
HAL Id: hal-00838872
https://ensta-paris.hal.science/hal-00838872

Submitted on 17 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

How large-scale and cyclogeostrophic barotropic
instabilities favor the formation of anticyclonic vortices

in the ocean
Gaële Perret, Thomas Dubos, Alexandre Stegner

To cite this version:
Gaële Perret, Thomas Dubos, Alexandre Stegner. How large-scale and cyclogeostrophic barotropic in-
stabilities favor the formation of anticyclonic vortices in the ocean. Journal of Physical Oceanography,
2011, 41 (2), pp.303-328. �10.1175/2010jpo4362.1�. �hal-00838872�

https://ensta-paris.hal.science/hal-00838872
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


How Large-Scale and Cyclogeostrophic Barotropic Instabilities Favor the Formation
of Anticyclonic Vortices in the Ocean
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THOMAS DUBOS
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ABSTRACT

Large-scale vortices, that is, eddies whose characteristic length scale is larger than the local Rossby radius of

deformation Rd, are ubiquitous in the oceans, with anticyclonic vortices more prevalent than cyclonic ones.

Stability or robustness properties of already formed shallow-water vortices have been investigated to explain

this cyclone–anticyclone asymmetry. Here the focus is on possible asymmetries during the generation of

vortices through barotropic instability of a parallel flow. The initial stage and the nonlinear stage of the

instability are studied by means of linear stability analysis and direct numerical simulations of the one-layer

rotating shallow-water equations, respectively. A wide variety of parallel flows are studied: isolated shears,

the Bickley jet, and a family of wakes obtained by combining two shears of opposite signs.

The results show that, when the flow is characterized by finite relative isopycnal deviation, the barotropic

instability favors the formation of large-scale anticyclonic eddies. The authors emphasize here that the cyclone–

anticyclone asymmetry of parallel flows may appear at the linear stage of the instability. This asymmetry finds its

origin in the linear stability property of localized shear flows. Indeed, for both the cyclogeostrophic regime (finite

Rossby number) and the frontal geostrophic regime (small Burger number), an anticyclonic shear flow has higher

linear growth rates than an equivalent cyclonic shear flow. The nonlinear saturation then leads to the formation

of almost axisymmetric anticyclones, while the cyclones tend to be more elongated in the shear direction.

However, although some unstable parallel flows exhibit the asymmetry at the linear stage, others exhibit

such asymmetry at the nonlinear stage only. If the distance separating two shear regions is large enough, the

barotropic instability develops independently in each shear, leading in the frontal and the cyclogeostrophic

regime to a significant cyclone–anticyclone asymmetry at the linear stage. Conversely, if the two shear regions

are close to each other, the shears tend to be coupled at the linear stage. The most unstable perturbation then

resembles the sinuous mode of the Bickley jet, making no distinction between regions of cyclonic or anti-

cyclonic vorticity. Nevertheless, when the nonlinear saturation occurs, large-scale anticyclones tend to be

axisymmetric while the cyclonic structures are highly distorted and elongated along the jet meander.

1. Introduction

In situ measurements and general circulation mod-

els have shown that large-scale vortices, that is, eddies

whose characteristic length scale is larger than the local

deformation radius, are ubiquitous in the oceans (Olson

1991; McWilliams 1985). A striking characteristic of these

large-scale and long-lived structures is that anticyclonic

vortices tend to be more prevalent than cyclonic ones.

Large-scale anticyclones are frequently observed in the

lee of an oceanic archipelago such as Hawaii (Mitchum

1995; Flament et al. 2001) and the Canaria (Sangrá et al.

2005) or in the vicinity of the Agulhas (Olson and Evans
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1986) and the Brazilian currents. For all of these various

configurations the coastal boundary of the archipelago or

a cape induces significant shear flows in the open ocean

far away from the coast.

