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In mixing-layers between two parallel streams of different densities, shear and gravity effects
interplay; buoyancy acts as a restoring force and the Kelvin–Helmholtz mode is known to be
stabilized by the stratification. If the density interface is sharp enough, two new instability modes,
known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been
studied in the temporal instability framework. The present paper analyzes the associated spatial
instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids
with a piecewise linear broken-line velocity profile. We show how the classical scenario for
transition between absolute and convective instability should be modified due to the presence of
propagating waves. In the convective region, the spatial theory is relevant and the slowest
propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions
of spatial linear theory are compared with mixing-layer@C. G. Koop and F. K. Browand, J. Fluid
Mech.93, 135 ~1979!# and exchange flow@G. Pawlak and L. Armi, J. Fluid Mech.376, 1 ~1999!#
experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an
asymptotic expansion that predicts the absolute instability domain at large Richardson number.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1485078#
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I. INTRODUCTION

Statically stable stratified shear layers have been wid
documented due to their interest in geophysical and ind
trial situations. In the strait of Gibraltar, a stratified she
flow is generated between the heavier hot and salty w
exiting the Mediterranean sea and the lighter cold Atlan
water entering into the sea~Armi and Farmer1!. The Strait of
Gibraltar is a prominent location where exchange flows na
rally exist. A similar flow, called wedge flow, exists in fjord
or in estuaries when fresh water enters the ocean space~Paw-
lak and Armi,2 Farmer and Freeland3!. Stratified shear flows
also arise in atmospheric or oceanographic gravity curre
resulting from the transient encounter of fluid masses w
different densities, e.g., sea or mountain breezes, katab
winds,4 snow avalanches or turbidity currents on the oce
floor ~Simpson5!. In all these situations, instabilities ar
known to develop at the interface between the different fl
streams and to control the mixing that occurs at the interfa
Miles6 and Howard7 have proven that stability of an invisci
continuous stratified flow is assured if the gradient Richa
son number,Ri(y)52@g/(r(dU/dy)2)#(dr/dy) @where g
represents the gravity,r the density,U(y) the velocity as a
2581070-6631/2002/14(8)/2585/13/$19.00
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function of the vertical coordinatey# which compares locally
buoyancy forces to inertia, is everywhere greater than
This result has been generalized by Yih8 who shows that the
same criterion holds when density discontinuities a
present. However, Howard and Maslowe9 have shown that
stratification effects are, in general, more complex sin
stable stratification adds a restoring force that constrains
vertical displacement of particles, and the instability depe
on the details of the velocity and density profiles. A lar
research effort has been devoted to understanding the e
of buoyancy forces on shear instability by laborato
experiments,10–12 numerical studies,13,14 and theoretical
analysis.15 Based upon the totality of these numerical or th
oretical studies, which have focused on primarily tempo
stability of the stratified shear flows, we know9 that if the
characteristic thicknesses of the velocity shear and den
interface are similar, the instability is stationary with respe
to the mean flow, as in homogeneous flow, and is ca
Kelvin–Helmholtz instability. For a piecewise velocity pro
file and a two-layer step density model Holmboe16 has found
theoretically that the shear layer is primarily unstable eit
to Kelvin–Helmholtz waves or to two traveling waves, on
moving upstream and the other downstream with respec
5 © 2002 American Institute of Physics
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 This a
the mean speed of the shear layer. In contrast to Kelv
Helmholtz modes, those traveling modes called Holmb
modes17 in the inviscid approximation, are not restabilize
when the stratification increases. Browand and Wan17

brought experimental evidence of the existence of Holm
waves using a stratified water channel. Considering the
tial development, they measured the temporal amplifica
rates and found a fair agreement on the location of the n
tral curve predicted by linear theory.16 Downstream evolu-
tion of the perturbations has been reported by Browand
Winant.10 When the bulk Richardson number~value of the
gradient Richardson number aty50! is low enough,
Kelvin–Helmholtz waves develop, roll up and break. Wh
the bulk Richardson number is increased, the roll up is
hibited and the interface starts being deformed by wa
traveling in opposite directions, which form peaks protrudi
into the upper and lower layer. Numerical simulations o
temporally evolving stratified mixing-layer by Smyth, Kla
sen, and Peltier18 have substantiated both the breaking
Kelvin–Helmholtz waves and the development of both tra
eling waves. Assuming hyperbolic tangent velocity and d
sity profiles, Hazel13 has studied the stability as a function
the ratio of the scale of the shear thickness to the den
interface thickness. He shows applying the Miles–How
criterion6,7 that a ratio greater than two is a necessary con
tion for instability whatever the value of the bulk Richards
number. However, appreciable growth rates for the Holm
modes are numerically observed for a ratio greater t
2.5.18

Previous analysis was focused upon the temporal in
bility of a stratified shear flow. However, in each field
laboratory situation a reference frame is singled out
boundary conditions and therefore, one should refer to
concept of absolute or convective instability to understa
the dynamics of the flow~see Huerre and Monkewitz19 for a
review!. Convectively unstable flows are known to behave
noise amplifiers and their dynamics are described by the
tial theory. In contrast, absolutely unstable flows exhibit se
sustained oscillations even in the absence of external pe
bations, since the zero group velocity wave is amplified
the selected frame. For exchange flows, the frame is give
the earth since the flow is in the mean, stationary in t
frame. For gravity currents, the selected frame will mo
with the head of the gravity current that sets up the sh
flow. In laboratory mixing-layer facilities, the frame which
singled out is defined by the splitter plate at the end of wh
the two different fluids streams are set in contact. Studie
the absolute or convective instability in stratified shea
flows are not extensive in the literature and limited to ca
where the only primary instability is stationary~i.e., when
the shear and density thicknesses are identical!. This case has
been studied by Lin and Pierrehumbert20 and Triantafyllou.21

Only recently has the spatial stability theory been addres
by Pawlak and Armi22 in the case of wedge flow where th
upper stream is assumed to be at rest, in which the sca
the density stratification is smaller than the scale of the sh
and for small bulk Richardson number. They clearly dem
strate that the spatial theory differs strongly from the tem
ral theory. The most amplified modes are different and
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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spatial instability results from a combination of Kelvin
Helmholtz and Holmboe instabilities. However, they ha
addressed neither the effect of the mean advection nor
systematic study of the variations with the Richardson nu
ber.

