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This paper investigates the three-dimensional temporal instabilities and the transient growth

of perturbations on a Von Kármán vortex street, issuing from the development of the primary

instability of a parallel Bickley velocity profile typical of a wake forming behind a thin flat plate.

By solving iteratively the linearized direct Navier Stokes equations and its adjoint equations, we

compute the optimal perturbations that exhibit the largest transient growth of energy between the

initial instant and different time horizons. At short time horizons, optimal initial perturbations

are concentrated on the points of maximal strain of the base flow. The optimal gain of energy and

the mechanism of instability are well predicted by local theories that describe the lagrangian

evolution of a perturbation wave packet. At time of order unity, hyperbolic region leads the

dynamics. Only at large time (t� 20), the growth is led by the most amplified eigenmode. This

eigenmode evolves, when the wavenumber increases, from perturbation centred in the core of the

vortices, to perturbations localised on the stretching manifold of the hyperbolic points. At finite

and large time, the gain in energy is initially associated with a mechanism reminiscent to the anti

lift-up mechanism described by Antkowiak and Brancher [J. Fluid Mech. 578, 295 (2007)] in the

context of an axisymmetric vortex. Presently, the optimal initial condition (the adjoint modes

at large time) corresponding to streamwise streaks localised on the contracting manifold of

the hyperbolic point induces streamwise vortices aligned with the stretching manifold of the

hyperbolic point (the direct modes). The localisation on distinct manifolds of direct and adjoint

eigenmodes is more pronounced when the Reynolds number is increased. An interpretation is

proposed based on a balance between diffusion and stretching effects that predicts the thickness of

the energy containing region for the adjoint and the direct mode decreasing as 1=
ffiffiffiffiffiffi
Re
p

. The extra

gain of energy due to non normal effects grows, since direct and adjoint modes are localised in

different regions of space, i.e., the stretching and contracting manifold, a novel effect of the so

called convective non normality associated with the transport of the perturbation by the base flow.
VC 2011 American Institute of Physics. [doi:10.1063/1.3659158]

I. INTRODUCTION

Wakes forming behind slender bodies are shear flow

prototypes. Shear flows which present an initial velocity pro-

file with an inflexion point are unstable to two-dimensional

(2D) perturbations. As the primary Kelvin-Helmholtz

instability1 develops, the initial vorticity rolls up leading to

the formation of primary vortices transverse to the flow

(spanwise). This primary state is itself unstable to 2D and

three-dimensional secondary (3D) modes. The secondary

two-dimensional instability induces the merging of two con-

secutive co-rotating vortices, involving the doubling of the

initial primary wavelength.2 The secondary 3D instability is

mainly characterized by the waviness of the primary vortices3

and the development of an array of counter-rotating vortices

oriented in the direction of the flow (streamwise) which

appears in the braid region between two consecutive primary

vortices. In the case of a wake behind a flat plate, the primary

instability of a wake leads to a double staggered rows of

counter-rotating vortices transverse to the direction of the

flow, the Von Kármán vortex street. The 3D secondary insta-

bility is then characterized by two different modes symmetric

(S) and anti-symmetric (AS), depending if they present the

same or the opposite symmetries of the base flow as discussed

by Robinson and Saffman4 and observed by Meiburg and

Lasheras5 Lasheras and Meiburg.6 They were also identified

and carefully studied in the wake of a cylinder (William-

son,7,8 Barkley and Henderson9) where they are labelled

Mode A (symmetric mode) and Mode B (anti-symmetric

mode). In this bluff body case, these secondary instabilities

have been shown to be global9 and bifurcations select a

precise wavelength and involve all the region of the flow

including the cylinder and the separation point. In slender

body configuration, as the flat plate, both the primary and the

secondary instabilities develop progressively in space and

are extremely sensitive to perturbations added to the flow.

They have been interpreted as the result of convective insta-

bility5,6,10 justifying the use of temporal instability to analyse

their dynamics in a frame moving with the primary structure.

In all the shear flows configurations, the precise nature of

these secondary instabilities is not yet fully understood. In the

case of mixing layers, two main physical mechanisms have

been proposed to explain the development of the 3D second-

ary flows: the elliptic instability of the primary vortices

1070-6631/2011/23(11)/114106/15/$30.00 VC 2011 American Institute of Physics23, 114106-1
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(see the review article by Kerswell11) and the hyperbolic

instability of the highly strained region between vortices.12–14

In the case of a wake behind a bluff body, the mechanism of

instability leading to Mode A, which wavelength scales on

the vortex core, has been associated with the elliptic instabil-

ity and the Mode B which develops at an higher Reynolds

number and have a shorter wavelength with hyperbolic insta-

bility.7,8 However, identification of the mechanism responsi-

ble for the symmetry and wavelength selection has been

shown to be more complex in that case, since its global nature

involves a complex feedback mechanism where velocity

induction by vorticity perturbation and coupling with the sep-

aration region play a role. In the slender body case, this effect

is weaker and if the classification in terms of symmetric and

anti-symmetric modes is universal, the selection of the mode

and of its wavelength is not. In particular, Julien et al.10

observed experimentally in the case of a wake behind a flat

plate that both modes of instability have comparable wave-

length of order of the wavelength of the two-dimensional vor-

tex street and are the result of a same instability mechanism,

as also shown by numerical temporal stability analysis.15,16

In this paper, a three dimensional secondary instability

of a wake forming behind a thin flat plate has been addressed

in the temporal framework at moderate and large Reynolds

number for both symmetries. Transient growths of perturba-

tions are studied by computing the finite time optimal pertur-

bation that maximizes the energy growth at different time

horizons with the direct-adjoint iterative technique used by

Luchini.17 The role of the regions near the hyperbolic stagna-

tion point and the point of maximum strain have been ana-

lysed. Mechanisms for transient amplification of energy are

reminiscent, for short time horizon to the mechanism

described by Caulfield and Kerswell14 for an inviscid pertur-

bation of an uniform hyperbolic base flow, and for intermedi-

ate and long time horizons to a mechanism acting in an

opposite way to the classical lift-up mechanism18 similar to

the anti lift-up mechanism described by Antkowiak and

Brancher19 for the transient growth of axisymmetric pertur-

bation of an axisymmetric vortex. At long time horizon, the

optimal perturbation (adjoint mode) and the long time

response (direct mode) are localised respectively on the con-

tracting and stretching manifold of the hyperbolic point. The

localisation is more pronounced when the Reynolds number

increases and Reynolds number dependency is related to the

work of Lin and Corcos20 and Neu21 on the effect of viscous

diffusion and stretching on secondary vortices. The extra

gain of energy with respect to the Reynolds number is com-

puted and its evolution analysed in the framework of the con-

vective non normality introduced by Chomaz.22

II. 3D PERTURBATIONS OF A VON KÁRMÁN STREET

The experiment of Julien et al.10 has shown that the

velocity profile at the trailing edge of a thin flat plate is well

fitted by a Bickley wake profile. The 2D wake was character-

ized by the Reynolds number, Rexp
e ¼ �Udx

�exp
¼ 220 with �U the

free stream velocity, �exp the fluid viscosity, dx the wake

thickness, and by the Strouhal number St ¼ dxf= �U
� 2p

5
dx
k2D
� 0:07 with f the frequency of the vortex shedding,

and k2D the wavelength of the primary vortex; k2D � 1
5

�Uf
since the reported propagation velocity of the primary vorti-

ces forming the Von Kármán street is about 1
5

�U.