To explain the predominance of anticyclones among

large-scale eddies, several studies were devoted to the

specific stability of anticyclonic vortices in rotating

shallow-water flows (Arai and Yamagata 1994; Stegner

and Dritschel 2000; Baey and Carton 2002). Moreover,

stable anticyclones tend to remain coherent within a

turbulent flow (Polvani et al. 1994; Arai and Yamagata

1994; Linden et al. 1995) and they were found to be more

robust to external strain perturbations than cyclonic

eddies (Graves et al. 2006). Taking into account the weak

beta effect, which may affect large-scale oceanic eddies,

reveals that only anticyclones are weakly affected by

the Rossby wave dispersion relation for a long time

(Matsuura and Yamagata 1982; Nycander and Sutyrin

1992; Stegner and Zeitlin 1995, 1996).

However, very few studies investigate how the genera-

tion process may itself induce an initial selection between

cyclonic or anticyclonic eddies. Most of the mesoscale

oceanic vortices are formed by the unstable meanders of

shear, jet, or wake flows occurring in coastal regions or in

the open sea. The instability of oceanic currents has often

been modeled using quasigeostrophic (QG) theory since

they typically have small Rossby number. Using the QG

equations, valid for small Rossby number and small iso-

pycnal displacement, a flow and its mirror image evolve

identically. Therefore, the baroclinic or the barotropic in-

stabilities of a jet or a wake flow generate eddies of both

signs having the same size or intensity. However, in the full

shallow-water system, the mirror symmetry does not hold.

For instance, when the relative surface deviation becomes

finite, a cyclone and an anticyclone with equal and oppo-

site relative vorticity produce PV anomalies of different

magnitudes. Therefore, the departure from the QG regime

(finite isopycnal displacement and/or finite Rossby num-

ber) may induce a specific cyclone–anticyclone asymmetry.

A study (Poulin and Flierl 2003) has investigated the

linear stability of a Bickley jet and its nonlinear evolution in

the framework of rotating shallow-water (RSW) equations.

At the linear stage, the most unstable mode is sinuous and

the jet meanders with no distinction between the cyclonic

and the anticyclonic side. However, beyond the quasigeo-

strophic regime, when the Rossby number becomes finite

and induces large isopycnal displacements due to the cy-

clogeostrophic balance, the nonlinear evolution of the in-

stability leads to asymmetric eddy formation: the cyclones

tend to be elongated and stretched in comparison with al-

most circular anticyclones. Other recent papers have in-

vestigated, by means of laboratory experiments (Perret

et al. 2006b) or stability analysis (Perret et al. 2006a), the

large-scale wake of circular islands. For the frontal geo-

strophic regime, that is, small Rossby number and finite

isopycnal displacement (Cushman-Roisin 1986; Cushman-

Roisin and Tang 1990), a significant asymmetry occurs in

the wake between cyclonic and anticyclonic vortices. For

some extreme cases, coherent cyclones do not emerge at

all, and only an anticyclonic vortex street appears several

diameters behind the circular island. This asymmetry was

first explained by the linear stability analysis of parallel

wake flows in the framework of RSW equations (Perret

et al. 2006a). Indeed, in the frontal regime, the most un-

stable mode is fully localized in the anticyclonic shear

region. Hence, the anticyclonic perturbations, leading to

large-scale anticyclones, have the fastest growth rates. Di-

rect numerical simulations show that the nonlinearities

exacerbate the dominance of the anticyclonic mode

linearly selected. Here again, when they are formed, the

cyclones tend to be stretched and elongated in com-

parison with the large circular anticyclones. Anticy-

clonic predominance was also found in a fully stratified

simulation, using the Regional Ocean Modeling System

(ROMS), when the island size becomes larger than the

local deformation radius (Dong et al. 2007). Hence, both

linear and nonlinear instability of parallel jets or wake

flows may induce an asymmetric eddy formation.

The main goal of the present work is to understand how

the barotropic instability of various parallel flows (shears,

jets, and wakes) may favor the formation of large-scale

anticyclonic eddies. In which dynamical regimes will the

anticyclonic predominance become significant? Why does

this asymmetry appear at the linear stage for a parallel

wake flow (Perret et al. 2006a) and at the nonlinear stage

for the Bickley jet (Poulin and Flierl 2003)?