The purpose of the present paper is to extend Pawlak
Armi22 analysis to cases where the velocity of both strea
are varied independently. Velocities may be in the same
rection as in the mixing-layer or in opposite directio
as in exchange flows. On a model profile, we will systema
cally determine the domain where the instability is absol
and where resonances are supposed to occur, varying
mean flow and the bulk Richardson number. This allows
to discuss the absolute and convective transitions for pro
gating modes. A similar case has been encountered in bi
fluid mixtures,23 but in the present case the mean advect
is not zero and the discussion is more complex than
binary convection. When the instability is convectiv
spatial growth rates will be determined. We will discrimina
between flows where Kelvin–Helmholtz waves are sta
and only the two Holmboe waves are unstable~a case not
treated by Pawlak and Armi22! and cases where the thre
modes are simultaneously unstable and interact.
asymptotic analysis will allow us to identify the physic
mechanism that leads to the destabilization of Holmb
waves and will explain the domain of absolute instabil
associated to those waves. Finally, we will compare
present theory to field and laboratory experiments and p
pose some predictions of the present model that might
easily tested in new experiments.

II. THE MODEL AND THE LINEAR DISPERSION
RELATION

As sketched in Fig. 1, we consider two immiscible, i
viscid fluids of constant densitiesr1 andr2 (r1.r2) under
the Boussinesq approximation~see Drazin and Reid,24 p. 35!.
The layers are considered infinite and surface tension eff
are neglected. The index 1~resp. 2! denotes the lower laye
~resp. the upper layer!. The dimensionless variables a
based on half the vorticity thicknessd, half the shear inten-

FIG. 1. Velocity and density profiles. An abrupt change in density occur
the density interface; it is located aty50. Abrupt changes in velocity gra
dient dU/dz defined the vorticity interfaces located aty56d.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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FIG. 2. ~a! Stability diagram, ~b!
zoom of the stability diagram forRi

lower than 0.08. In the dark gray re
gion, Kelvin–Helmholtz modes are
unstable, in the light gray region
Holmboe modes are unstable. Th
asymptotic behavior calculated in
~13! is represented by a dotted curv
on ~a!. The locus of the most amplified
wave number kmax defined by
]v i /]k(kmax)50 is presented as a solid
curve with circles on the zoom~b!.
The transition between the most am
plified Kelvin–Helmholtz mode and
the most amplified Holmboe mode i
denoted by a dotted line atRi

t

50.0461.
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sity DU5(uU22U1u)/2, and the mean density (r11r2)/2.
The mean velocity is defined byUm5(U11U2)/2. The den-
sity interface is located aty50 and the diffusive layer for the
stratifying agent~salt or temperature! is supposed infinitely
thin for all time ~immiscible approximation!. In our model,
the gradient Richardson number~see Drazin and Reid,24 p.
323!, Ri(y)52@g/(r(dU/dy)2)#(dr/dy) has a Dirac func-
tion behavior aty50, and is not useful. This flow is charac
terized in terms of the bulk Richardson numberRi5@(r1

2r2)/(r11r2)#gd/DU2, which will be referred for sim-
plicity Richardson number. The flow is also defined by t
dimensionless mean advection that will be useful only in
spatial theory

a5
Um

DU
. ~1!

Considering the stability of two-dimensional parallel flow
for three-dimensional disturbances, Yih,25 generalized Squire
theorem,24 without neglecting variations of density or visco
ity, which may be continuous or discontinuous, he conclud
that the fastest growing mode is two-dimensional. Therefo
we restrict our attention to two-dimensional perturbations
the stream function which are decomposed into norm
modes of the formf(y)exp(ik(x2ct)), where the eigenfunc
tion f is governed by Rayleigh’s equation,k denotes the
dimensionless wave number andc the phase velocity. In or-
der to ensure that the perturbations decay at infinityf(y) is
chosen aty→6` to be of the form exp(6sky)(1 for y
→2`,2 for y→1`), wheres5sgn(kr) ~kr is the real part
of k!. Imposing the continuity of displacement and press
at the vorticity and density interfaces give dispersion relat
~cf. Drazin and Reid,24 or Pouliquen, Chomaz, and Huerre26!
betweenk andv5kc, the frequency of the wave

D~k,v;Ri ,a!5~v2ak!41n2k2~v2ak!21n0k450,
~2!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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where

n25
2Ri

sk
1

e24sk2~2sk21!2

4k2 and ~3!

n05
Ri

sk

~e22sk12sk21!2

4k2 , with s5sgn~kr !. ~4!

III. TEMPORAL INSTABILITY

The temporal instability theory considers waves hom
geneous in space (kPR) which develop in time~vPC, v
[v r1 iv i!. It correctly describes tilted tank experimen
~Thorpe,27 Pouliquen, Chomaz, and Huerre26! where two lay-
ers of fluid initially at rest in a horizontal layer are set in
relative motion by tilting the tank. We find an expression f
the roots of~2! as follows:

v5ak6H 2n2k26D1/2

2 J 1/2

, ~5!

with

D5~n2k2!224n0k4. ~6!