As in Ref. 16, we adopt the temporal framework well

suited for this slowly developing wake. The same procedure

is used to generate numerically a 2D base flow on which

transient growth are analysed. Only the features useful for

the present study will be recalled here. Since no exact solu-

tions of the Navier-Stokes equations modelling a Von

Kármán street are known, the base flow is obtained by a 2D

direct numerical simulation of the wake resulting from the

destabilization of a Bickley wake profile, which belongs to

the family of velocity profiles used by Monkewitz23 to model

bluff body wakes

UðyÞ ¼ 2� 2

1þ sinh2 y

d

� � ; (1)

with d ¼ lnð1þ
ffiffiffi
2
p
Þ. The velocity and length scales leading

to the choice (1) in the numerical code are, respectively, �U=2

and dx/d. The symmetry of the Von Kármán street is imposed,

and the diffusion of the Bickley wake is compensated by a

body force. The 2D base state is computed with a pseudo-

spectral method with an equally spaced Cartesian mesh of

128� 512 collocation points. For convenience the x-length,

Lx is taken equal to k2D¼ 2p in order for the Strouhal number

to match with the experimental value St¼ 0.07. The cross-

tream length of the computational domain is Ly¼ 4k2D, taken

large enough to make confinement effects negligible. Periodic

conditions are applied in the x and y directions. Fig. 1(a)

presents the spanwise base vorticity XB computed previously

by Julien et al.16 The streamlines, in the Galilean frame which

moves with the flow, are represented by arrowed lines on

Fig. 1(a), its translation velocity being determined as in

Ref. 16 by minimizing the modulus of the transport term

UB:rUBj j where UB is the base flow in the frame moving

with the vortices. In that frame, the flow is quasi-steady with a

slow evolution due to viscous diffusion. The streamlines pos-

sess two stagnation points, an hyperbolic point indicated by a

white star and an elliptic point inside the vortex core indicated

by a white triangle. The strain field associated with the base

flow is plotted on Fig. 1(b).

�ðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@vB

@y

� �2

þ 1

4

@uB

@y
þ @vB

@x

� �2
s

; (2)

with (uB, vB) the components of the velocity UB of the base

flow in the (x, y) plane. The location where maximum value

of the strain, �B ¼ 0:4758, is reached is marked by a white

dot on Figs. 1(a) and 1(b). This point of maximum strain is

close to the hyperbolic point (white star Fig. 1(b)), where the

strain is slightly lower �B ¼ 0:41.

For stability and transient growth analysis, the quasi-

steady base state UB in the frame moving with the vortices is

used, the slow evolution of the base flow due to the viscous

diffusion is neglected, and the base flow is kept constant. In-

finitesimal 3D perturbation fields, with the same periodicity

as the base flow, are superposed to this base state, of velocity

UB and vorticity XB. The three dimensional perturbation of

114106-2 S. Ortiz and J.-M. Chomaz Phys. Fluids 23, 114106 (2011)
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velocity, vorticity, and pressure ½eU; ex; ~p� are solutions of the

linearized Navier-Stokes equations

@ ~U
@t
¼ UB � exþ ~U� XB �rð~pþ eU � UBÞ þ

1

Re
D~U

r � ~U ¼ 0

8<: ;

(3)

where viscous diffusion of the perturbation are taken into

account. Note that with the present definition of the base flow,

the numerical Reynolds number is Re ¼ Rexp
e =ð2dÞ. The uni-

formity of the base state along the spanwise direction, z axis,

allows a decomposition of the perturbations on the form

½eU; ex; ~p�ðx; y; z; tÞ ¼ ½U;x; p�ðx; y; tÞeikzz þ cc; (4)

where U¼ (ux, uy, uz) is the velocity, x¼ (xx, xy, xz) the

vorticity, and p the pressure of the perturbation associated

with kz the spanwise wavenumber, and c.c. denotes the com-

plex conjugate in Eq. (4). Since the base flow is symmetric

under (x, y, XB) ! (xþ k2D/2,� y,�XB), the 3D secondary

perturbation may be decomposed as the sum of a S and AS

part, which evolve independently when non linearities are

not taken into account.

The symmetric contribution verifies

½ux;uy;uz�ðx;y;tÞ¼½ux;�uy;uz�ðxþk2D=2;�y;tÞ
½xx;xy;xz�ðx;y;tÞ¼½�xx;xy;�xz�ðxþk2D=2;�y;tÞ

�
: (5)

The anti-symmetric contribution satisfies opposite relations

½ux;uy;uz�ðx;y; tÞ ¼ ½�ux;uy;�uz�ðxþ k2D=2;�y; tÞ
½xx;xy;xz�ðx;y; tÞ ¼ ½xx;�xy;xz�ðxþ k2D=2;�y; tÞ

�
: (6)

The numerical integration of Eqs. (3) and (4) is based on a

pseudospectral code24 in cartesian coordinates with periodic

conditions, setting the transverse wavenumber kz constant

during the simulation. Two sets of simulations have been

performed for symmetric and anti-symmetric perturbations

imposed on the initial conditions. The velocity, vorticity, and

pressure perturbations are expressed in Fourier space by

application of the complex Fourier transform

½U;x; p�ðx; y; tÞ ¼
ð ð
½Û; x̂; p̂�ðkx; ky; tÞeiðkxxþkyyÞdkxdky: (7)

In spectral space, the linearized Navier-Stokes Equations (3)

become

@Û

@t
¼ PðkÞ½UB � dxþ U� XB� �

1

Re
k2Û; (8)

where k¼ (kx, ky, kz) is the total wavevector and P(k) is the

projection operator on the space of divergence-free fields

which, in Fourier space, may be expressed as a tensor with

components Pij¼ dij� kikj/k
2. Introduction of this operator

suppresses the term rð~pþ ~U:UBÞ. Time integration is per-

formed on the Fourier space (i.e., on Eq. (8)) with a second-

order Adams-Bashforth scheme whereas the dissipative term
1

Re
DU is integrated exactly in the Fourier space. In the pres-

ent pseudo spectral method, the cross-product terms

UB�xþU�XB are evaluated in the physical space and

projected back in the Fourier space. When searching for

eigenmodes, Arnoldi technique based on a fifth dimensional

Krylov space25 is implemented and allows us to retrieve with

a reasonable accuracy the three leading modes. It should be

noticed that for both symmetries, the leading modes are sta-

tionary (ri¼ 0) but less unstable propagating modes have

also been identified.16,26 For Re¼ 76.9 Rexp
e ¼ 220

� 	
and for

the base flow of Fig. 1, Julien et al.16 have computed numeri-

cally the growth rate of the most amplified anti-symmetric

and symmetric modes, which are stationary and represented

on Fig. 2, respectively, by a solid line and a dash-dotted line.

Using the same procedure, we have calculated, for both sym-

metries, the growth rate of amplified modes developing on

the same base flow, but for a larger Reynolds number

Re¼ 769, their growth rates rr are plotted on Fig. 2.

For Re¼ 769, the most amplified symmetric mode (“o”

symbol) corresponds to a spanwise wavenumber kz¼ 3.4

with a growth rate rr¼ 0.141. The band of unstable wave-

numbers is [0.18, 12.5]. For the anti-symmetric mode (“þ”

symbol), the maximum of amplification rr¼ 0.142 is

obtained for kz¼ 2.8 and the band of unstable wavenumbers

is smaller [0.36, 11.53]. The eigenmodes for the symmetric

FIG. 1. (Color online) Isovalues of (a) the spanwise vorticity XB of the base state and (b) local strain �B in the (x,y) plane for Re¼ 76.9, Julien et al.16 The

arrowed lines sketch the streamlines of the base flow in the frame the flow is quasi-steady. The computation is performed with 128� 512 collocation points, on

a computaional domain of size (Lx, Ly)¼ (2p, 8p). The domain represented on (a) and (b) is [0.24, 2p] in the x direction and [5.2, 20] in the y direction. The

white star locates the hyperbolic stagnation point which has coordinates (3.04, 14.38) and the white triangle the elliptic stagnation point of coordinates (2.94,

11.34). The white point on (b) marked the location of the maximum of strain point of coordinates (3.58, 13.99).