In section 2 we discuss the dynamical parameters gov-

erning the RSW model and the numerical methods used for

the linear stability analysis and to compute the full non-

linear equations. As a first step, in section 3 we study the

linear and the nonlinear stability of localized cyclonic and

anticyclonic shear flows. In section 4, the stability of the

Bickley jet is investigated from the quasigeostrophic regime

to the frontal geostrophic regime. In section 5, various wake

profiles are constructed as a combination of two localized

shears. At this stage we introduce a new dynamical pa-

rameter to quantify the distance between the two shears and

analyze its impact on the stability of the parallel wake flows.

We then discuss and summarize the results in section 6.

2. Model

a. Rotating shallow-water equations and dynamical
regimes

As a first approximation of surface oceanic flows, we

use a reduced gravity model, also known as a 1½-layer
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model, assuming a thin upper layer above a motionless

deep bottom layer. According to Cushman-Roisin (1986),

if the ratio of the upper-layer depth to the total depth of

the ocean is smaller than min(1, Bu), the upper layer will

not be affected by the bottom-layer dynamics. Hence, the

upper-layer motion follows the RSW equations. We use

below the dimensionless form of the RSW model on the

f plane,

Ro
›V

›t
1 (V � $)V

� �
1 n 3 V 5�Bu

Ro
$h 1

Ro

Re
=2V

(1)

and

›h

›t
1 V � $h

� �
1 (1 1 h)$ �V 5 0, (2)

where n is the upward-pointing unit vector, space is

scaled by a characteristic length scale L, V 5 (u, y) is the

horizontal velocity scaled by the typical velocity V0, t is

the time scaled by the advective time scale L/V0, and h

is the surface deviation scaled by the unperturbed layer

depth h0. Notice that this scaling is slightly different

from the one used by Perret et al. (2006a). In particular,

h is scaled here by the total unperturbed depth h0 and

not by its typical fluctuation Dh0, and is not necessarily of

order 1. We define the Rossby number Ro, the relative

surface deviation parameter l, the Burger number Bu,

and the Reynolds number Re as follows:

Ro 5
V

0

fL
, l 5

Ro

Bu
, Bu 5

R
d

L

� �2

, Re 5
V

0
L

n

with R
d

5
ffiffiffiffiffiffiffiffiffi
g9h

0

p
/f the deformation radius, f 5 2V the

Coriolis parameter, g9 the reduced gravity acceleration,

and n the kinematic viscosity.

When the Rossby number is small, the geostrophic

balance is satisfied at leading order, imposing the surface

deviation to balance the Coriolis term in Eq. (1). Thus,

the dominant balance imposes h 5 O(l), meaning that

the amplitude of the (dimensional) surface deviation

scales like LV0 f/g.

At small Rossby number, one distinguishes two dy-

namical regimes depending on the value of the Burger

number. The classical quasigeostrophic regime (Pedlosky

1987) is defined when Bu 5 O(1) or equivalently l 5

O(Ro) � 1, leading to relative small surface deviation.

The QG model [Eq. (3)] corresponds to the quasigeo-

strophic regime asymptotic expansion truncated at the

first order in Rossby number,

›

›t
(Dc� Bu�1c)� J(c, Dc) 5 0, (3)

where

c 5 h/l 5 O(1).

In this limit the mirror symmetry y / 2y and c / 2c

holds at the leading order, meaning that the dynamic

of cyclonic and anticyclonic structures are interchange-

able. Even if the Rossby number is not asymptotically

small in this study (Ro 5 0.1), cyclones and anticy-

clones are expected to follow roughly the same evolu-

tion when Bu 5 O(1). The second regime corresponds to

the frontal regime and is defined by Bu 5 O(Ro) � 1.

In this regime, the flow is expected to follow at leading

order the frontal geostrophic (FG) asymptotic model

(Cushman-Roisin 1986; Cushman-Roisin and Tang 1990).

The latter, Eq. (4), is derived according to an asymptotic

expansion (l ’ 1, Ro� 1) truncated at second order in

Rossby number. As a result, the frontal geostrophic time

scale is O(Ro) slower than the quasigeostrophic time

scale:

›h

›t9
� J h, (1 1 h)Dh 1

1

2
($h)2

� �
5 0 (4)

in which t9 5 Rot. In this model the surface deviations

are of order unity, the mirror symmetry is broken, and the

evolution of cyclonic and anticyclonic structures may

differ strongly.