The mean advectiona @Eq. ~1!# in the temporal case act
only as a Doppler shift in frequency, as shown in Eq.~5! and
it affects only the real part ofv in the temporal theory.
Therefore, temporal instability will be fully described b
considering the intrinsic frequency of the temporal mod
defined as the frequency of the wave seen by an obse
moving with the local mean flowv r* 5v r2ak as a function
of k. Furthermore, since~5! is invariant under the chang
v(k)52v̄(2 k̄) ~where ¯ denotes complex conjugation!
without any loss of generality we consider only positi
wave numbers. The temporal analysis has already been
dressed by Lawrence, Browand, and Redekopp15 for a par-
ticular broken-line velocity profile in the asymmetric cas
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
the density interface is displaced with respect to the velo
interface and by Smyth and Peltier14 for a hyperbolic tangen
velocity profile. We have plotted on Fig. 2~a! the stability
diagram derived from~2!. Without stratification,Ri50, there
is a unique unstable mode studied by Rayleigh28 stationary
with respect to the mean flow. When the Richardson num
increases, the structure is more complex. To get a better
derstanding of the unstable modes which exist, we disc
the sign ofD. WhenD.0 andn2.0 then we obtain from~5!
two unstable, stationary modes. The most amplified on
the continuation of the mode found by Rayleigh,28 the sec-
ond one is generated by stratification. These instabilit
which we call following Smyth and Peltier14 Kelvin–
Helmholtz waves, are stationary with respect to the m
flow and, correspond to the dark gray region on Fig. 2~b!.
When D,0, the unstable modes have intrinsic frequenc
with a nonzero real part. Moreover, since under the Bou
inesq approximation, the basic flow is invariant under
following reflections,x→2x and y→2y, if v(k) is a so-
lution thenv(2k) is also a solution and as a consequen
2v̄( k̄) is a solution~in the temporal casek is real!. Thus
when a mode propagating downstream is amplified, a s
metric mode propagating upstream is also unstable with
same growth rate. These propagating unstable modes wi
called Holmboe waves. They exist in the light gray region
Fig. 2~b!. When the Richardson number increases, two
stable Holmboe regions develop at low and high wave nu
bers. ForRi50.07, the Kelvin–Helmholtz region disappea
and the two Holmboe regions merge. ForRi larger than 0.07,
the Holmboe region moves to largerk but never vanishes
@Fig. 2~a!#.

For further references, we illustrate the structure of
modes whenRi,0.07, we consider the case ofRi50.04. We
plot on Fig. 3 the growth ratev i and the intrinsic frequency
v r* as a function of the wave numberk. Close tok50, four
neutral waves exist, two propagating to the right~v*.0!,
two to the left~v*,0!. Whenk5kc1 , the waves merge two
by two and give rise to two unstable Holmboe modes~propa-

FIG. 3. ~a! Temporal growth ratev i and ~b! intrinsic frequencyv r* 5v r

2ak with respect to the real wave numberk for Ri50.04. The dotted curve
shows the Kelvin–Helmholtz modes.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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gating to the right and to the left withv i.0!. When k
5kc2 , the phase speeds of the two Holmboe modes van
and two stationary unstable Kelvin–Helmholtz modes a
pear, the most amplified being the continuation of the hom
geneous mode found by Rayleigh,28 the less amplified being
generated by the stratification@dotted curves on Figs. 3~a!
and 3~b!#. At k5kc3 , the sequence reverses: the growth ra
of the two Kelvin–Helmholtz modes become equal and
character of the instability changes from stationary to os
latory. These new Holmboe modes have the same gro
rate but propagate in opposite directions with respect to
mean flow@Fig. 3~b!#. For k5kc4 , the growth rate of the
Holmboe modes vanishes and four neutral waves appear
Fig. 3~a!, the temporal growth rate presents two relati
maxima kmax

KH and kmax
H associated respectively to Kelvin

Helmholtz and Holmboe modes. ForRi50.04, the Kelvin–
Helmholtz mode is the most unstable~see Fig. 3!. On Fig.
2~b!, we have plotted the locus of the most unstable wa
number as a curve with circles. ForRi

t50.0461, the most
amplified mode switches over from Kelvin–Helmholtz-typ
to Holmboe type.

IV. ABSOLUTE AND CONVECTIVE INSTABILITIES

As described in the Introduction in all the laboratory
field situations where the stratified shear flow may be
sumed stationary in a particular frame, one should look
the appearance of self-sustained oscillations associated
the absolute nature of the instability in a portion of th
flow.19 These so-called global modes arise from the build
up of energy fluctuation due to the temporal amplification
a wave that does not propagate~of zero group velocity in the
frame where the mean flow is stationary!. This idea, first
developed in plasma physics~Briggs,29 Bers30!, is fully dis-
cussed in Huerre and Monkewitz19 and leads to a discrimi-
nation between convective or absolute instability. Accord
to a well established criterion the absolute/convective ins
bility distinction is obtained by studying the behavior of sp
tial branches~k5kr1 ik i complex,v real!, or more generally
spatio-temporal branches~k and v5v r1 iv i complex; v r

varying andv i being constant!. The transition occurs when
saddle point of the dispersion relation (k0 ,v0) crosses thev i

axis

D~k0 ,v0 ;Ri ,a!50, ~7!

]kD~k0 ,v0 ;Ri ,a!50, ~8!

]vD~k0 ,v0 ;Ri ,a!Þ0, ~9!

with k0 the absolute wave numberandv0 the absolute fre-
quency. For shear flow, the dispersion relation contains
non analytic function sgn(k) @see Eqs.~3!–~5!#. The sign
function arises from the constraint that perturbations sho
decay aty56`. In order to obtain an analytic function fo
the dispersion relation~5! in k, we restrict the study tokr

.0 as in Huerre and Monkewitz,31 invoking the symmetry
v(k)52v̄(2 k̄) and thens5sgn(kr)51 in ~2!–~4!. If the
imaginary part ofv0 , Im(v0), is positive, the flow is abso
lutely unstable. Conversely ifIm(v0) is negative, the flow is
convectively unstable. Conditions~7!–~9! are not explicit
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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enough, and the saddle point to be considered must also
isfy a pinching condition of two spatio-temporal branch
k6(v) arising, respectively from the upper and the low
halves of the (kr ,ki) plane19 ~i.e., ki.0 andki,0!. In the
convective case, the superscript1 or 2 gives the direction
of propagation of the wave in the laboratory frame~see
Huerre and Monkewitz19 for details!.

We used the Optimization toolbox ofMATLAB to solve
the systems~7!–~9!. Once (k0 ,v0) was found, we system
atically checked the pinching condition. The domains of a
solute and convective instability are plotted on Fig. 4 in t
(a,Ri) plane. Due to the symmetry of the problem, whena is
changed to2a, y is changed to2y, so we focus in the
following discussion ona.0.

