn on Fig. sfpatial growth rate and a larger frequency is localized in the
4. The structure of the spatial branches belonging to each o

the convectively unstable domains are shown on Fig. 9.
When the mean advectianis smaller thare.(R;), the (a)

response to an impulse consists of two wave packets travel .

ing in opposite directiongFig. 5(c)]. The mode traveling ! ! ! ' ' I !

with the negative group velocity is amplified upstream and Sk\ =

the corresponding amplified spatial branch is characterizeq, | e |

by k;>0. It is represented on Fig(&® by a solid curve. In (f

contrast the other Holmboe mode travels downstream anc -s

the corresponding amplified spatial branch represented by | | | | | | |

dotted curve on Fig. (@) is such thak;<0. On Fig. 9c) the % 005 01 015 02 . 035 03 035 04

spatial growth rates are represented as a function of the fre Amplitude (b)

guency. Waves moving upstream are represented by negativ 10 T T T T T |

o, values since, is assumed positive by convention. s |
When the mean advectianis larger than unity, the flow K

is convectively unstable and the impulse response is assoCy Of— -  mEmm—— =

ated with two wave packets, both traveling downstré&ig. (/’/ _

5(e)]. The mode traveling with the smaller group velocity is N

the most spatially amplified, and is represented by a solid -1} 0{)5 o|1 0|15 0!2 0.'25 0!3 0_'35 S

curve on Figs. &) and 9d). This contrasts with the temporal ' ' ~ Amplitude

theory for which both Holmboe modes have the same ampli-
fication rates. Qualitatively, these results may be understoodG. 10. Amplitude of the eigenfunction fét;=0.5,a=1.2 associated with
using the Gaster transformatidhwhich gives, in the limit ~&2ch most amplified wave number on each Holmboe brése Fig. &),

e .- . ’ . Ci)n (@), eigenfunction associated with the Holmboe mode traveling with the
of small amplification rates, the link between the spatial angaster jayeri.e., the upper layer hergb) eigenfunction of the most ampli-
temporal amplification rates at the same real wave nuikber fied wave number traveling with the lower layer.
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fast moving streanjFig. 10@)]. The difference in spatial e= ke km, (15)
growth rates suggests that the Holmboe mode concentrated

in the slower layefFig. 10b)] may dominate in experiments The dispersion relatioil1l) may be rewritten at ordet as
when broadband forcing is applied at the inlet. Howeverfollowed with s;=*+1 ands,==*1 independent

since Holmboe modes are unstable over different frequency

bands as shown on Figs(c® and 9d), an appropriate forc- w=ak,+ eak’ + sk~ i%—eslk’(g— i)
ing at the inlet may select experimentally one or the other " "2 4 8kp
mode. o ot [ BRe(Zky— 1) 6

VI. ASYMPTOTIC RESULTS

In the inviscid approximation, the configuration of Fig. 1 The unstable temporal wave numbégks rea) are obtained
is unstable to wavelength that goes to zete+<) when the  for k'>—8kp(2ky—1)/(2ky+1)* negative, which specifies
strength of the stratification increases, i.e., wRers [Fig.  the band of unstable wave numbers
2(a)]. In this section, we carry out an asymptotic expansion K=k + ek’
of the dispersion relation in the limk,—o. We will con- m
sider first the casR;—< and in a second paR,; finite. This  ith
analysis explains on physical grounds the convective—

absolute transitions computed numerically. ) V8Km(2km+1) 8Km(2Km+ 1)
Neglecting all terms of order less than ex3), the kK'e|l- 2k,+1 ' 2k,+1 ’ (17)
complex frequency5) becomes withk real or complex but
k. large then at leading order il the frequency of an unstable wave
" R (2k=17 numberk (17) is given by
w:akiﬁ ?I-i-Ti \/Aasymp+0(ef3kr)_ s (3 1 )
w,=aky+eak' +s;kn— = +esik’| —— =], 18
(11) r m 1%m 2 1 4 8km ( )
:jn ?he 3bt;)ve expressio,asympis the asymptotic value d6)  jth a growth rate
efined by
2k t1  [8Kmp(2kn—1
N L o= 2t d [SolPor D) ez 19
asymp k 4k2 m ( m )
2R (2k—1)ke 2 The complex frequenciesy +i w;) of the temporally ampli-
— i +o(e %), (12 fied Holmboe modes associated with the most unstable wave
numberk,, are obtained lettingg’ =0 in (18) and(19)
A. Asymptotics at large R e ook 1 o [2k,— 1 20
Temporally amplified modeék real) are obtained when @m= | 8m=| Km™ 5 e J8ky (20