Notice that we distinguish between the dynamical re-

gimes and the balanced asymptotic models. Unlike the

RSW equations that can induce fast wave motions, the

standard QG and FG models correspond to balanced

equations where inertia–gravity waves are filtered out.

The simplicity of the balanced models allows the deri-

vation of relatively simple stability criteria (see appen-

dix A). In both regimes, it is found that a parallel flow

that obeys the geostrophic balance

U(y) 5�1

l

›h

›y

will be linearly stable if the corresponding potential vor-

ticity, q 5 (Ro$ 3 V 1 1)/(1 1 h), is monotonic. How-

ever, these generalized Rayleigh criteria do not induce

any asymmetry in the stability properties of parallel flows

(shears, jets, and wakes) and a complete stability analysis

is therefore needed to understand the cyclone–anticyclone

asymmetry of large-scale flows.

When the Rossby number becomes finite (Ro ’ 1),

the balance between the velocity and the pressure field

(i.e., the surface deviation for the RSW equations) is

not trivial. There is no simple balance relation valid at

any time. We cannot construct asymptotic expansions
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and balanced models valid for finite Rossby numbers.

Nevertheless, circular and steady vortices follow the non-

linear cyclogeostrophic balance and steady parallel flows

follow the geostrophic balance. Hence, the initial steady

state of the shears, jets, and wakes flows that we studied

in the cyclogeostrophic regime (Ro ’ 1, Bu ’ 1) satisfies

the previous scaling for the surface deviation h ’ l.

For a given parallel velocity profile U(y) (Fig. 1a), the

relative surface deviation in geostrophic balance with

U(y) (Fig. 1c) increases in amplitude when the dynam-

ical regime is varied from a quasigeostrophic [l 5

O(Ro)� 1] to a frontal regime [Bu 5 O(Ro)� 1] or a

cyclogeostrophic regime (Bu’ 1 and Ro’ 1). When the

width L of the parallel flow becomes larger than the

deformation radius or the typical flow velocity V0 reaches

fL, the relative surface deviation (Fig. 1c) becomes finite

(l ’ 1). Unlike the latter, the potential vorticity fluctua-

tions (Fig. 1d) are controlled by two independent param-

eters l and Ro. Hence, an initial parallel flow satisfying the

frontal regime or the cyclogeostrophic regime will corre-

spond to two distinct initial states. Cyclone–anticyclone

asymmetry is thus characterized throughout the study us-

ing potential vorticity fluctuations.

To study the flow stability from the QG regime to the

FG regime, the Burger number is varied from Bu 5 1 to

Bu 5 0.1 while the Rossby number is kept fixed at Ro 5

0.1. To study the stability properties from the QG to the

cyclogeostrophic regime, the Rossby number is varied

from Ro 5 0.1 to Ro 5 1 while the Burger number is kept

fixed at Bu 5 1. Hence, in both cases, the value of the

relative deviation parameter l is varied from l 5 0.1 to

l 5 1.0 to get a significant deviation from the QG

dynamics.

b. Numerical resolution

For each type of parallel flow we perform a temporal

stability analysis and compute the nonlinear evolution of

FIG. 1. Anticyclonic shear basic state profiles: (a) velocity, (b) vorticity, (c) relative surface deviation, and (d) PV

for QG regime (solid line), frontal regime (dashed line), and cyclogeostrophic regime (dotted–dashed line). [Note that

in (b) QG and frontal vorticity and in (c) frontal and cyclogeostrophic relative surface deviation are superimposed.]
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the perturbed flow in the framework of the RSW equa-

tions. The numerical methods are identical to those used

in Perret et al. (2006a). They are briefly presented below

for completeness and clarity.