As could be seen on Figs. 4~a! and 4~b!, when both
streams move in the same direction (a.1), the flow is con-
vectively unstable whatever the value of the Richards
number, i.e., no matter how strong the stratification. Wh
the streams propagate in opposite directions (a,1), two
cases must be distinguished. When both Kelvin–Helmh
and Holmboe modes are unstable, forRi,0.07, the flow is
absolutely unstable in the whole domain@0,1@. Whereas,
when only Holmboe modes are unstable, forRi.0.07, the
flow is convectively unstable for mean advection sma
than a threshold valueac(Ri), and absolutely unstable in
range, ]ac(Ri),1@ . The structure of Fig. 4, may be easi
understood referring to the impulse response of the fl
~Fig. 5!. Since the impulse response is invariant under G
lilean transformation, its shape is the same whatever
value of the advection parameter. Therefore, a change in
mean advection parametera corresponds to a change of Ga
lilean frame. ForRi,0.07, the absolute–convective trans
tion is associated with the classical picture: a single am
fied domain for the impulse response. However, the struc
of the wave packet is complicated. It is a result of an hybr
ization of the Kelvin–Helmholtz and Holmboe modes. T
edges of the impulse wave packet move at velocitya21 and
a11. For a smaller than unity, the flow is absolutely un

FIG. 4. ~a! In light gray,absolute instability, A, in white convective insta-
bility , C, in the (a,Ri) plane. The asymptotic behavior calculated in~24! is
represented by a dotted curve;~b! zoom of the absolute and convectiv
domains forRi,0.2.
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stable@Fig. 5~a!#. For a larger than unity the flow is convec
tively unstable @Fig. 5~b!#. For Ri.0.07, two Holmboe
modes destabilize the flow and the impulse response
sesses two amplified regions with edges moving respecti
at a21 anda2ac(Ri) and ata1ac(Ri) anda11. The case
of the destabilization by two traveling waves was alrea
investigated at the onset of convection in binary fluids.23 In
contrast with binary convection which endows the refle
tional symmetry (x↔2x) ~see Huerreet al.,19 Kolodner,
Surko, and Williams23!, the free mean advection paramete
a, of the present model flow, breaks the reflectional symm
try and makes the discussion richer. Three possible confi
rations may be encountered depending on the value oa
positive ~the casea,0 being symmetric!. For a,ac(Ri)
@Fig. 5~c!# the wave packets move away from the source
the left and the other to the right and the flow is, therefo
convectively unstable@white region on the left of the Fig
4~a!#. Whenac(Ri),a,1 @light gray region in Fig. 4~a!# the
left moving wave packet is now making the flow absolute
unstable since it is exponentially growing at the impulse
cation @Fig. 5~d!#. The absolute instability is, therefore, trig
gered by the Holmboe wave associated with the lower la
Whena.1, both waves packets propagate to the right@Fig.
5~e!#, and the flow is again convectively unstable@right
white region in Fig. 4~a!#.

Two characteristics in the flow behavior visible on Fig.
should be pointed out. First,a51 defines a transition from
absolute to convective instability for allRi . For Ri50, this
result was obtained by Balsa32 and by Bechert.33 In Sec. VI,
a largek asymptotic expansion will explain the particula
significance of thea51 value. Second, the transition atRi

50.07 from a single wave packet to a double wave packe
abrupt as the Kelvin–Helmholtz modes become stable.

V. SPATIAL INSTABILITY

Spatial waves have been much debated due to their
bounded behavior atuxu→` ~Drazin and Reid,24 pp. 147–

FIG. 5. Sketch of the impulse response in the (x,t) plane. ForRi,0.07 a
single wave packet,~a! absolutely unstable fora,1 and ~b! convectively
unstable fora.1. ForRi.0.07 behavior of the two Holmboe wave packe
for a positive varying as indicated on the figure.
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FIG. 6. In dotted curve, Kelvin–Helmholtz branches.
solid curve Holmboe branches~a! temporal growth rate
v i function of the wave numberkr for Ri50.04; spatio-
temporal branches forRi50.04 anda51.1 v r varies
between 0 and 1.5 by small increments~b! for v i

50.125, ~c! pinching of amplified branches and ex
change of branches forv i50.113, and~d! hybrid spa-
tial branchesv i50.
ey
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153!. However when the flow is convectively unstable, th
appropriately describe the asymptotic response ast→` to a
spatially localized harmonic source turned on at the origin
time ~see Chomaz34!. In this case, initial transients, due t
the switching on of the harmonic forcing, are advected aw
from the forcing excitation. The spatially amplified wav
radiated from the source are left behind this transient w
packet and may be interpreted in terms of spatial causality
absolutely unstable flows, transients exponentially grow
in time do not propagate away and overwhelm the forc
response. As for temporal theory, the structure of spatial
stability branches will differ forRi larger or smaller than
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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0.07. The caseRi,0.07 will be more complex since Kelvin–
Helmholtz and Holmboe modes that are well separated in
temporal theory will mix and following Pawlak and Armi,22

we will name the domainRi,0.07, the hybrid region.

A. Hybrid region

For Ri,0.07, and in the particular case of wedge flow
(a51), Pawlak and Armi22 found numerically, using the
Taylor–Goldstein equation, two propagating spatially gro
ing modes. They called themhybrid modes since in the
spatial case no straightforward criteria discriminates betw
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Kelvin–Helmholtz and Holmboe modes. In order to ga
some insight into these hybrid modes, and to illustrate
existence of saddle points in the dispersion relation that
not lead to an absolute–convective transition, we cons
the deformations of the spatio-temporal branches as thv
contour is lowered from high values ofv i towardv i50, in
the caseRi,0.07 anda.1. We plot on Figs. 6~b!–6~d!, only
the downstream amplified branches. All the branches are
tained by solving numerically the dispersion relation~2! us-
ing MATLAB Optimization routines for a particular set o
fixed parametersv i , Ri , anda and withv r varying. These
branches are parametrized byv r which varies by small in-
crements~see Loiseleux, Chomaz, and Huerre for details35!.
Figure 6~a! reproduces Fig. 3~a! and presents the tempor
growth rate forRi50.04 anda51.1. Whenv i50.125, the
wave numbersk1 , k2 , k3 , andk4 belonging to the unstable
temporal branches@Fig. 6~a!#, also belong to the downstream
spatio-temporal branches forv i50.125 plotted on Fig. 6~b!.
We note two downstream amplified branches on Fig. 6~b!.
For the first branch, the two unstable parts in the dot
curve betweenk1 andk2 and in the heavy curve betweenk3

andk4 , may be associated respectively to Kelvin–Helmho
and Holmboe modes. The second downstream unst
branch is unstable betweenk3 andk4 , which corresponds to
the most spatially amplified Holmboe branch. The least a
plified Kelvin–Helmholtz branch is associated with
damped spatio-temporal branch~i.e., ki.0! since v i

