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QED effects are known to occur in a strong laser pulse interaction with a counterpropagating electron

beam, among these effects being electron-positron pair creation. We discuss the range of laser pulse

intensities of J � 5� 1022 W=cm2 combined with electron beam energies of tens of GeV. In this regime

multiple pairs may be generated from a single beam electron, some of the newborn particles being capable

of further pair production. Radiation backreaction prevents avalanche development and limits pair

creation. The system of integro-differential kinetic equations for electrons, positrons and � photons is

derived and solved numerically.
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Introduction.—The effects of quantum electrodynamics
(QED) may occur in a strong laser pulse interaction with a
counterpropagating electron beam. In a well-known ex-
periment [1] these effects were weak and barely observ-
able. If the laser pulse intensity is increased up to
J � 5� 1022 W=cm2 the QED effects control the laser-
beam interaction and result in multiple pair production
from a single beam electron.

QED-strong fields.—In QED an electric field, E, should
be treated as strong if it exceeds the Schwinger limit: E �
ES ¼ mec

2=ðjejƛCÞ (see Ref. [2]). Such field is potentially
capable of separating a virtual electron-positron pair pro-
viding an energy, which exceeds the electron rest mass
energy, mec

2, to a charge, e ¼ �jej, over an acceleration
length as small as the Compton wavelength, ƛC ¼
@=ðmecÞ � 3:9� 10�11 cm. Typical effects in QED-
strong fields are electron-positron pair creation from
high-energy photons, high-energy photon emission from
electrons or positrons and the cascade development (see
Refs. [3,4]) resulting from the first two processes.

Less typical is direct pair separation from vacuum. This
effect may only be significant if the field invariants as
defined in Ref. [5], F1 ¼ ðB � EÞ, F2 ¼ E2 � B2, are large
enough. Here the case of weak field invariants is consid-
ered: jF1;2j � E2

S, and any corrections of the order of

F1;2=E
2
S are neglected (see Ref. [6] about such corrections).

Below, the term ‘‘strong field’’ is only applied to the field
experienced by a charged particle.

QED-strong laser fields.—QED-strong fields may be
created in the focus of an ultrabright laser. Consider
QED effects in a relativistically strong pulsed field [3]:

jaj � 1; a ¼ eA

mec
2
; (1)

A being the vector potential of the wave. In the laboratory
frame of reference the electric field is not QED strong for

achieved laser intensities, J � 1022 W=cm2 [7], and even
for the J � 1025 W=cm2 intensity projected [8]. Moreover,
both field invariants vanish for 1D waves, reducing the
probability of direct pair creation from vacuum by virtue of
the laser field’s proximity to a 1D wave.
Nonetheless, a counterpropagating particle in a 1D

wave, að�Þ, � ¼ !t� ðk � xÞ, may experience a QED-
strong field, E0 ¼ jdA=d�j!ðE � pkÞ=c, because the laser
frequency, ! ¼ c=ƛ, is Doppler upshifted in the frame of
reference comoving with the electron. Herewith the elec-
tron dimensionless energy, E, and its momentum are re-
lated to mec

2, and mec correspondingly, and subscript k
herewith denotes the vector projection on the direction of
the wave propagation. The Lorentz-transformed field ex-
ceeds the Schwinger limit, if �� E0=ES � 1. Numerical
values of the parameter, �, may be expressed in terms of
the local instantaneous intensity of the laser wave, J:

�¼ 3

2

ƛC
ƛ
ðE�pkÞ

��������
da

d�

���������
ðE�pkÞ
1:4�103

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J

1023½W=cm2	

s
: (2)

In the experiment [1] an electron beam of energy
� 46:6 GeV interacted with a counterpropagating terawatt
laser pulse of intensity J � 1018 W=cm2 (jaj 
 1). Avalue
of� � 0:4 had been achieved. An increase in the laser field
intensity up to�5� 1022 W=cm2 (jaj � 110) with the use
of the same electron beam, would allow us to reach a
regime of multiple pair creation at � � 90.
Radiation backreaction.—The creation of pairs in QED-

strong fields is a particular form of the radiation losses
from charged particles. At high � an intermediate stage in
the pair creation process is the emanation of a high-energy
photon by a charged particle: e ! �, e (in contrast with
� 
 1 case, in which the ‘‘equivalent’’ photons from the
electron Coulomb potential mostly contribute to the pair
creation—see Ref. [4] and the papers cited therein). This

PRL 105, 195005 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

5 NOVEMBER 2010

0031-9007=10=105(19)=195005(4) 195005-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.195005


photon is then absorbed in the strong field, generating an
electron-positron pair: � ! e, p.