1) LINEAR STABILITY ANALYSIS

To perform the temporal stability analysis, the shallow-

water equations are linearized around a parallel basic

state in geostrophic balance (U( y), h( y)). Assuming

that the instability mechanism is inviscid, we consider

the RSW equations without viscous terms. The pertur-

bation field is expanded in normal modes:

(~u(x, y, t), ~y(x, y, t), ~h(x, y, t)) 5 (du(y), dy(y), dh(y))ei(kx�vt)

with v 5 vr 1 is the complex eigenfrequency and k the

real wavenumber. We then obtain the eigenvalue problem:

L
û

ŷ

ĥ

0B@
1CA5v

û

ŷ

ĥ

0B@
1CA with

L5

�kl�1 ›h

›y
i l�1 ›2h

›y2
1Ro�1

� �
Ro�1l�1k

�iRo�1 �kl�1 ›h

›y
iRo�1l�1 ›

›y

(11h)k �i
›h

›y
1(11h)

›

›y

� �
�k

›h

›y

0BBBBBBBB@

1CCCCCCCCA
.

An approximation LN of the matrix of the linear oper-

ator L is computed in a spectral basis with periodic

boundary conditions. With N Fourier modes, LN is a

3N 3 3N matrix, which we diagonalize using the zgeev

function of LAPACK linear algebra package (Anderson

et al. 1999). This provides the full eigenvalue spectrum

of LN. Among the 3N complex eigenvalues, only 0, 1, or

2 are found to have a positive real part sN.

The convergence of solutions is obtained for a resolu-

tion varying between N 5 256 and N 5 2048, depending

of the basic state and the dynamical regime. Starting with

N 5 256, we double N and monitor the relative difference

between successive approximations of s. Specifically, we

compute

«
N

5

�
j

(s
2N

(k
j
)� s

N
(k

j
))2

�
j

s
2N

(k
j
)2

,

where the kj are a number of wave vectors spanning an

interval [kmin, kmax] of interest. As in Perret et al. (2006a),

we stop doubling N when «N becomes O(1024).

2) NONLINEAR EVOLUTION

The nonlinear evolution of the instability is studied

by computing the nonlinear evolution of the perturbed

parallel flows. The rotating shallow-water equations are

discretized in space with a pseudospectral method and in

time with a second-order leapfrog scheme. To lower the

computation time, the domain is reduced to two wave-

lengths of the most unstable mode in the streamwise

direction, as determined from the linear stability anal-

ysis. The resolution, in the spanwise direction, is 256 and

the boundary conditions are periodic. The basic state is

parallel with the same velocity profile extended to the

entire domain. The Reynolds number is fixed at Re 5

9000 to reduce viscous effects. When a numerical sim-

ulation is initialized with a parallel basic velocity profile,

without external perturbations, the flow stays parallel

and the velocity diffuses slowly. The basic state velocity

is initially perturbed with a random perturbation field

whose fluctuation level is about 0.1% times the velocity

amplitude. Furthermore, the initial surface deviation is

in geostrophic balance with the initial velocity deviation

so as to avoid gravity wave emission.

3. Localized shear flow

a. Basic flow

The hyperbolic tangent velocity profile, U( y) 5

V0 tanhy/L, was often used as a generic flow to study the

stability of a single two-dimensional shear flow (Drazin

and Reid 1981; Johnson 1963). However, in the frame-

work of the RSW equations, the stability of such shear

flow may strongly depend on the domain size. Indeed,

due to the geostrophic balance, the constant velocities

values away from the shear zone control the surface

deviation in the central shear zone. If the domain size is

too large, outcropping (vanishing layer depth) may oc-

cur. To avoid this undesirable influence of the domain

size, the velocity field should vanish far away from the

shear. Therefore, instead of using a standard hyperbolic

tangent shear flow, we study, in this section, the stabil-

ity of a localized shear flow defined in a dimensionless

form by

U(y) 5
U(y)

V
0

5 cye�2y2

; h(y) 5
h(y)

h
0

5 c
l

4
e�2y2

with y2 [25, 5], where c 5 2e1/2. With this normalization

coefficient, the localized shear flow is anticyclonic and

extremum velocity values U/V0 5 1 and U/V0 5 21

occur at y 5 ½ and y 5 2½. In this case, the minimal

vorticity value is negative and centered in y 5 0, whereas

two positive vorticity peaks (having weaker amplitudes)
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correspond to the lateral shears (Fig. 1b). A cyclonic

shear is obtained when c 5 22e1/2. In appendix B, we

show that these lateral shears have little influence on the

growth rate of the most unstable mode.