50.125 is larger than its maximum growth rate (v i

;0.113). While lowering thev i contours, we may follow
the deformations of those branches. In this process, a sa
point is encountered forv i slightly larger than 0.113, but i
does not involve an interaction between two branches ari
from different part of theki plane. This saddle point does n
contribute to the impulse response.19 The branches plotted o
Fig. 6~c! are a result of this interaction. The effect of th
saddle point has been to ‘‘hybridize’’ the two Kelvin
Helmholtz modes with the two Holmboe modes, but all fo
modes keep propagating information downstream. Fina
on Fig. 6~d!, we obtain the two downstream amplified spat
branches~v real!. Another saddle point which is once aga
not a pinch point is encountered forv i;0.0099 when the
small wave number Holmboe modes destabilize@k
P@kc1 ,kc2# Fig. 3~b!#. This continuous switching o
branches justifies the terminology hybrid mode.

The structure of the hybrid branch neark5kt plotted on
Fig. 6~d! is surprising in the sense that a neutral mode~i.e.,v
andk real! is a spatio-temporal wave that belongs both to
temporal and to the spatial branches as is the case fk
5kc1 and k5kc4 . Therefore, it should appear both as
crossing of the temporal branch with thev i50 axis @Fig.
6~a!# and as a crossing of the spatial branch with theki50
axis @Fig. 6~d!#. But the most amplified branch seems
cross atk5kt and to have no temporal counterpart. Whenv i

is small but nonzero the spatio-temporal branch crosses
ki50 axis close tok5kc4 as it should, but prior to this
crossing it makes a large turn about close tokt and then
reacheskc4 parallel to theki50 axis @continuous curve on
Fig. 7~a!#. The smallerv i , the closer this final portion of the
spatio-temporal branch to theki axis. Finally whenv i van-
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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ishes, the branch becomes singular@dotted curve on Fig.
7~a!# and seems to cross atk5kt . Clearly, the limitv i50 is
singular since the most unstable spatial branch collapse
theki50 axis atk5kt @Fig. 7~a!#. Therefore,k5kt is only a
pseudo-intersection of the most unstable branch with theki

50 axis sincek5kt is never reached. The dispersion relati
~5! exhibits a square root behavior at the neutral wavenu
ber, kc4 ~see also Fig. 3!. Therefore, a branch cut lies from
kc4 to infinity ~Fig. 7! in the k plane. This singular behavio
is reponsible for thea51 transition. Whena decreases from
a51.1 to a51.000 001@Fig. 7~b!#, the pseudo-intersection
kt , of the hybrid branch with the branch cut moves to lar
value. At a51, kt tends to infinity, and the pinching of th
real axis occurs at1` and not as usual at a finite sadd
point. In fact, an infinity of spatial branches, shown on F

FIG. 7. ~a! Comparison between the most amplified spatio-tempo
branches in solid curve at small values ofv i and between the spatia
branchesv i50 in dotted curve for two values ofa, a51.01 and a
51.000 001.~b! Behavior of the most amplified hybrid spatial branch, Fi
6~d!, for Ri50.04 and for a51.1, a51.01 and a51.0001, and a
51.000001;kc4 is the neutral wave number defined on Fig. 3.

FIG. 8. ~a! Simultanously pinching of several branches ata51 and Ri

50. ~b! Bechert Christmas tree~Ref. 33! for a51 andRi50.
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FIG. 9. Amplified spatial Holmboe branches forRi

50.5. In solid curve Holmboe branch associated w
the lower frequency, in dotted curve Holmboe mod
associated with the greater frequency;~a! ki function of
the wave numberkr for a50.1 and~b! for a51.2; ~c!
ki function of the frequencyv r for a50.1, ~d! for a
51.2.
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8~a!, go through a similar transition at the same time@Fig.
8~a!#. Plotted in the (ki ,v r) plane for the particular caseRi

50, these branches evoke an upside down Christmas tre
Bechert’s imagination33 @Fig. 8~b!#. This singularity leads to
an essential singularity of the dispersion relation. In Sec.
we will see that this behavior persists for all values of t
Richardson number.

B. Holmboe spatial modes

When Ri.0.07, the Kelvin–Helmholtz mode is stab
lized and two counterpropagating Holmboe waves dest
lize the flow. As a result, the instability is convective in tw
distinct domains, 0,a,ac(Ri) anda.1 as shown on Fig.
4. The structure of the spatial branches belonging to eac
the convectively unstable domains are shown on Fig. 9.

When the mean advectiona is smaller thanac(Ri), the
response to an impulse consists of two wave packets tra
ing in opposite directions@Fig. 5~c!#. The mode traveling
with the negative group velocity is amplified upstream a
the corresponding amplified spatial branch is character
by ki.0. It is represented on Fig. 9~a! by a solid curve. In
contrast the other Holmboe mode travels downstream
the corresponding amplified spatial branch represented
dotted curve on Fig. 9~a! is such thatki,0. On Fig. 9~c! the
spatial growth rates are represented as a function of the
quency. Waves moving upstream are represented by neg
v r values sincekr is assumed positive by convention.

When the mean advectiona is larger than unity, the flow
is convectively unstable and the impulse response is ass
ated with two wave packets, both traveling downstream@Fig.
5~e!#. The mode traveling with the smaller group velocity
the most spatially amplified, and is represented by a s
curve on Figs. 9~b! and 9~d!. This contrasts with the tempora
theory for which both Holmboe modes have the same am
fication rates. Qualitatively, these results may be underst
using the Gaster transformation,36 which gives, in the limit
of small amplification rates, the link between the spatial a
temporal amplification rates at the same real wave numbekr
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v i

ki
;

]v r

]kr
~kr !;2vg . ~10!