114106-3 Transient growth of secondary instabilities Phys. Fluids 23, 114106 (2011)
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and anti-symmetric branches present similar structure, and

we restrict the analysis to symmetric modes. Fig. 3 shows

the spanwise vorticity xz, the enstrophy |x|2, and the kinetic

energy K¼ |U2| in the (x,y) plane for three spanwise wave-

numbers kz¼ 1, kz¼ 1.4, and kz¼ 3.4 (leading spanwise

wavenumber). For kz¼ 1, the spanwise vorticity presents a

dipolar structure in the base vortex core (Fig. 3(a)). The ens-

trophy is intense on the stretching manifold of the hyperbolic

point marked by a star on Fig. 3(b). However, at this low

wavenumber, the region of the elliptic point marked by a

triangle is where the kinetic energy is maximum (Fig. 3(c)).

When the spanwise wavenumber is increased to kz¼ 1.4 and

kz¼ 3.4, the dipolar structure of the spanwise vorticity of the

kz¼ 1 case (Fig. 3(a)) is progressively transformed, becom-

ing intense at the periphery of the vortex core for kz¼ 3.4

Fig. 3(g). In parallel, the energy fields become braid-centred

with negligible contributions in the vortex core Figs. 3(e),

3(f), 3(h), and 3(i).

This behaviour is similar to the one found by Potylitsin

and Peltier27 for the three dimensional instability of a two-

dimensional single vortex row, issuing from a shear layer

after the roll up of Kelvin-Helmoltz billows and their pair-

ing. They have observed that the model structure of eigenm-

odes evolves from core-centred to braid-centred when the

wavenumber is increased. The localisation of the eigenmode

energy on the stretching manifold of the hyperbolic point

suggests that the physical origin may be the hyperbolic insta-

bility studied by Caulfield and Kerswell14 for a pure inviscid

extensional flow predicting a growth rate of the perturbation

equal to rloc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

B � X2
B=4

q
. The corresponding viscous

cutoff wavenumber is given by kc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re:rloc

p
.28 With �B and

XB evaluated at the hyperbolic point, the value predicted by

the local theory is rloc¼ 0.41 three times larger than the

computed leading growth rate and the predicted neutral

wavenumber kc¼ 18.5 50% higher than the computed

one kc¼ 12.5. However, the prediction is only valid for an

uniform strain and it does not take into account the spatial

inhomogeneity of the flow. Yet at short time, when the per-

turbation has not explored the complex structure of the base

flow, one may imagine that the large amplification by the

stretching of the perturbation at the hyperbolic point should

hold for some time. As shown by Caulfield and Kerswell14,

hyperbolic regions may be responsible for strong transient

growth. In order to get a better understanding of the role of

the hyperbolic stagnation point and of the complex flow

structure in the dynamics, we investigate the transient growth

restricting ourselves first to the leading spanwise wavenum-

ber kz¼ 3.4 and to the symmetric mode.

III. TRANSIENT GROWTH ANALYSIS

A. Large time dynamics

To describe amplification of perturbation at finite time,

we need to determine the optimal initial condition that maxi-

mizes the energy gain G(s) at each time horizon s

GðsÞ ¼ EðsÞ
Eð0Þ ¼

ð~UðsÞj~UðsÞÞ
ð~Uð0Þj~Uð0ÞÞ

; (9)

with E(0) the initial kinetic energy of the perturbation and

E(s) its value at time s (E(s) is the result of the integration of

K¼ |U2| Figs. 3(c), 3(f), or 3(i) over the numerical domain)

EðsÞ ¼ ð~Uj~UÞ ¼
ðLx

0

ðLy

0

ð~U�T � ~UÞdxdy; (10)

the superscripts * and T denote the complex conjugate and

the transposition and Lx and Ly correspond to the integration

domain size in the x and y direction defined in Sec. II.

We consider the following inner product:

hf 0jfi ¼
ðs

0

ðLx

0

ðLy

0

f 0�T :fdxdydt

¼
ðs

0

ðLx

0

ðLy

0

ð~U0�T :~Uþ ~p0�~pÞdxdydt; (11)

where f 0 ¼ ~U0; ~p0
� 	

and f ¼ ~U; ~p
� 	

are two complex state

vectors and s a prescribed arbitrary time. The adjoint linear-

ized Navier-Stokes equations are derived using the Lagrange

identity29

�@ ~U
þ

@t
¼ XB� ~U

þ �r� UB � ~U
þ� �
�r~pþ þ 1

Re
D~U
þ

r:~Uþ ¼ 0

8<: :

(12)

The optimization condition will require the adjoint system

(12) be marched backwards in time setting t0 ¼� t allowing

(12) to become well-posed; ½~Uþ; ~pþ�ðx; y; z; tÞ are the adjoint

velocity and pressure perturbations. The numerical integra-

tion of Eq. (12) is based on a pseudo-spectral technique, sim-

ilar to the one used to solve the direct equation, with

periodic conditions. The size of the box and the timestep are

the same as those described in the direct case for the integra-

tion of Eq. (3). We focus first, on the symmetric adjoint

eigenmode, for the most unstable spanwise wavenumber

kz¼ 3.4. The same Arnoldi technique on a five dimension

FIG. 2. Non dimensional growth rate rr of the most amplified modes as a

function of the spanwise wavenumber kz. These modes are stationary

(ri¼ 0). Most amplified anti-symmetric mode for Re¼ 76.9 continuous line

and for Re¼ 769 (þ ) symbols. Most amplified symmetric mode for

Re¼ 76.9 dash-dotted line and for Re¼ 769 (o) symbols.
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krylov space is used to compute the leading adjoint eigenmo-

des as we did for the direct operator. Although the discretiza-

tion of the continuous adjoint operator is different from the

adjoint of the discrete direct operator, the resolution is large

enough to retrieve the biorthogonality condition between the

direct and adjoint eigenmodes (see Appendix A2, Eq. (A13))

with a very good accuracy. The spanwise vorticity, the ens-

trophy, and the energy of the adjoint mode of the leading

eigenvalue are localised only on the contracting manifold of

the hyperbolic stagnation point represented by a white star

on Figs. 4(a)–4(c).

Fig. 5 shows the logarithm of the energy gain Eq. (9)

with respect to time, for kz¼ 3.4 at Re¼ 769 and different

initial conditions: the direct eigenmode U1 (thin line) and the

adjoint eigenmode Uþ1 (thick line). For the direct mode, the

gain in energy grows exponentially at a slope twice the

growth rate computed using the Krylov Arnoldi technique:

rr¼ 0.141. The energy grows initially faster when initialized

by the adjoint eigenmode and asymptotically reaches a

straight line parallel to the direct mode case but with an extra

gain in good agreement with the prediction of Eq. (A23)

(Appendix A3):1= U1jUþ1
� 	2¼ exp 2:07ð Þ, for Re¼ 769.

The adjoint eigenmode is the optimal perturbation that

maximizes the energy gain at large time (see the derivation

for the linearized Navier-Stokes equations in Appendix).