b. Linear instability in the QG, FG, and
cyclogeostrophic regimes

Figure 2 compares the unstable growth rates sA and

sC (Figs. 2b,e) and the leading normal modes (Figs. 2c,f)

FIG. 2. Stability properties of the anticyclonic and cyclonic localized shear flow (a),(d) for Ro 5 0.1 and various

Burger numbers. (b),(e) The unstable growth rates, calculated both for the QG (filled dots) and the frontal regime

(open dots). (c),(f) The PV anomaly [(q 2 q0), where q0 5 f/h0 is the mean PV, normalized by (q 2 q0)max] of the most

unstable modes are given.
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of an anticyclonic (Fig. 2a) and a cyclonic (Fig. 2d)

localized shear flow. A resolution of N 5 256 was shown

to be sufficient to get convergence of the growth rates

(«256 5 1.6 3 1024). However, it turns out that the most

unstable cyclonic normal mode presents strong discon-

tinuities in a frontal regime (Fig. 2f, dashed curve, sharp

pike near y 5 0), and it was necessary to increase the

number of collocation points for these computations, up

to N 5 2048.

In the quasigeostrophic regime, corresponding here to

l 5 0.1 and Ro 5 0.1, the growth rates and the wave-

lengths of the most unstable perturbations in the cy-

clonic and anticyclonic shear are very close. The slight

differences in the growth rate are due to small ageo-

strophic effects since the Rossby number, Ro 5 0.1, in

our calculation is small but finite. To confirm this, we

have also performed this stability analysis with QG dy-

namics, that is, by linearizing the QG asymptotic Eq. (3)

around the same velocity profile (not shown). As ex-

pected from the mirror symmetry of the QG equations,

the cyclonic and the anticyclonic localized shear flows

have the same growth rates. Furthermore, the QG growth

rates are close to the shallow-water growth rates at Ro 5

0.1, indicating that the slight difference between sA and

sC results, indeed, from the small but finite Ro.

In a frontal regime, corresponding here to Bu 5 0.1

and Ro 5 0.1, the dimensionless growth rate of the cy-

clonic and the anticyclonic shears differ greatly. While

the growth rate in the anticyclonic shear decreases by

only 30% from its quasigeostrophic value, the unstable

growth rate within the cyclonic shear strongly decreases.

For the latter the maximum growth rate in the FG re-

gime is only 6% of the maximum growth rate in the QG

regime (Fig. 2e).

We should note, however, that in the FG regime the

growth rates of both shears decrease a finite amount.

The growth rate associated to barotropic instability

generally decreases when the Burger number decreases.

This was already the case within the standard QG model

if we reduce the Burger number in Eq. (3). This large-

scale stabilization was also quantified in the RSW model

for the Bickley jets (Poulin and Flierl 2003) or isolated

eddies (Stegner and Dritschel 2000) in the frontal re-

gime. Similar tendency were also found for specific wake

flows (Perret et al. 2006a). This general stabilization of

large-scale barotropic flows is confirmed by the multiple-

scale asymptotic expansion of the one-layer RSW equa-

tions (Cushman-Roisin 1986; Stegner and Zeitlin 1996).

Indeed, the typical time scale (Ro2f )21 for the asymp-

totic FG model is one order of magnitude larger than the

typical time scale (Rof )21 of the QG model. In other

words, for the same velocity amplitude (same Ro) large-

scale flows (small Bu) of both signs (with cyclonic or

anticyclonic vorticity) evolve more slowly than quasi-

geostrophic flows (finite or large Bu). This is of course not

the case for a two-layer configuration where the baro-

clinic instability could play an important role.