Aasymp (12) is negative. For larg& away from the unstable . o _
band of wave numbers\ ,qmpis O(1/k*. However, for the the associated group velocity is obtained calculatiag ok

particular wave numbek,, such that for w given by (16) and evaluated &’ =0
(ka_l)z Jw 1w
Ri= 4k, (13 ve(km) = — (km) =~ =7 (0)
the functionA asympis of orderefzf‘m./km. For this particular 3 1 3
value ofk,,, we obtainA ,sm, minimal and negative. The =a=* 1 8k. —>aiZ. (21
m

expression(13) has been already derived by Caulfi€lih

the formR; =k — 1. The most amplified wave numbkeg, is  The resultg17)—(21) match quantitatively well with numeri-
represented by a dotted curve on Fige2Moreover, as can 3| calculations.

be seen on F|g(a), the Stronger the Stratiﬁcation, the nar- The absolute unstable branch may be Computed using
rower the band of temporally unstable wave numbers. Therehe dispersion relatiofi16) derived fork’ real or complex.
fore, in order to obtain the asymptotic expansion of the disimposingdw/dk=0 with w andk=k,+ ek’ linked by (16),
persion relation, we leR; goes to infinity and we seek the give the absolute frequenay, and wave numbek},

wave numbers close tq, for which, the two terms of right-
hand side of(12) have the same order ant,s,m, Negative. ( (3 1 ) V8Km(2ky,—1)
a+ts; _—

Therefore, we write

4 8k, (2k,+1)
k=kn+ek’, (14 ko= , (22)
1 1
with k., given by (13) k’ real or complex and the gauge \/(a+ s)| ats| —+— )
determined by the dominant balance 2 4ky
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) (a) ence of growth rates in temporal and spatial case near the
afle . - , . . : thresholds enhances the failure of the Gaster transformation
[Eqg. (10)] in those casetsee Sec. VIl

Wioar B. Asymptotics at finite R,

The dispersion relation displays two amplified and two
damped solutions. The branch leading to the pinching is the
kr ' (b) Holmboe mode traveling with the smaller phase velocity
, [Fig. 5(d)]. Choosing the principal square root such A4
a increasing | maps the complex-plane cut along the negative real axis
onto the half spac®.(Z¥?) >0, the amplified spatial branch
downstream is recovered solving

a0

o1 T T T

0.08

0.06—

0.04—

0.02— 1)2

, k R (2k—
%% 485 49 4.95 5 5.05 5.1 515 w=ak— E \/? + T + Aasymp

FIG. 11. Comparison betweer) the temporal amplification rai®; and(b) + 0(eiskr)- (26)

the spatial amplification ratl, for the Holmboe branch traveling with the o
lower layer for R;=4, and several values of the advection paramater The thresholda=1 (25) is independent of; . Moreover as

=0.42,a=0.43,a=0.435, anda=0.438 where the pinchink, occurs. shown in the hybrid region in Fig. 7, when the advection
parametera tends to unity, the absolute wave number
pinches at infinity for any value dr;. We propose to cap-
ture this behavior assumirfg of order unity anck complex

wO:akm_Sl(km_E + ek} but k, Igrge.' Unde'r this assump'tion, th'e square term in
2 Aasympgiven in (12) is always dominant with respect to the
1 second term. Neglecting the terms of order equal or less than
(a+sy)|a+s;| 5 4—km)) e %X/k?, we obtain
x 3 1 @3 R (2k-1)22 (e
a+s; Z— %> AasympN(?_ W_) +O<T) (27

The absolute—convective transition corresponds to the imagrFor k complex butk, large the dispersion relation becomes
nary part ofw, equals to zero, which yields according(i8)

i =+ 2k—1
and withs;=+1 w—ak— —. 29
1 1
a(R)==|5- 1= .
2 4k, The absolute frequency and wave number are obtained solv-
ing dw/ k=0
1 2
==+| - (24 P
2 1+R+(1+R)?-1 Ce=a-1=0. (29
and
a=+1 (25) For a=1, the absolute wave number tends d&g=1/2