Although the energy-momentum gain from the strong
laser field is crucial in the course of both emission and pair
creation, still a way to quantify the irreversible radiation
losses may be found. Specifically, in the 1D wave field the
transfer of energy, �E, from the wave to a particle may be
interpreted as the absorption of some number of photons,
n: �E ¼ n@!=ðmec

2Þ. Accordingly, the momentum from
the absorbed photons is added to the parallel momentum of
the particle: �pk ¼ n@k=ðmecÞ ¼ n@!=ðmec

2Þ. So, both
energy and parallel momentum are not conserved; how-
ever, their difference is: �ðE � pkÞ ¼ 0. To get the

Lorentz-invariant formulation, we introduce the four-
vector of the particle momentum, p ¼ ðE;pÞ, and the
wave four-vector, k ¼ ð!c ;kÞ for the 1D wave field. Their

four-dot product, ðk � pÞ ¼ !ðE � pkÞ=c, is conserved in

any particle interaction with the 1D wave field, including
its motion, photon emission, pair creation, etc. The sum of
this quantity,

Pðk � pfÞ, over all particles in the final (f)

state is equal to that for the particles in the initial (i) state:Pðk � pfÞ ¼ Pðk � piÞ. Each term in this conserving sum is

positive [we use the metric signature (þ , �, �, �)].
Therefore, any contribution to this sum from a newborn
particle exacts a contribution from its parent.

Regarding the high-energy electron beam interaction
with the ultrastrong laser pulse, the initially high value of
� � 90 ensures multiple pair creation. The radiation back-
reaction, however, splits the initially high value of (k � p)
between all newborn particles. The reduced values of
(k � p) result in smaller values of � / ðk � pÞ. The cascade
terminates, when all particles have � 
 1 and become
incapable of creating new pairs.

The radiation losses, thereby limit the cascading pair
creation. Particularly, emission of softer � photons may
even be described within the radiation force approxima-
tion, which is traditionally used to account for the radiation
backreaction (see Refs. [5,9–11]).

The discussed processes are described by the kinetic
equations for the involved particles (electrons, positrons,
� photons). For a circularly polarized 1D wave of constant
amplitude, the system of three 1D integro-differential ki-
netic equations is reducible to a large system of differential
equations, which is solved here numerically.

Electrons in QED-strong fields.—The emission proba-
bility in the QED-strong 1D wave field may be found in
Sections 40, 90, 101 in Ref. [12], as well as in Ref. [13].
However, to simulate highly dynamical effects in pulsed
fields, one needs a reformulated emission probability, re-
lated to short time intervals [not (�1, þ1)], which is
rederived in Appendix A in Ref. [14] with careful attention
to consistent problem formulation.

Again, the energy, @!0, and momentum, @k0, of the
emitted photon are normalized to mec

2 and mec. The
four-dot product, (k � p), is the motional invariant for an
electron and it is also conserved in the process of emission:

ðk � piÞ ¼ ðk � k0Þ þ ðk � pfÞ. A subscript i or f denotes the

electron in the initial (i) or final (f) state.
In the 1D wave field the emission probability may be

conveniently related to the interval of the wave phase, d�,
which should be taken along the electron trajectory. The
interval of time, dt, and that of the electron proper time,
d�e, are related to d� as follows: d�e ¼ dt=E ¼ d�=
½cðk � pÞ	. The phase volume element for the emitted pho-
ton is chosen in the form d2k0

?dðk � k0Þ. The emission

probability, dWfi=½d�dðk � k0Þ	, is integrated over d2k0
?;

therefore, it is related to the element of the phase volume,
dðk � k0Þ (see detail in Appendix A in Ref. [14]):

dWfi

dðk � k0Þd� ¼ �½R1
r K5=3ðyÞdyþ �rK2=3ðrÞ	ffiffiffi

3
p

�ƛCðk � piÞ2
;

� ¼ ðk � k0Þ�e

ðk � piÞ ; r ¼ ðk � k0Þ
�eðk � pfÞ ;