However, as discussed in a later section, much care mus
taken using Eq.~10! since the Gaster transformation is val
only under certain assumptions.36 Figure 9~d! presents the
spatial growth rate as a function of the wave frequencyv r .
Since both waves are propagating downstream,v r is posi-
tive, but the range of frequencies associated with the slo
moving wave is smaller. For the slower moving wave~higher
growth rate and smaller frequency!, the eigenfunction is
more intense in the slower moving layer@Fig. 10~b!#. Con-
versely, the other spatially unstable branch, with a sma
spatial growth rate and a larger frequency is localized in

FIG. 10. Amplitude of the eigenfunction forRi50.5,a51.2 associated with
each most amplified wave number on each Holmboe branch@see Fig. 9~b!#.
On ~a!, eigenfunction associated with the Holmboe mode traveling with
faster layer~i.e., the upper layer here! ~b! eigenfunction of the most ampli-
fied wave number traveling with the lower layer.
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fast moving stream@Fig. 10~a!#. The difference in spatia
growth rates suggests that the Holmboe mode concentr
in the slower layer@Fig. 10~b!# may dominate in experiment
when broadband forcing is applied at the inlet. Howev
since Holmboe modes are unstable over different freque
bands as shown on Figs. 9~c! and 9~d!, an appropriate forc-
ing at the inlet may select experimentally one or the ot
mode.

VI. ASYMPTOTIC RESULTS

In the inviscid approximation, the configuration of Fig.
is unstable to wavelength that goes to zero (k→`) when the
strength of the stratification increases, i.e., whenRi→` @Fig.
2~a!#. In this section, we carry out an asymptotic expans
of the dispersion relation in the limitkr→`. We will con-
sider first the caseRi→` and in a second partRi finite. This
analysis explains on physical grounds the convectiv
absolute transitions computed numerically.

Neglecting all terms of order less than exp(23kr), the
complex frequency~5! becomes withk real or complex but
kr large

v.ak6
k

A2
ARi

k
1

~2k21!2

4k2 6ADasymp1o~e23kr !.

~11!

In the above expression,Dasympis the asymptotic value of~6!
defined by

Dasymp.S Ri

k
2

~2k21!2

4k2 D 2

2
2Ri~2k21!ke22k

k4 1o~e23kr !. ~12!

A. Asymptotics at large Ri

Temporally amplified modes~k real! are obtained when
Dasymp ~12! is negative. For largek away from the unstable
band of wave numbers,Dasympis O(1/k4). However, for the
particular wave numberkm such that

Ri5
~2km21!2

4km
, ~13!

the functionDasympis of ordere22km/km . For this particular
value of km , we obtainDasymp minimal and negative. The
expression~13! has been already derived by Caulfield37 in
the formRi5km21. The most amplified wave numberkm is
represented by a dotted curve on Fig. 2~a!. Moreover, as can
be seen on Fig. 2~a!, the stronger the stratification, the na
rower the band of temporally unstable wave numbers. Th
fore, in order to obtain the asymptotic expansion of the d
persion relation, we letRi goes to infinity and we seek th
wave numbers close tokm for which, the two terms of right-
hand side of~12! have the same order andDasymp negative.
Therefore, we write

k5km1ek8, ~14!

with km given by ~13! k8 real or complex and the gaugee
determined by the dominant balance
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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e5Akme2km. ~15!

The dispersion relation~11! may be rewritten at ordere as
followed with s1561 ands2561 independent

v5akm1eak81s1km2
s1

2
1es1k8S 3

4
2

1

8km
D

1es2

2km11

8km
Ak822

8km~2km21!

~2km11!2 . ~16!

The unstable temporal wave numbers~k8 real! are obtained
for k8228km(2km21)/(2km11)2 negative, which specifies
the band of unstable wave numbers

k5km1ek8

with

k8PF2
A8km~2km11!

2km11
,
A8km~2km11!

2km11 G , ~17!

then at leading order ine the frequency of an unstable wav
numberk ~17! is given by

v r5akm1eak81s1km2
s1

2
1es1k8S 3

4
2

1

8km
D , ~18!

with a growth rate

v i5e
2km11

8km
A8km~2km21!

~2km11!2 2k82. ~19!

The complex frequencies (v r1 iv i) of the temporally ampli-
fied Holmboe modes associated with the most unstable w
numberkm are obtained lettingk850 in ~18! and ~19!

vm
65H akm6S km2

1

2D J 1 i e
A2km21

A8km

, ~20!

the associated group velocity is obtained calculating]v/]k
for v given by ~16! and evaluated atk850

vG~km!5
]v

]k
~km!5

1

e

]v

]k8
~0!

5a6S 3

4
2

1

8km
D→a6

3

4
. ~21!

The results~17!–~21! match quantitatively well with numeri-
cal calculations.

The absolute unstable branch may be computed u
the dispersion relation~16! derived fork8 real or complex.
Imposing]v/]k50 with v andk5km1ek8 linked by ~16!,
give the absolute frequencyv0 and wave numberk08

k085

S a1s1S 3

4
2

1

8km
D D A8km~2km21!

~2km11!

A~a1s1!S a1s1S 1

2
1

1

4km
D D

, ~22!
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v05akm2s1S km2
1

2D1ek08

3F ~a1s1!S a1s1S 1

2
2

1

4km
D D

a1s1S 3

4
2

1

8km
D G . ~23!

The absolute–convective transition corresponds to the im
nary part ofv0 equals to zero, which yields according to~13!
and withs1561

ac~Ri !56S 1

2
2

1

4km
D

56S 1

2
2

2

11Ri1A~11Ri !
221

D ~24!

and

a561. ~25!