It is quite remarkable that the adjoint eigenmode is domi-

nated by the spanwise vorticity (Fig. 4(a)) with two opposite

sign bands of vorticity, corresponding to an in-plane jet type

perturbation, as visualized by the velocity field in the (x, y)

plane plotted on Fig. 6. Such jet type initial perturbation

(Figs. 4(a) and 6(a)) generates at large time streamwise vorti-

ces since the direct mode presented on Figs. 3(g) and 3(h) is

dominated by in-plane vorticity. Amazingly this scenario of

streamwise jets generating streamwise vortices is the opposite

of the lift-up mechanism active in shear flows, where stream-

wise vortices give rise to streamwise jets like perturbation

called streaks. In order to get a better understanding of the

physical mechanism of instability, we consider the linearized

vorticity equation

@ex
@t
¼ �UB:rexþ ex:rUB � ~U:rXB þr~U:XB þ

1

Re
Dex;

(13)

where the first two terms of the right hand side are, respec-

tively, the transport and the stretching/tilting of the

FIG. 3. (Color online) Symmetric mode: Spanwise vorticity field xz (a), (d), and (g), the enstrophy |x|2 field (b), (e), and (h), and kinetic energy K¼ |U2| field

(c), (f), and (i) associated with the eigenmode in the (x,y) plane for Re¼ 769 and for different wavenumbers (a)–(c) kz¼ 1; (d)–(f) kz¼ 1.4; and (g)–(i)

kz¼ 3.4. The spanwise vorticity has been scaled by |xmax|, the square root of the maximum of the enstrophy, whereas enstrophy and energy fields have been

normalized by their maximum amplitude. The domain represented is [0.24, 2p] in the x direction and [5.2, 20] in the y direction. The white star locates the

hyperbolic stagnation point which has coordinates (3.04, 14.38) and the white triangle the elliptic stagnation point of coordinates (2.94, 11.34).
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perturbation vorticity by the base flow and the following

two terms, respectively, the transport and the stretching/tilt-

ing of the base flow vorticity by the perturbation. The vor-

ticity ex and velocity ~U perturbations are decomposed on

the form, ex ¼ exp þ exz~ez and ~U ¼ ~Up þ ~uz~ez with exp and
~Up, respectively, the vorticity and velocity perturbations in

the (x,y) plane and exz and ~uz, respectively, the spanwise

perturbed vorticity and velocity,~ez is the spanwise unit vec-

tor. As the in-plane base flow velocity UB and the spanwise

base flow vorticity XB depend only on (x, y) coordinates,

the evolution equations for exp becomes in the inviscid limit

@ exp

@t
þ UB:rexp ¼

@ ~Up

@z
:XB þ exp:rUB: (14)

All the vectors are, without introducing tedious notation,

considered as two components vectors and gradients. The

equation evolution for exz arising from the projection of

Eq. (13) on the spanwise direction evolves according to the

equation

@ exz

@t
þ UB:rexz ¼ �~UprXB þ

@~uz

@z
:XB: (15)

At finite and long time, the optimal initial perturbation con-

sists of an in-plane jet type perturbation, the initial velocity

is mainly in the (x,y) plane ð~uz � 0Þ and is located on the

contracting manifold of the hyperbolic point (Fig. 6), where

the base flow vorticity is small but non zero (Fig. 1),
~Up:rXB � 0; since the base flow vorticity is constant along

trajectories in the inviscid limit. Hence initially, the spanwise

vorticity ~xz Eq. (15) evolves at leading order according to

the simple transport equation

@ exz

@t
þ UB:rexz ¼ 0: (16)

Therefore, the spanwise perturbation vorticity evolves as a

passive scalar convected by the base flow at the early time.

The transient growth arises from the production of in-plane

vorticity in the response which evolves according to

Eq. (14). In Eq. 14, we found that the two terms,

@ ~Up

@z XB ¼ ikz
~UpXB representing the tilting of the spanwise

base flow vorticity by the alternated in z in-plane jet, andexp:rUB, the stretching/tilting of the perturbation by the

mean flow, initially lead the evolution eventhough XB andexp are small (Figs. 1(a) and 7(a)) since ~Up and the strain are

large on the contracting manifold of the hyperbolic point

(Figs. 1(b) and 6(a)). At early time, the in-plane vorticity

(white arrow on Fig. 7(a)), located along the contracting

manifold of the hyperbolic point, is not exactly aligned with

the stretching direction of the hyperbolic point (white dotted

line on Fig. 7(a)). The tilting of the spanwise base flow vor-

ticity by the in-plane jet,
@ ~Up

@z XB in Eq. (14), tends to align

the in-plane vorticity along the stretching manifold during its

journey toward the hyperbolic point (Fig. 7(b)). At the same

time, the in-plane vorticity is stretched by the mean flowexp:rUB in Eq. (14). This stretching dominates later time.

FIG. 4. (Color online) Symmetric mode: Spanwise vorticity field xz (a), enstrophy |x|2 field (b), and kinetic energy K field (c) of the leading adjoint eigen-

mode in the (x, y) plane for Re¼ 769 and for kz¼ 3.4. The contour levels shown and the size of the domain are the same as Fig. 3. The white star locates the

hyperbolic stagnation point which has coordinates (3.04, 14.38) and the white triangle, the elliptic stagnation point of coordinates (2.94, 11.34).

FIG. 5. Energy gain of symmetric mode for the most amplified spanwise

wavenumber kz¼ 3.4 and for Re¼ 769 as a function of time. Thin continu-

ous line: initial condition is the direct eigenmode presented Fig. 3. Heavy

continuous line: initial condition is the adjoint eigenmode presented Fig. 4

optimal at large time. Open symbols: optimal gain at each time horizon: the

initial condition is optimized and, therefore, different at each time horizon.

Dashed-dotted line: theoretical prediction of the energy gain at short times

Caulfield and Kerswell14 and Eq. (20).
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All along this evolution, the perturbation is transported by

the base flow and eventually is localised along the stretching

manifold of the hyperbolic point (Fig. 7(c)). Antkowiak and

Brancher19 observed in the case of a stable Lamb-Oseen

gaussian vortex that optimal initial “streaks” of axisymmet-

ric azimuthal velocity located at the periphery of the vortex

give rise to amplified transient azimuthal vortices. They

called this mechanism “anti lift-up” since the scenario was

inverted compared to the classical lift-up mechanism in

wake shear flow where streamwise vortices produce low and

high speed streaks.

B. Optimal perturbations

We look for the optimal initial condition which maxi-

mizes the energy gain Eq. (9) at a finite time horizon s

GðsÞ ¼ max ~Uð0Þ
ð~UðsÞj~UðsÞÞ
ð~Uð0Þj~Uð0ÞÞ

 !
: (17)

As in Corbett and Bottaro,30 the optimal initial condition

may be obtained by an iterative procedure, involving alterna-

tive integration of the direct and adjoint equations. The evo-

lution of any initial condition, ~Uð0Þ, is obtained by the

integration of Eq. (3) until the time s leading to the velocity
~UðsÞ. The result of this integration allows the formal defini-

tion of the propagator U(s)

~UðsÞ ¼ UðsÞ~Uð0Þ: (18)

Similarly, the backward integration of the adjoint linearized

Navier Stokes equation (12) allows to define the adjoint

propagator Uþ(s), which turns out to be also the adjoint of

U(s) with respect to the inner product Eq. (10).30 The opti-

mal initial condition is then the eigenvector associated with

the largest eigenvalue of the operator, Uþ(s)U(s), since the

optimal gain is

GðsÞ ¼ max ~Uð0Þ
ðUþðsÞUðsÞ~Uð0Þj~Uð0ÞÞ

ð~Uð0Þj~Uð0ÞÞ

 !
: (19)

The operator Uþ(s)U(s) being hermitian positive definite is

normal and the optimal perturbation corresponds then to its

leading eigenmode, which may be simply computed via

power iteration as done by Luchini.17 In practice, the direct

equations are integrated until a time t¼ s, the backward inte-

gration in time of the adjoint equations is then performed

using the final state of the direct integration as the initial per-

turbation for the adjoint equation. The procedure is reiterated

until convergence defined in practice as when the absolute

variation of ln G is less than 10�2. The optimal energy gains

at different instant are plotted on Fig. 5 as open circles, they

are very close to the gain obtained when the initial condition

is the adjoint eigenmode, suggesting that all the transient

FIG. 6. (Color online) Velocity field of

the leading adjoint eigenmode: The

solid lines represent the streamlines of

the basic flow. The arrows denote the

velocity of the adjoint eigenmode in the

(x,y) plane for kz¼ 3.4. The domain

represented on (a) is [0.49, 2p] in the x

direction and [8.83, 16.2] in the y direc-

tion. The black star locates the hyper-

bolic stagnation point which has

coordinates (3.04, 14.38), the “o” sym-

bol is the point maximum of strain

located at (3.58, 13.99). (b) Blow up of

the area delimited by a rectangle on fig-

ure (a) around the hyperbolic point.