and the absolute wave numblkg is not determined. The
The transitiona=1 (25) obtained at largeR;, corresponds value of this absolute frequency is retrieved numerically, in
exactly with the numerically computed thresh¢fg. (4)].  this paper we have only represented the classical Bechert
The second transitioa,(R;) given on Eq(24) is represented Chritmas tre€? (Fig. 8 (that means foR;=0) included in
by a dotted line on Fig. (@), the asymptotic calculus matches this analysis.
remarkably well the numerical calculation. At the linki, As a conclusion of the asymptotic studies, the absolutely
—o, g, tends to 1/2. unstable domain goes t=1/2 toa=1 asR; goes to infin-
Moreover, when the advection paramegeapproaches ity. At the trailing edge the first threshol@4) tends to 1/2,
one of the two threshold@4) or (25), |ky| tends to infinity,  the group velocity of a pure gravity wave with a phase ve-
this suggests that the spatial growth rate is greater than tHecity equals to 1. Indeed the computed eigenfunction corre-
temporal one near the threshold. Numerically, we comparsponding to this modggiven in Fig. 12b)] has a large am-
near the first threshold.(R;) on Fig. (11) the spatial and plitude only around the density interface and indeed,
temporal amplification rates of the Holmboe mode amplifiedcorresponds to a gravity wave marginally destabilized by the
upstream k;<0), for R;=4. We note that the band of tem- interaction with the density interface. At=3/4, the most
poral unstable wave numbers, which matches exactly wittamplified modes differ from gravity waves, the associated
(17), is smaller than in the spatial case for the advectioreigenmode being intense bothyat 1 andy=0 [Fig. 12a)].
parameter approaching the transitey= 0.4368. The differ- At the leading edge of the wave packet 1, only the layer
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Amplitude Amplitude FIG. 14. Spatial growth rate for the left-going Holmboe wave versus the

intrinsic frequencyw; , for R;=4 and different values of the advection
FIG. 12. (a) Amplitude of the eigenfunction associated witt, (20) and parameten, a=1.5,a=1.01,a=0.43, anda=0.2. In solid curve, Holmboe
with the most amplified wave numbéy, for R;=8. (b) Amplitude of the branches obtained by solving the dispersion relation, in dotted curve by
eigenfunction associated with the wave numkgrand with the absolute following the Gaster transformatiof10).
frequencyw, [see on Fig. 1@)] for R;=4 anda=0.438, that means for the
first convective—absolute transition.

the spatial amplification rates obtained transforming the tem-

aty=—1is active, and the mode is insensitiveRp, but  poral growth rate using Gaster transformatfomecalled
since the pinching occurs at infinity no eigenmode may beere. For a given real wave number, the temporal analysis
exhibited. leads tow =, (k,) +iw;(K,) complex solution of the disper-
sion relation(2). We seek for this particular wave number the
value of the spatial amplification rat such thatw(k,

For Rj=4 and for different values of the advection pa- +ik;) denotedws is real. For small amplification rates, we
rametera from 0.2 to 1.5, we have plotted on Fig. 1®sp.  make a Taylor expansion a@g for k; small. If we suppose
Fig. 14, the spatial amplification ratds of the right-going  that w is an analytical function ok, the Cauchy—Riemann
Holmboe moderesp.left-going modg as a function of the  relation holds and the Taylor expansion becomes
intrinsic frequencyw’ obtained solving numerically the dis-

VIl. DISCUSSION AND CONCLUSION

persion relation(2). The right-going and the left-going , — ¢ (k. )+iw;(k,)— k (k )+|kI “ (k) +0(K?).
Holmboe modes are represented by a solid curve on Figs. 13 19k
and 14. We will compare those branches with predictions of (30)

We conclude that fok (dw; 19K )(k ) small, the frequency
" associated W|th< is the same in the temporal cade=£0)

st ; | 1 and in the spatial cag&m(wg) =0]

wg™~ wr('lzr). (3D

Moreover, since spatial mode corresponds toiinsbch
that ws is real, we obtain, except if the group velocity
dw, 19k, (K,) vanishes

~ wi(K,

&wr k
ok, ( )

For R,=4, the temporal amplification rat®; has been plot-
ted on Fig. 11a). The spatial amplification rate obtained
from Gaster transformatiok; is computed by(32) for each

-1p I i L ! | value of the wave number. For this value, the frequewngy
4 443 4 445 446 47 448 associated to the spatial mode is obtained from the temporal
wk theory (31). For a varying from 0.2 to 1.5, we plot as a

dotted curve the spatial amplification rates thus obtained as a
FIG. 13. Spatial growth rate of the right-going Holmboe wave versus thefnction of ws for the right-going modéFig. 13 and for the
intrinsic frequencyw; , for Rj=4 and different values of the advection left- gomg mode(Flg 14)

parameter, a=1.5,a=1.01,a=0.43, anda=0.2. In solid curve, Holmboe . . .
branches obtained by solving the dispersion relation, in dotted curve by ~ FOr the right-going HOImk_Joe mode represent_ed on Fig.
following the Gaster transformatia10). 13, the dotted branches obtained fr¢81) and(32) fit very