The transitiona51 ~25! obtained at largeRi , corresponds
exactly with the numerically computed threshold@Fig. ~4!#.
The second transitionac(Ri) given on Eq.~24! is represented
by a dotted line on Fig. 4~a!, the asymptotic calculus matche
remarkably well the numerical calculation. At the limitkm

→`, ac tends to 1/2.
Moreover, when the advection parametera approaches

one of the two thresholds~24! or ~25!, uk08u tends to infinity,
this suggests that the spatial growth rate is greater than
temporal one near the threshold. Numerically, we comp
near the first thresholdac(Ri) on Fig. ~11! the spatial and
temporal amplification rates of the Holmboe mode amplifi
upstream (ki,0), for Ri54. We note that the band of tem
poral unstable wave numbers, which matches exactly w
~17!, is smaller than in the spatial case for the advect
parameter approaching the transitionac50.4368. The differ-

FIG. 11. Comparison between~a! the temporal amplification ratev i and~b!
the spatial amplification rateki for the Holmboe branch traveling with the
lower layer for Ri54, and several values of the advection parametea
50.42,a50.43,a50.435, anda50.438 where the pinchingk0 occurs.
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ence of growth rates in temporal and spatial case near
thresholds enhances the failure of the Gaster transforma
@Eq. ~10!# in those cases~see Sec. VII!.

B. Asymptotics at finite Ri

The dispersion relation displays two amplified and tw
damped solutions. The branch leading to the pinching is
Holmboe mode traveling with the smaller phase veloc
@Fig. 5~d!#. Choosing the principal square root such thatZ1/2

maps the complexZ-plane cut along the negative real ax
onto the half spaceRe(Z

1/2).0, the amplified spatial branch
downstream is recovered solving

v.ak2
k

A2
ARi

k
1

~2k21!2

4k2 1ADasymp

1o~e23kr !. ~26!

The thresholda51 ~25! is independent onRi . Moreover as
shown in the hybrid region in Fig. 7, when the advecti
parametera tends to unity, the absolute wave numberk0

pinches at infinity for any value ofRi . We propose to cap-
ture this behavior assumingRi of order unity andk complex
but kr large. Under this assumption, the square term
Dasymp given in ~12! is always dominant with respect to th
second term. Neglecting the terms of order equal or less t
e22k/k2, we obtain

Dasymp;S Ri

k
2

~2k21!2

4k2 D 2

1OS e22k

k D . ~27!

For k complex butkr large the dispersion relation become

v5ak2
2k21

2
. ~28!

The absolute frequency and wave number are obtained s
ing ]v/]k50

]v

]k
5a2150. ~29!

For a51, the absolute wave number tends tov051/2
and the absolute wave numberk0 is not determined. The
value of this absolute frequency is retrieved numerically,
this paper we have only represented the classical Bec
Chritmas tree,33 ~Fig. 8! ~that means forRi50! included in
this analysis.

As a conclusion of the asymptotic studies, the absolut
unstable domain goes toa51/2 to a51 asRi goes to infin-
ity. At the trailing edge the first threshold~24! tends to 1/2,
the group velocity of a pure gravity wave with a phase v
locity equals to 1. Indeed the computed eigenfunction co
sponding to this mode@given in Fig. 12~b!# has a large am-
plitude only around the density interface and indee
corresponds to a gravity wave marginally destabilized by
interaction with the density interface. Ata53/4, the most
amplified modes differ from gravity waves, the associa
eigenmode being intense both aty51 andy50 @Fig. 12~a!#.
At the leading edge of the wave packet,a51, only the layer
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at y521 is active, and the mode is insensitive toRi , but
since the pinching occurs at infinity no eigenmode may
exhibited.

VII. DISCUSSION AND CONCLUSION

For Ri54 and for different values of the advection p
rametera from 0.2 to 1.5, we have plotted on Fig. 13~resp.
Fig. 14!, the spatial amplification rateski of the right-going
Holmboe mode~resp. left-going mode! as a function of the
intrinsic frequencyv r* obtained solving numerically the dis
persion relation~2!. The right-going and the left-going
Holmboe modes are represented by a solid curve on Figs
and 14. We will compare those branches with predictions

FIG. 12. ~a! Amplitude of the eigenfunction associated withvm
1 ~20! and

with the most amplified wave numberkm for Ri58. ~b! Amplitude of the
eigenfunction associated with the wave numberk0 and with the absolute
frequencyv0 @see on Fig. 12~b!# for Ri54 anda50.438, that means for the
first convective–absolute transition.

FIG. 13. Spatial growth rate of the right-going Holmboe wave versus
intrinsic frequencyv r* , for Ri54 and different values of the advectio
parametera, a51.5,a51.01,a50.43, anda50.2. In solid curve, Holmboe
branches obtained by solving the dispersion relation, in dotted curve
following the Gaster transformation~10!.
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the spatial amplification rates obtained transforming the te
poral growth rate using Gaster transformation36 recalled
here. For a given real wave numberk̃r , the temporal analysis
leads tov5v r( k̃r)1 iv i( k̃r) complex solution of the disper
sion relation~2!. We seek for this particular wave number th
value of the spatial amplification ratek̃i such thatv( k̃r

1 i k̃ i) denotedvS is real. For small amplification rates, w
make a Taylor expansion ofvS for k̃i small. If we suppose
that v is an analytical function ofk, the Cauchy–Riemann
relation holds and the Taylor expansion becomes

vS5v r~ k̃r !1 iv i~ k̃r !2 k̃i

]v i

]kr
~ k̃r !1 i k̃ i

]v r

]kr
~ k̃r !1O~ k̃i

2!.

~30!

We conclude that fork̃i(]v i /]kr)( k̃r) small, the frequency
associated withk̃r is the same in the temporal case (k̃i50)
and in the spatial case@Im(vs)50#

vS;v r~ k̃r !. ~31!

Moreover, since spatial mode corresponds to findk̃i such
that vs is real, we obtain, except if the group veloci
]v r /]kr( k̃r) vanishes

k̃i52
v i~ k̃r !

]v r

]kr
~ k̃r !

. ~32!

For Ri54, the temporal amplification ratev i has been plot-
ted on Fig. 11~a!. The spatial amplification rate obtaine
from Gaster transformationk̃i is computed by~32! for each
value of the wave number. For this value, the frequencyvS

associated to the spatial mode is obtained from the temp
theory ~31!. For a varying from 0.2 to 1.5, we plot as a
dotted curve the spatial amplification rates thus obtained
function ofvS for the right-going mode~Fig. 13! and for the
left-going mode~Fig. 14!.