FIG. 7. (Color online) Evolution of the in-plane enstrophy j ~xpj2 of the in-plane jet perturbation (Fig. 6), for kz¼ 3.4 and Re¼ 769: (a) optimal initial perturba-

tion at t¼ 0, (b) optimal response for t¼ 3, and (c) evolution of the perturbation until s¼1. Streamwise enstrophy has been normalized by the maximum of

enstrophy. The domain represented is [0.73, 4.9] in the x direction and [12.27, 15.95] in the y direction. The white arrows represent the in plane vorticity per-

turbation vector, the white dotted line the stretching direction and the hyperbolic point marked by a white star of coordinates (3.04, 14.38).
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dynamics is led by the adjoint mode. The transients last until

s� 20, when the slope of the optimal gain curve ln(G)

asymptotes to a 5% precision the one given by the leading

instability growth rate.

1. Finite time dynamics

Fig. 8(e) presents the enstrophy of the optimal initial

perturbation at time horizon s¼ 5, Fig. 8(f) the correspond-

ing optimal response both plotted in a zoomed area around

the hyperbolic point. The optimal perturbation is initially

centred on the point where the strain is maximum and is

elongated along the contracting manifold of the hyperbolic

point. Initially, 85% of its enstrophy is on the spanwise vor-

ticity, whereas the response is dominated by in-plane vortic-

ity exp Eq. (14) which corresponds then to 99% of total

enstrophy. This indicate that optimal response at time hori-

zon s¼ 5 produces already streamwise vortices via the “anti-

liftup” mechanism described above, the optimal initial per-

turbation being an plane jet as for the adjoint mode, the only

difference being the streamwise extension of the perturba-

tion, much more limited for s¼ 5 than for s¼1 (adjoint

mode).

2. Short time dynamics

At very early time horizon, s¼ 0.1, the optimal energy

gain ln(G)¼ 0.075 is twice larger than the one obtained at

the same time, when initializing by adjoint eigenmode

ln(G)¼ 0.032. At this very short time, the optimal response

Fig. 8(b) is nearly identical to the optimal perturbation Fig.

8(a) since the flow has no time to evolve. The initial optimal

perturbation Fig. 8(a) and its correponding response Fig.

8(b) have, respectively, 79% and 83% of their enstrophy on

the (x,y) plane. The enstrophy of the optimal perturbation is

concentrated close to the point of maximum strain, indicated

by a white dot on Figs. 1 and 8.

When time horizon is increased to s¼ 0.8, the enstrophy

of the optimal initial perturbation Fig. 8(c) keeps being con-

centrated near the point of maximum strain and the optimal

response starts moving toward the hyperbolic point Fig. 8(d).

At this time, the enstrophy of the optimal initial perturbation

is due to in-plane vorticity perturbation ~xp which represents

98% of the total enstrophy Fig. 9(a). Initially, the in-plane

vorticity (white arrow on Fig. 9(a)) of the optimal perturba-

tion is already aligned along the stretching direction of the

hyperbolic point, the dominant term on Eq. (14) is mainly

FIG. 8. (Color online) Optimal initial per-

turbations and corresponding response at

different time horizons (a), (b) s¼ 0.1, (c),

(d) s¼ 0.8, and (e), (f) s¼ 5: Close up view

of the enstrophy field |x|2 around the hyper-

bolic point for Re¼ 769, kz¼ 3.4 at time

horizon: (a), (b) s¼ 0.1, (c), (d) s¼ 0.8,

and (e), (f) s¼ 5. The enstrophy is normal-

ized by its maximum. The domain repre-

sented is [2.26, 4.51] in the x direction and

[13.06, 14.98] in the y direction. The white

star locates the hyperbolic stagnation point

of coordinates (3.04, 14.38) and the white

point marked the location of the maximum

of strain point of coordinates (3.58, 13.99)

as on Fig. 1.
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the stretching of the perturbation by the base flow exp:rUB.

Caulfield and Kerswell14 have predicted in the case of an

unbounded inviscid quadratic flows with a hyperbolic stag-

nation point in the framework of local theories (Refs. 12 and

32) that the optimal vorticity perturbation, leading to the

maximum growth of energy at large time, should be aligned

with the stretching direction of the hyperbolic point, the ve-

locity perturbation of the corresponding response is in the

(x,y) plane, and along the contracting direction of the hyper-

bolic point. We plot on Fig. 9(a) by a white arrow the per-

turbed vorticity vector at the point of maximum perturbation

amplitude and by a black arrow the perturbed velocity vec-

tor. The direction of both vectors is in excellent agreement

whith local theory.

As shown by Corcos and Lin,31 the second term in Eq.

(14), exp:rUB, enhances the streamwise vorticity with no

change of the circulation. This mechanism linked to vortex

stretching differs from the 2D Orr-mechanism for which the

vorticity is in spanwise direction and is not affected by

stretching. In the classical 2D Orr-mechanism in an

unbounded constant shear flow,18 the velocity perturbation is

on the form ~UðtÞexpðikðtÞ:xÞ. The spanwise vorticity is con-

served while the wave vector k(t), with no spanwise varia-

tion, rotates leading to transient growth of the in-plane

velocity fields. In Caulfield and Kerswell,14 the wave vector

is spanwise and does not evolve in time, and the in-plane

vorticity is stretched and tilted by the mean flow (exp:rUB in

Eq. (14)) leading also to transient growth of the in-plane ve-

locity. In the present case, the patch of vorticity initially cen-

tred on the point of maximum shear elongated along

contracting manifold of the hyperbolic point adopt a rounded

shape at t¼ s Fig. 9(b) and starts being elongated along the

stretching manifold at t¼ 2s Fig. 9(c). At the same time, its

centre is displaced toward the hyperbolic point. Such a local-

isation of the vorticity patch is not described in Caulfield and

Kerswell14 since their base flow is a uniform strain field

extending to infinity.

Donnadieu et al.33 have shown, in the inviscid limit for

the perturbation, that the initial condition which maximizes

the energy gain Eq. (9) at short time is given by the

eigenvector of the symmetric part of the base flow velocity

gradient localised near the point of maximum strain. The

corresponding eigenvalue is the maximum value of the base

strain �B (Fig. 1(b))

ln GðtÞ ¼ �2maxð�BÞtþ Oðt2Þ; (20)

a result which extends the results of Ref. 14 for an

unbounded inviscid quadratic flow with an hyperbolic stag-

nation point, where the maximum of the growth rate is twice

the strain rate �. This prediction at short time is represented

on Fig. 5 by a dashed-dotted line and is in reasonable agree-

ment with the computed optimal gain, considering the fact

that Eq. (20) is an inviscid theory valid for large kz, whereas

presently the spanwise wavenumber and the Reynolds num-

ber are finite.