2596 Phys. Fluids, Vol. 14, No. 8, August 2002 Ortiz, Chomaz, and Loiseleux

well the spatial branches obtained numericafly solid to determine whether or not self-sustained oscillations are
curve. For the left-going Holmboe mode far from the observed in exchange flows.
convective—absolute instability thresholds-0.438 anda In Mixing-layers, the two layers flow in the same direc-
=1, the Gaster transformatidi32) gives a good prediction tions. Such flows are characterized in our modedy. 1) by
of the spatial amplification rate. Near the two thresholdls, a mean advectioa larger than unity. Whatever the stratifi-
=0.43 anda=1.01, the solid and dotted curves are verycation, unstable mixing-layers are convectively unstable
different. The group velocities are very small, the spatial(Fig. 4). Convectively unstable flows are well known to be
growth rate is large and the Taylor expansi@0) is no  extremely sensitive to external forcing. Figurés)%nd dd)
longer valid since terms of ordé? can no longer be ne- have shown that the two Holmboe modes may be well sepa-
glected. Close ta=1, the failure is also imputable to the rated in frequency for a particular value of the Richardson
nonanalyticity of the dispersion relation near the branch cunumber. We believe that this frequency selection mechanism
where the “pinching at infinity” occurs. Cauchy—Riemann may explain the observations of Browand and Wdrig a
relations do not hold, and so the expansion givei3®) is  stratified channel. They demonstrate that depending on the
no longer valid. We conclude that, except close to theactivation or not to an harmonic forcing on the splitter plate
absolute—convective thresholds, the Gaster transformatioseparating the two layers of fluids, one or two traveling
predicts remarkably well the spatial instability. waves were observed. At finite amplitude, the two Holmboe

In Exchange flows the two layers flow in opposite di- waves which form cusps in the upper and the lower fdyer
rections. Such flows are characterized in our ma&e. 1) are not always observed experimentally. Koop and
by a mean advectioa between 0 and {by conventionais  Browand;" in their experiment, introduced dye separately in
positive. When the Richardson number is lower than 0.07 the upper and lower layer. They reported a rolling up of dye,
exchange flows are absolutely unstable in the whole rangidicating a concentration of vorticity, only in the layer hav-
[0,1 (Fig. 4), and are able to exhibit self-sustained oscilla-ing the smaller velocityfthe upper one in their experimegnt
tions. In contrast wheR, is larger than 0.07, exchange flows and a cusp of the interface only in this layer. This phenom-
are absolutely unstable for mean advection larger thagnon was called “one-sidedness” by Maxworthy and
a.(R)) and once again self-sustained oscillations may occuBrowand*® Recently, Zhu and Lawrenég,in exchange
For a smaller thara.(R;), the flow is convectively unstable, flows apparatus, obtained the experimental evidence of both
but since both upstream and downstream propagating spatiglolmboe waves(the two traveling wavesand one-sided
branches are unstable, a self-sustained resonance may be ddgimboe wave(one traveling wave One-sided waves arise
ily triggered by reflective boundary conditions and the dy-from the result of a loss of symmetry of the flow. For Haigh
namics of exchange flow deserve further analysis. and Lawrencé} there are two ways for the background flow

Wedge flowsare a particular case of exchange flows,to lose its symmetry: either by displacing the density inter-
with one layer arrested. In our modéFig. 1), they corre- face with respect to the center of the shear layer or by having
spond toa=1. These flows are marginal since the transitionhorizontal boundaries placed at different distances from the
from absolute to convective instability occursaat 1 for all ~ center of the shear lay&rWhereas this is true for temporal
values ofR;. This result is not an artifact induced by the theory or numerical experiments in periodic boxes when the
singularity of the broken line velocity profile used to model symmetry is unbroken, in the spatial theory or in real experi-
the flow. Indeed, Bals4 has shown numerically foR;=0,  ments as soon asis not zero, the symmetry is broken by the
that a smoothing of the velocity profile imposed at the edgeé#nlet condition. The frequency of the Holmboe wave devel-
of the shear layer near=+1 (Fig. 1) does not modify this oping in the slower layer is smaller and its spatial growth
absolute—convective transition. Of course, strong changes irate is larger than its symmetric counterpart as shown on Fig.
the velocity profile used to model the shear are known td. If a white noise is imposed at the inlet then, as in Koop
modify the threshold. As an example, in the case of a homoand Browand’s experiment$ the Holmboe mode propagat-
geneous hyperbolic tangent velocity profile, the theoreticalng with the slower stream should dominate the evolution. If
study carried out by Huerre and MonkewitZor homoge-  the flow is forced by a wave-maker or by an external noise
neous mixing-layersi;=0) has revealed that the threshold for example at a particular frequency, it seems possible to
value isa=0.760 instead od= 1. This explains why Pawlak favor the growth of the other mode since they are unstable to
and Armi?? investigating linear spatial instability in the case different frequency ranges.
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