�e ¼ 3

2
ðk � piÞ

��������
da

d�

��������ƛC:

(3)

Here K�ðrÞ is the MacDonald function and � ¼ e2=ðc@Þ.
Collision integral.—In strong fields we introduce �

parameter not only for electrons but also for � photons
and relate the emission probability to d�� / dðk � k0Þ:

��¼3

2
ðk �k0Þ

��������
da

d�

��������ƛC;
dWfi

d��d�
¼�

��������
da

d�

��������we!�;e
�e!��

; (4)

we!�;e
�e!��

¼
ffiffiffi
3

p
2��2

e

½��rK2=3ðrÞ þ
Z 1

r
K5=3ðyÞdy	: (5)

Here r ¼ ��=½�eð�e � ��Þ	, �� 
 �e. The electron pa-

rameter, �e, is taken for the initial state and its value in the
final state is �e � ��.

The distribution functions for electrons and photons may
be also integrated over p? and k0

? correspondingly. Thus

integrated functions are distributed over (k � p), (k � k0).
We can parameterize these distributions locally via �e /
ðk � pÞ, �� / ðk � k0Þ and introduce the 1D distribution

functions, feð�eÞ and f�ð��Þ.
The collision integral (see Ref. [15]) describes the

change in the particle distributions due to emission and
accounts for the electrons, leaving the given phase volume,

d�e, and those arriving into it within the interval, d~� ¼
�jda=d�jd� ¼ 2�c�ed�e=ð3ƛCÞ:

	feð�eÞ
d~�

¼
Z 1

�e

feð�Þwe!�;e
�!���e

d�� feð�eÞ

�
Z �e

0
we!�;e

�e!�d�;

	f�ð��Þ
d~�

¼
Z 1

��

feð�Þwe!�;e
�!��

d�:

(6)

Radiation force approximation.—One may exclude the
emission of softer � photons with �� 
 " � 1 from the
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collision integral by changing the spans as follows:

	þfeð�eÞ
d~�

¼
Z 1

�eþ"
feð�Þwe!�;e

�!���e
d�� feð�eÞ

�
Z �e

"
we!�;e

�e!�d�;

	þf�ð��Þ
d~�

¼
Z 1

��

feð�Þwe!�;e
�!��

d�; �� � ":

(7)

The excluded process should be treated separately:

	ðrfÞfeð�eÞ
d~�

¼ @

@�e

½wðrfÞ
�e

feð�eÞ	; (8)

	ðrfÞ R"
0 ��f�ð��Þd��

d~�
¼

Z 1

0
feð�eÞwðrfÞ

�e
d�e; (9)

where the expression for the radiation force,

wðrfÞ
�e

¼
Z "

0
��w

e!�;e
�e!��

d��; (10)

is obtained using the standard Fokker-Planck development
(see Ref. [15]) of the collision integral at small �� 
 ":

Z "

0
½feð�e þ ��Þwe!�;e

�eþ��!��
� feð�eÞwe!�;e

�e!��
	d��

� @

@�e

½feð�eÞ
Z "

0
��w

e!�;e
�e!��

d��	:

The advective term like that in Eq. (8), once introduced to
the kinetic equation, describes the electron transport along

the characteristic lines, d�e þ d~�wðrfÞ
�e

¼ 0. This effect is
equivalent to that from an extra four-force term,
ðdp
=d�eÞrad, in the dynamical equation for the electron
four-momentum, p
, the force being such that:

� wðrfÞ
�e

¼ d�e

d~�
¼ @�e

@p


�
dp


d�e

�
rad

d�e

d~�
: (11)

The radiation force is directed along �p
 þ k
=ðk � pÞ.
The two terms describe the energy-momentum lost
for radiation and that absorbed from the 1D wave field in
the course of emission, their total being orthogonal to p


(see Ref. [11]). The force magnitude may be found from
Eq. (11):�

dp


d�e

�
rad

¼ � 2�c

3ƛC
wðrfÞ

�e

�
p
 � k


ðk � pÞ
�
:

In the first component of this equation the term / E con-
trols the radiation energy loss rate, IQED. In dimensional

form and related per time interval, IQED ¼ �2�mec
3wðrfÞ

�e
=

ð3ƛCÞ. At �e 
 " � 1, IQED tends to the expression for the

radiation energy loss rate found within the framework of
classical electrodynamics. When the radiation force ap-
proach is generalized for large �e � 1, the emission spec-
trum is modified by QED effects and only a part of this

spectrum (which is minor at �e � 1) is embraced by the
radiation force approximation.
Photons in QED-strong fields.—The absorption proba-

bility for photons in the 1D field is derived in Appendix B
in Ref. [14]. An electron-positron pair (e, p) is generated
during photon absorption with the conservation law:
ðk � k0Þ ¼ ðk � peÞ þ ðk � ppÞ.
The phase volume element for the created electron,

again is chosen in the form d2p?dðk � pÞ. The absorption
probability, dWfi=½d�dðk � peÞ	, is integrated over the

transversal momentum components and related to the ele-
ment of the phase volume of the electron, dðk � peÞ, result-
ing in the following collision integral:

	�fe;pð�e;pÞ
d~�

¼
Z 1

�e;p

f�ð��Þw�!e;p
��!�e

d��; (12)

	�f�ð��Þ
d~�

¼ �f�ð��Þ
Z ��

0
w�!e;p

��!�e
d�e: (13)

Here r ¼ ��=½�eð�� � �eÞ	, �e ¼ �� � �p 
 �� and

w�!e;p
��!�e

¼
ffiffiffi
3

p
2��2

�

½��rK2=3ðrÞ �
Z 1

r
K5=3ðyÞdy	: (14)

Solution for kinetic equations.—As long as the dis-
tribution functions are integrated over the transversal
components of momentum and expressed in terms of the
motional integrals, (k � pe;p), their evolution is controlled

by the collision integrals:

FIG. 1 (color online). Distribution functions of electrons and
positrons, fe;pð�Þ, and a spectrum of emission, ��f�ð�Þ=�0,

after the interaction of 46.6 GeV electrons with one cycle (top)
and five cycles (bottom) of a laser pulse of intensity J � 5�
1022 W=cm2 [so that � � 2E½GeV	—see Eq. (2)]. Here fe � fp
is the distribution of the beam electrons and

Rðfe � fpÞd� ¼ 1.
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@fe;p;�½~�; ðk � pe;p;�Þ	
@~�

¼ ð	ðrfÞ þ 	þ þ 	�Þfe;p;�: (15)

The derivatives, @=@~�, are taken at constant (k � p).
Equation (15) is easy to solve for the 1D wave field of
any shape; however, for a circularly polarized wave of
constant amplitude the solution is especially simple. In
this case (k � p) differs from � by a constant factor, and

Eq. (15) may be solved with derivatives, @=@~�, at constant

� for the functions, fe;p;�ð~�; �e;p;�Þ.
We solve Eq. (15) numerically, by discretizing it on a

uniform grid, �j ¼ j��, j ¼ 1; 2; 3; . . . ; N, with the

choice of �� ¼ 0:1, " ¼ ��=2. The ~�-dependent distri-
bution functions on this grid obey the system of 3N equa-
tions, which is integrated numerically. At initialization,
electrons with feð�eÞ ¼ 	ð�e � �0Þ, �0 ¼ 90, counter-
propagate in the circularly polarized wave field with
jda=d�j ¼ 110. This choice corresponds to the electron
beam as in Ref. [1] and a laser intensity of J �
5� 1022 W=cm2 for � ¼ 0:8 
m, to be achieved soon.

In Fig. 1 the beam-wave interaction is traced during
�
2� ¼ 5 cycles of the incident laser pulse (� 13 fs).

The initial beam electron energy is rapidly converted into
� photons with high ��, which then rapidly produce pairs,

the typical rates of the processes being of the order of the
inverse light period. However, the larger fraction of the
new particles is born at � 
 1, with strongly reduced pair
production rate. Slow absorption of photons with �� � 1–2

maintains pair production even after tens of wave periods,
as shown in Fig. 2.

Conclusion.—We see that the laser-beam interaction
may be accompanied by multiple pair production. The
initial energy of a beam electron is efficiently spent for
creating pairs with significantly lower energies as well as
softer � photons. This effect may be used for producing a
pair plasma. It could also be employed to deactivate after-
use electron beams, reducing radiation hazard.

The way to solve the kinetic equations is accurate and
does not employ the Monte Carlo method. The solution can

be used to benchmark numerical methods designed to
simulate processes in QED-strong laser fields.
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