IV. DISCUSSION AND CONCLUSION

A. Effect of the wavenumber

Up to now, the optimal gain has been presented only for

the most unstable wavenumber kz¼ 3.4 but the procedure

may be repeated for any kz. For time horizon s¼ 5 and

above, we have found that whatever the wavenumber, the

vorticity of the initial optimum perturbation is mainly in the

spanwise direction corresponding to streamwise alternated

jets concentrated on the contracting manifold of the hyper-

bolic point. The anti lift-up mechanism, therefore, leads the

initial transient for all wavenumbers for time horizon larger

than s¼ 5. It should be noticed that for large time horizon

(s> 20), the final response to this initial anti lift-up mecha-

nism does depend on the wavenumber since it corresponds to

the eigenmode plotted on Fig. 3 and discussed in Sec. II. For

small wavenumbers (kz	 1), the kinetic energy of the

response has a significant contribution in the core of the vor-

tices (Fig. 3(c)) whereas the corresponding enstrophy is

always localized on the stretching manifold of the hyperbolic

point (Fig. 3(b)) and dominated by in-plane vorticity. For

those wavenumbers another mechanism is present, transfer-

ing energy to the core by induction after time s¼ 20.

FIG. 9. (Color online) Evolution of the in-plane enstrophy j ~xpj2 of the optimal initial perturbation at time horizon s¼ 0.8, for kz¼ 3.4 and Re¼ 769: (a) opti-

mal initial perturbation at t¼ 0, (b) optimal response for t¼ s (c) evolution of the perturbation until t¼ 2s. Streamwise enstrophy has been normalized by the

maximum of enstrophy. The black arrows represent the in-plane velocity and the white arrows the in plane vorticity perturbation vectors of the perturbation.

The domain represented is [2.26, 4.51] in the x direction and [13.06, 14.98] in the y direction. The white star locates the hyperbolic stagnation point of coordi-

nates (3.04, 14.38) and the white point marked the location of the maximum of strain point of coordinates (3.58, 13.99).
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Only for short time horizon, the wavenumber has an

effect and we restrict the discussion to time horizon s¼ 0.8

and to three wavenumbers kz¼ 1, kz¼ 2.4, and kz¼ 8 on

both sides of the instability peak (Fig. 2). The numerical

calculations give an energy gain mostly independant of

the wavenumber, ln G¼ 0.55 for kz¼ 1, ln G¼ 0.59 for

kz¼ 2.4, ln G¼ 0.6 for kz¼ 3.4, and ln G¼ 0.56 for kz¼ 8.

The asymptotic theory (20) predicts also an energy gain inde-

pendant of the wavenumber ln G¼ 0.76, in good agreement

with numerical calculations, considering the fact that Eq. (20)

is obtained in the inviscid limit. We plot on Figs. 10(a),

10(c), and 10(e) the in-plane enstrophy j ~xpj2 of the optimal

initial perturbations, respectively, for kz¼ 1, kz¼ 2.4, and

kz¼ 8 and their corresponding response at s¼ 0.8 on Figs.

10(b), 10(d), and 10(f). At small wavenumber, kz¼ 1, the

optimal initial perturbation and its corresponding response

have, respectively, 8% and 17% of their enstrophy in the (x,y)

plane Figs. 10(a) and 10(b). As the wavenumber increases,

the part of the in-plane enstrophy increases. Optimal initial

perturbation have, respectively, 64% for kz¼ 2.4 and 98% for

kz¼ 8 Fig. 10(c) and Fig. 10(e) of their enstrophy on the (x,y)

plane, and the in-plane enstrophy of their corresponding

response are, respectively, 91% and 99% of the total enstro-

phy. For wavenumbers kz¼ 2.4, kz¼ 3.4, and kz¼ 8 transient

growth of energy is mainly due, as described in Sec. III B 2,

to the in-plane vorticity stretching similar to the hyperbolic

instability.14 Only for small wavenumber kz¼ 1 the mecha-

nism differs, the spanwise vorticity of the optimal initial

perturbation is the dominant component and produces in-

plane enstrophy responsible for the transient growth; the part

of in-plane enstrophy in the total enstrophy increases from

8% and 17% as time increases from t¼ 0 to the time horizon

s¼ 0.8.

B. Effect of the Reynolds number on the base flow

As pointed out by Lin and Corcos20 and Neu,21 the sec-

ondary vortices which develop on stretched shear layers in

the braid region are the result of a balance between the strain

and the viscous diffusion. High-resolution simulations with

lower kinematic viscosity have been performed to examine

the effect of an higher Reynolds number on both the base

flow and on the three dimensional perturbations.

Fig. 11 shows the base flow vorticity and the base strain

for a larger Reynolds number Re¼ 769 with 256� 1024

collocation points computed with the procedure described in

Sec. II. For this Reynolds number, isovorticity lines match

closely with streamlines (dark lines on Fig. 11(a)). The

FIG. 10. (Color online) Optimal initial

perturbations and corresponding

response (b): Close up view of the in-

plane enstrophy field j ~xpj2 around the

hyperbolic point for Re¼ 769 at time

horizon s¼ 0.8 for (a), (b) kz¼ 1, (c),

(d) kz¼ 2.4, and (e), (f) kz¼ 8. The in-

plane enstrophy is normalized by the

maximum of the total enstrophy |x|2.

The domain represented is [2.26, 4.51]

in the x direction and [13.06, 14.98] in

the y direction. The white star locates

the hyperbolic stagnation point of coor-

dinates (3.04, 14.38) and the white

point marked the location of the maxi-

mum of strain point of coordinates

(3.58, 13.99).
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maximum of strain is �B ¼ 0:53 and the strain at the hyper-

bolic point is �B ¼ 0:50. The evolution of the base flow due

to viscous diffusion is extremely slow and as explained in

Sec. II, a temporal linear stability analysis is performed on

this frozen base state Fig. 11.

For the base flow of Fig. 11, the evolution of the loga-

rithm of the energy gain for the three-dimensional symmetric

mode at Re¼ 769 with kz¼ 3.4 is represented on Fig. 12

when the initial condition is the adjoint eigenmode (heavy

dotted line) and with the direct eigenmode as the initial con-

dition (thin dotted line). At large time, the slope of ln G is

twice the growth rate of three dimensional perturbation, for

kz¼ 3.4 and Re¼ 769, its value is rr¼ 0.138. The logarithm

of the energy gain is extremely close to the one obtained at

the same wavenumber and same Reynolds number Re¼ 769

but for a perturbation superposed to the base state computed

for a different Reynolds number Re¼ 76.9 (Fig. 1) and repre-

sented on Fig. 12 by continuous line (heavy lines: initializa-

tion by the adjoint eigenmode and light line: initialization by

the direct eigenmode) showing that the value of the Reynolds

number at which the base state has been computed does not

affect the growth rate of the secondary perturbation on which

weaker dissipation may be applied (different Reynolds num-

ber for the perturbation). The extra gain lnð1=ðU1jUþ1 Þ
2Þ

(Appendix A3. Eq. (A23)) obtained when the adjoint pertur-

bation is used as an initial condition is also mainly independ-

ent of the base flow chosen (Fig. 12). Thus, for a given

Reynolds number for the perturbation dissipation, the non

normality of three-dimensional perturbations are also mostly

independant on the Reynolds number at which the base flow

has been computed.

C. Effect of the Reynolds number on the perturbations

For the same base flow shown on Fig. 11 and for several

Reynolds numbers Re¼ 76.9, Re¼ 769, Re¼ 3333, and

Re¼ 10 000, we have computed the wavenumber that maxi-

mizes the temporal growthrate, respectively, kz¼ 1.2,

kz¼ 3.4, kz¼ 5.4, and kz¼ 6.4. For these wavenumbers, we

have computed the adjoint eigenmode and measured at the

hyperbolic point the thickness D of the energy containing

region of the adjoint eigenmode and the thickness d of the

enstrophy of the direct eigenmode. The thickness D is

defined as the distance beyond which the energy of the

adjoint eigenmode drops below 10% of its maximum and the

thickness d is the same for the enstrophy of the direct eigen-

mode. The logarithm of these lengths is plotted on Fig. 13(a)

with respect to the logarithm of the Reynolds number. The

thickness d (0?0 symbols) of the direct mode scales as 1=
ffiffiffiffiffi
Re

p

in agreement with Lin and Corcos20 and Neu.21 The thick-

ness D (0D0 symbols) of the adjoint energy obeys the same

scaling. As a result, the localisation of the adjoint eigenmode

on the contracting manifold of the hyperbolic point and of

the direct eigenmode of the stretching manifold of the hyper-

bolic point is more pronounced when the Reynolds number

increases.