For the right-going Holmboe mode represented on F
13, the dotted branches obtained from~31! and ~32! fit very

e

y

FIG. 14. Spatial growth rate for the left-going Holmboe wave versus
intrinsic frequencyv r* , for Ri54 and different values of the advectio
parametera, a51.5,a51.01,a50.43, anda50.2. In solid curve, Holmboe
branches obtained by solving the dispersion relation, in dotted curve
following the Gaster transformation~10!.
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well the spatial branches obtained numerically~in solid
curve!. For the left-going Holmboe mode far from th
convective–absolute instability thresholdsa50.438 anda
51, the Gaster transformation~32! gives a good prediction
of the spatial amplification rate. Near the two thresholdsa
50.43 anda51.01, the solid and dotted curves are ve
different. The group velocities are very small, the spa
growth rate is large and the Taylor expansion~30! is no
longer valid since terms of orderki

2 can no longer be ne
glected. Close toa51, the failure is also imputable to th
nonanalyticity of the dispersion relation near the branch
where the ‘‘pinching at infinity’’ occurs. Cauchy–Rieman
relations do not hold, and so the expansion given in~30! is
no longer valid. We conclude that, except close to
absolute–convective thresholds, the Gaster transforma
predicts remarkably well the spatial instability.

In Exchange flows, the two layers flow in opposite di
rections. Such flows are characterized in our model~Fig. 1!
by a mean advectiona between 0 and 1~by conventiona is
positive!. When the Richardson number is lower than 0.0
exchange flows are absolutely unstable in the whole ra
@0,1@ ~Fig. 4!, and are able to exhibit self-sustained oscil
tions. In contrast whenRi is larger than 0.07, exchange flow
are absolutely unstable for mean advection larger t
ac(Ri) and once again self-sustained oscillations may oc
For a smaller thanac(Ri), the flow is convectively unstable
but since both upstream and downstream propagating sp
branches are unstable, a self-sustained resonance may b
ily triggered by reflective boundary conditions and the d
namics of exchange flow deserve further analysis.

Wedge flowsare a particular case of exchange flow
with one layer arrested. In our model~Fig. 1!, they corre-
spond toa51. These flows are marginal since the transiti
from absolute to convective instability occurs ata51 for all
values ofRi . This result is not an artifact induced by th
singularity of the broken line velocity profile used to mod
the flow. Indeed, Balsa38 has shown numerically forRi50,
that a smoothing of the velocity profile imposed at the ed
of the shear layer neary561 ~Fig. 1! does not modify this
absolute–convective transition. Of course, strong change
the velocity profile used to model the shear are known
modify the threshold. As an example, in the case of a hom
geneous hyperbolic tangent velocity profile, the theoret
study carried out by Huerre and Monkewitz31 for homoge-
neous mixing-layers (Ri50) has revealed that the thresho
value isa50.760 instead ofa51. This explains why Pawlak
and Armi,22 investigating linear spatial instability in the cas
of Boussinesq approximation, for a flow modeled by hyp
bolic tangent velocity and density profiles with differe
thickness characteristics, found that the instability was c
vective ata50.89. Nevertheless, in their experiments, Pa
lak and Armi22 put forward a very regular regime whic
consists of a first roll up of the interface as in the homo
neous case. This first vortex core separates from the vort
source and a second core develops which pairs with the
one. This mechanism, called ‘‘leapfrog pairing,’’22 persists
into fully developed regions and might be the signature o
self-sustained mode~see Brancher and Chomaz39 for a dis-
cussion in the caseRi50!. Further experiments are neede
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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to determine whether or not self-sustained oscillations
observed in exchange flows.

In Mixing-layers, the two layers flow in the same direc
tions. Such flows are characterized in our model~Fig. 1! by
a mean advectiona larger than unity. Whatever the stratifi
cation, unstable mixing-layers are convectively unsta
~Fig. 4!. Convectively unstable flows are well known to b
extremely sensitive to external forcing. Figures 9~c! and 9~d!
have shown that the two Holmboe modes may be well se
rated in frequency for a particular value of the Richards
number. We believe that this frequency selection mechan
may explain the observations of Browand and Wang17 in a
stratified channel. They demonstrate that depending on
activation or not to an harmonic forcing on the splitter pla
separating the two layers of fluids, one or two traveli
waves were observed. At finite amplitude, the two Holmb
waves which form cusps in the upper and the lower laye10

are not always observed experimentally. Koop a
Browand,11 in their experiment, introduced dye separately
the upper and lower layer. They reported a rolling up of d
indicating a concentration of vorticity, only in the layer ha
ing the smaller velocity~the upper one in their experimen!
and a cusp of the interface only in this layer. This pheno
enon was called ‘‘one-sidedness’’ by Maxworthy an
Browand.12 Recently, Zhu and Lawrence,40 in exchange
flows apparatus, obtained the experimental evidence of b
Holmboe waves~the two traveling waves! and one-sided
Holmboe wave~one traveling wave!. One-sided waves aris
from the result of a loss of symmetry of the flow. For Haig
and Lawrence,41 there are two ways for the background flo
to lose its symmetry: either by displacing the density int
face with respect to the center of the shear layer or by hav
horizontal boundaries placed at different distances from
center of the shear layer.41 Whereas this is true for tempora
theory or numerical experiments in periodic boxes when
symmetry is unbroken, in the spatial theory or in real expe
ments as soon asa is not zero, the symmetry is broken by th
inlet condition. The frequency of the Holmboe wave dev
oping in the slower layer is smaller and its spatial grow
rate is larger than its symmetric counterpart as shown on
9. If a white noise is imposed at the inlet then, as in Ko
and Browand’s experiments,11 the Holmboe mode propaga
ing with the slower stream should dominate the evolution
the flow is forced by a wave-maker or by an external no
for example at a particular frequency, it seems possible
favor the growth of the other mode since they are unstabl
different frequency ranges.
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