As discussed on Figs. 5 and 12 and Appendix A3 (Eq.

(A23), lnð1=ðU1jUþ1 Þ
2Þ represents the extra gain obtained by

initializing the perturbation by the adjoint eigenmode and it

measures the non normality of the leading mode. The extra

gain has been computed for the present set of Reynolds num-

bers and associated leading spanwise wavenumber. As

shown of Fig. 13(b), the extra gain increases slowly with the

Reynolds number. The reason for the increase of the non

normality with the Reynolds number is linked to the fact that

the adjoint eigenmode and the direct eigenmode are localised

on different regions of the flow, as a result the product of the

FIG. 11. (Color online) Same as Fig. 1

but for Re¼ 769 and 256� 1024 collo-

cation points.

FIG. 12. Logarithm of the energy gain for the most amplified mode at

Re¼ 769 and kz¼ 3.4: Continuous lines: the perturbation is superposed to

the base state computed at Re¼ 76.9 (Fig. 1). Dotted lines: the perturbation

is superposed to the base state computed at Re¼ 769 11. Heavy lines: the ini-

tial condition is the adjoint eigenmode. Light lines: the initial condition is

the direct eigenmode.
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amplitude of their velocities (square of their kinetic energy)

is almost zero everywhere (Fig. 14(a)), except in two

regions, one around the hyperbolic point and the second on

the contracting manifold. As shown on Fig. 14(b), the local

scalar product of the velocities of the adjoint and direct

eigenmodes U1:U
þ
1 is different from the product of their

amplitudes Fig. 14(a) since concentrated in a single region

around the hyperbolic point. The larger the Reynolds num-

ber, the more concentrated is the local scalar product U1:U
þ
1

explaining the increase of the non normality shown on

Fig. 13(b).

The quasi-static stability analysis of this paper is

valid as long as the finite dimensional time horizon

s? ¼ sðdw=dÞð Þ=ð �U=2Þ is smaller than the diffusion time

scale of the base flow sB¼ (dw/d))2/�, which implies s? 
 sB

i.e., s
 Re. This condition is fulfilled for all the transient

regimes investigated for the base flow of Fig. 11 (Re¼ 769)

and for short and finite horizon time for the base flow of

Fig. 1 (Re¼ 76.9), at larger time of optimization (s> 20) for

this last case (Re¼ 76.9), this condition is not well satisfied

and optimization should be carried out letting the base flow

diffuse since the direct-adjoint technique allows for unsteady

base flow. However, the use of unsteady base flow would

add the complexity of a competition between the primary

instability development and the growth of secondary pertur-

bation, out of the scope of the present paper which focused

on the identification of different secondary instability mecha-

nism and in particular the anti lift-up mechanism active after

the roll up completed. These mechanisms and in particular

the anti lift-up mechanism are generic, since they are inde-

pendant both of the Reynolds number at which the base flow

is computed and of the Reynolds number used for the linear-

ized equation.

V. CONCLUSION

Results discussed above for kz¼ 3.4 and extended for

all wavenumber show that the transient growth is triggered

by different components of the vorticity perturbation at short

and long time. At very short time s¼ 0.1 and s¼ 0.8, the dy-

namics of the wake are well predicted by the local instability

theory of the hyperbolic instability14 both for the growth rate

Eq. (20) and the localisation and orientation of optimum vor-

ticity perturbation of initial optimal perturbation and its

response. Only for short wavelength, the mechanism differs

from the hyperbolic instability. At larger time of optimiza-

tion, the mechanism is different, involving initially the anti

lift-up, reminiscent of the one described by Antkowiak and

FIG. 13. Influence of the Reynolds number: (a) 0?0 symbol, Logarithm of the thickness of the enstrophy of direct eigenmode of the most amplified spanwise

wavenumber measured at the hyperbolic point, 0D0 symbol, thickness of the energy of the adjoint eigenmode of the most amplified spanwise wavenumber

measured at the hyperbolic point with respect to the logarithm of the Reynolds number. (b) Extra gain of energy for the most amplified wavenumber with

respect to the logarithm of the Reynolds number. Perturbations have been superposed to the base flow shown on Fig. 11.

FIG. 14. (Color online) (a) Field of the

product of the amplitude of the velocity

of the direct and adjoint leading eigenm-

odes for Re¼ 769 and kz¼ 3.4 and the

base flow plotted on Fig. 1: jU1j:jUþ1 j
field normalized by its maximum. (b)

Scalar product field U1:U
þ
1 , normalized

by the maximum of jU1j:jUþ1 j. The do-

main represented on (a) and (b) is [2.73,

4.9] in the x direction and [10.55, 16.69]

in the y direction. The white star locates

the hyperbolic stagnation point of coor-

dinates (3.04, 14.38).
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Brancher19 where the production is associated with the

stretching/tilting of the radial vorticity perturbation, associ-

ated with the azimuthal velocity perturbation located in the

periphery of the vortex (quasi-potential region), by the base

flow, for which the azimuthal velocity varies with the radial

coordinate, leading to vortex rings formation around the vor-

tex core. Here, the in-plane jet initial perturbation located

along the contracting manifold of the hyperbolic point is tilt-

ing the base flow vorticity and at the same time, the in-plane

vorticity perturbation is stretched by the base flow (as in

Ref. 19). The non normality measured here by the scalar

product of the direct and adjoint eigenmodes i.e., the integral

over the domain of the field presented on Fig. 14(b), can be

then attributed to two physical mechanisms that add up: the

convective non normality22 which is the result of the trans-

port of the perturbation by the base flow and changes sign

between direct (A1) and adjoint (A4) equations resulting in a

different localisation of the receptivity (adjoint eigenmode)

and response (direct eigenmode) and a componentwise non

normality, due to the anti lift-up mechanism, in-plane jets

(adjoint eigenmode) producing streamwise vortices (direct

eigenmode). This later effect concentrates direct and adjoint

modes on different components, explaining why the local

scalar product U1:U
þ
1 vanishes away from the hyperbolic

point in region where jU1j:jUþ1 j is not zero.

APPENDIX: OPTIMAL PERTURBATION AT LARGE
TIME, THE ADJOINT EIGENMODE

The reader is referred to the work of Hill29 for the deriva-

tion of the adjoint Eq. (12) of the linearized Navier Stokes

Equations (3), a brief review is given in Appendix A1. We

will derive a relation between adjoint and direct solutions in

order to prove that the adjoint mode provides the initial con-

dition that maximizes the energy amplification factor (9) at

large time. Farrell34 for a plane parallel shear flow, and for

two dimensional instabilities governed by the Orr-

Sommerfeld equation, has demonstrated that the adjoint

mode is the optimal initial condition in the L2 norm. We gen-

eralized this result in the case of the linearized Navier-Stokes

equations and an arbitrary 2D base flow and 3D perturbation.

1. Continuity equation

The direct linearized Navier-Stokes Equations (3) are

rewritten in the form

Lf¼
@ ~U
@t
þXB� eUþ ex�UBþr eU �UB

h i
þr ~p½ �� 1

Re
D~U

r:~U

0@ 1A
¼ 0;

(A1)

with f ¼ ~U; ~p
� 	

the direct state vector. The classical

Lagrange identity (Ince35) is used to construct the linearized

adjoint Navier-Stokes equation Lþ

L fð Þ�Tfþ � f�T Lþ fþ
� 	

¼ @ð~U:~UþÞ
@t

þr:Jð~U; ~
U
þ
; ~p; ~pþÞ;

(A2)

with the superscripts * and T denoting the complex conjugate

and the transposition. The adjoint state vector is fþ

¼ ~U
þ
; ~pþ

� �
and the components Jj of the vector J, called

the bilinear concomitant (Hill29), are

Jj ¼ ~U
þ
i ~pdij �

1

Re

@ ~Ui

@xj
þ UBj

~Ui

� �
þ ~pþdij þ

1

Re

@ ~U
þ
i

@xj

 !
~Ui;

(A3)

(note that (x1, x2, x3) correspond to (x, y, z)) and Lþ

Lþfþ¼
r:~Uþ

�@ ~U
þ

@t
�XB�~U

þþr� UB� ~U
þ� �
þr ~pþ½ �� 1

Re
D~U
þ

0@ 1A
¼0: (A4)

The two operators, L and Lþ, are adjoint for the inner prod-

uct defined in Eq. (11), if the right hand side of Eq. (A2)

vanishes when integrating over the box of numerical integra-

tion and over timeðs

0

ðLx

0

ðLy

0

@ð~U:~UþÞ
@t

dxdydtþ
ðs

0

ðLy

0

ðLx

0

@Jz

@z
dxdydt

þ
ðs

0

ðLy

0

½Jx�Lx

0 dydtþ
ðs

0

ðLx

0

½Jy�Ly

0 dydt ¼ 0; (A5)

with Jx, Jy, and Jz the components of J (A3). The boundary

conditions of the direct problem are periodic on the box of inte-

gration. For Eq. (A5) to be zero, we must apply periodic condi-

tions in space to the adjoint problem and an initial condition in

time, which is the final integration of the direct problem.

Two solutions f and f
þ of Eqs. (A1) and (A4) satisfy a

continuity equation (the right hand member of Eq. (A2) is

zero) as also shown by Salwen36

@ð~U:~UþÞ
@t

þr:Jð~U; ~U
þ
; p; pþÞ ¼ 0: (A6)

The integration over space of the continuity Eq. (A6) gives

the following relation:

@

@t
ð~Uj~UþÞ þ @

@z
½fjfþ� ¼ 0; (A7)

with (|) the energy product (10) and

½fjfþ� ¼
ðLx

0

ðLy

0

Jzdxdy; (A8)

note that [.|.] is not positive definite.

This equation was first introduced by Salwen36 and Sal-

wen and Grosh37 to derive the biorthogonality relation for

both temporal and spatial direct and adjoint eigenmodes of

the Orr-Sommerfeld equation.

2. Biorthogonality condition

The direct and adjoint eigenfunctions are taken under

the form of normal modes
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fkn ¼ ½Ukn; pkn�ðx; yÞeikzerknt (A9)

and

fþ
kþn
¼ ½Uþ

kþm
; pkþm�ðx; yÞeikþzerþ

kþm
t: (A10)

To a given transverse wavenumber k (resp. kþ) corresponds

a set of discrete modes of complex frequency rkn (respec-

tively, rþ
kþm

) with n (respectively, m) denoting a particular

mode.

As fkn and fþkn are solutions of direct Eq. (A1) and

adjoint Eq. (A4) linearized Navier-Stokes equations. They

satisfy the continuity relation (A7)

eð�ik?þikþÞzþðr?knþrþ
kþm
Þt ðr?kn þ rþkþmÞðUknjUþkþmÞ
�

þð�k? þ kþÞ½fknjfþkþm�
	
¼ 0: (A11)

In the case of a temporal study, k is real and we look for the

adjoint mode corresponding to the same transverse wave-

number kþ¼ k. Therefore, �k? þ kþ ¼ 0, and we obtain the

following relation:

ðr?kn þ rþkmÞðUknjUþkmÞ ¼ 0: (A12)

Hence, we retrieve in the three dimensional case, the biorthog-

onal condition derived by Hill29 in the bidimensional case

if n 6¼ m ðUknjUþkmÞ ¼ 0 if n ¼ m rþkm ¼ �r?km:

(A13)

3. Optimal perturbation at large time

The expansion of a perturbation, in the set of eigenfunc-

tions, has been adressed by Salwen and Grosh37 for the

Orr-Sommerfeld equation. We generalize here, their results,

to the linearized Navier-Stokes equations.

If the eigenfunctions (A9) form a complete set, then

for any time, a particular perturbation solution of Eq. (A1)

may be expanded as a linear combination of those

eigenfunctions

~Uðx; y; tÞ ¼
X

n

AknðtÞUknðx; yÞ: (A14)

The coefficient Akm(t) is evaluated using the biorthogon-

ality condition (A13)

ð~Uðx; y; tÞjUþkmðx; yÞÞ ¼ A?kmðtÞðUkmðx; yÞjUþkmðx; yÞÞ: (A15)

Moreover, ~Uðx; y; tÞeikz is a particular solution of the direct

linearized Navier-Stokes operator (A1) and Uþkmðx; yÞeikz

e�r?
km

t (with Eq. (A13) a particular solution of the adjoint lin-

earized operator (A4); Eq. (A7) holds and yields to

@

@t
ð~Uðx; y; tÞjUþkmðx; yÞe�r?

km
tÞ ¼ 0: (A16)

The amplitude Akm(t) is then solution to the following

equation:

� r?kme�r?
km

tA?kmðtÞðUkmðx; yÞjUþkmðx; yÞÞ

þ @A?
kmðtÞ
@t

e�r?
km

tðUkmðx; yÞjUþkmðx; yÞÞ ¼ 0; (A17)

which gives

AkmðtÞ ¼ erkmtAkmð0Þ ¼ erkmt ð~Uðx; y; 0ÞjUþkmðx; yÞÞ
ðUkmðx; yÞjUþkmðx; yÞÞ

; (A18)

the value of the initial amplitude Akm(0) is obtained setting

t¼ 0 in Eq. (A15). We look for the initial condition,
~Uðx; y; 0Þeikz which maximizes the energy E(t) Eq. (11) at

large time.

lnGðtÞ ¼ max
~Uðx;y;0Þ

ln
ðeUðx; y; tÞjeUðx; y; tÞÞ
ð~Uðx; y; 0Þj~Uðx; y; 0ÞÞ

: (A19)

For a sufficiently large time, ~Uðx; y; tÞ Eq. (A14) tends

towards the most unstable eigenmode Akm(t)Ukm(x, y). Thus,

the amplification energy factor becomes

lnGðtÞ¼ max
~Uðx;y;0Þ

ln jAkmðtÞj2
ðUkmðx;yÞjUkmðx;yÞÞ
ð~Uðx;y;0Þj~Uðx;y;0ÞÞ

 !
; (A20)

with Eq. (A18) we obtain

lnGðtÞ ¼ max
~Uðx;y;0Þ

ln
jjUkmðx; yÞjj2 � jjUþkmðx; yÞjj

2 � jj~Uðx; y; 0Þjj2cos2a

jj~Uðx; y; 0Þjj2 � ðUkmðx; yÞjUþkmðx; yÞÞ
2

 !
þ 2ReðrkmÞt; (A21)

with ||.||, the nom associated with (.|.) and a the angle defined

by

cos a ¼ ð~Uðx; y; 0ÞjUþkmðx; yÞÞ
jjUþkmðx; yÞjj:jj~Uðx; y; 0Þjj

: (A22)

The gain at large time is maximum for cos2a¼ 1, thus for an

initial condition colinear to the adjoint eigenmode. Denoting

U1¼Ukm(x,y))/||Ukm(x,y)|| and Uþ1 ¼ Uþkmðx; yÞ=jjUþkmðx; yÞjj,
for simplicity, the optimal gain at large time is

lnGðtÞ ¼ ln
1

ðU1jUþ1 Þ
2

 !
þ 2ReðrkmÞt: (A23)
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