In the cyclogeostrophic regime, corresponding here to

Bu 5 1 and Ro ’ 1, we found a more pronounced

asymmetry between the unstable growth rate of the

cyclonic and the anticyclonic shears (Fig. 3). In contrast

with the FG regime, the growth rates of the localized

anticyclonic shear do not decrease and remain almost

constant while the Rossby number increases. On the

other hand, as for the FG regime, a strong stabilization

of the cyclonic shear occurs in the cyclogeostrophic re-

gime. The maximum normalized growth rate when Ro 5 1

is only 10% of the maximum normalized growth rate in

the QG regime (Ro 5 0.1 and Bu 5 1).

For an easier comparison with oceanic observations,

we compute the e-folding time 1/s of the unstable per-

turbations, scaled here by the local day T0 5 4p/f, as

a function of the relative deviation parameter l (Fig. 4).

The e-folding time is mainly controlled by the local

turnover time L/V0; hence, the cyclogeostrophic shears

(large V0 or small L) tend to have much smaller e-folding

time than the FG shears (large L or small V0). Never-

theless, in all the cases, when the isopycnal displacement

become finite (l 5 1) the e-folding time of the pertur-

bations will be one order of magnitude higher for the

localized cyclonic shear than for the anticyclonic one.

Hence, the cyclone–anticyclone asymmetry in the linear

growth rates is mainly controlled by the relative el-

evation parameter l. Both frontal regime and cyclo-

geostrophic regimes stabilize the cyclonic barotropic

shear and, therefore, favor the development of unstable

perturbations in the anticyclonic shear. In all cases, the

leading unstable mode extends throughout the whole

shear zone (Figs. 2c,f and 3b,d) and its shape is weakly

affected by the deformation radius variations or the

Rossby number values.

For the incompressible two-dimensional shear in-

stability (Drazin and Reid 1981), the unstable wave-

length is controlled by the width of the shear layer L. For

a barotropic shear in the RSW model, the unstable

wavelength could be controlled by at least two hori-

zontal scales: L and the deformation radius Rd. We plot

in Fig. 5a (Fig. 5b) the most unstable wavelength nor-

malized by L (Rd).1 According to Fig. 5a, the unstable

1 One should note that the two normalizations are linked. Thus,

for fixed Burger number, Bu 5 1 and L 5 Rd, the evolution of the

most unstable wavelength is the same for the two normalizations.

For fixed Rossby number, the most unstable wavelength normalized

by Rd increases with increasing l 5 RoL2/Rd
2 since 2p/(kmaxRd) 5

[2p/(kmaxL)]L/Rd.
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wavelength of the anticyclonic shear is proportional to L

and is weakly affected by the variation of the defor-

mation radius or the Rossby number while the unstable

wavelength of the cyclonic shear increases significantly

for large isopycnal displacement. Hence, the unstable

modes tend to be more elongated in cyclonic shears than

anticyclonic ones. According to Fig. 5b, the most un-

stable wavelength is always larger than the deformation

radius, and this ratio increases from 2p/k 5 3.5Rd for an

anticyclonic shear in the quasigeostrophic or the cyclo-

geostrophic regime up to 2p/k ’ 10Rd in the frontal

regime.

c. Nonlinear evolution

The nonlinear evolution of the instability and the vor-

tex formation are studied by direct numerical simulations.

The nonlinear evolution of localized shear flows are

computed in the quasigeostrophic regime (Fig. 6), the

frontal regime (Fig. 7), and the cyclogeostrophic regime

(Fig. 8). In agreement with the linear analysis and as

expected for the quasigeostrophic regime (Ro 5 0.1,

Bu 5 1), the nonlinear saturation of the shear instability

is very similar for cyclonic and anticyclonic shear. Cy-

clones and anticyclones are slightly out of phase but

have similar shape and strength. The distance between

two emerging vortices 4L is very close to the most un-

stable wavelength 2p/k 5 3.5L.

In a frontal regime (Fig. 7) the growth of the pertur-

bations differs significantly between the cyclonic and the

anticyclonic shear. Vortices appear in the anticyclonic

shear at t/T0 5 20 whereas the emergence of cyclonic

vortices only occurs at t/T0 5 200 ; 250, where T0 5 4p/f

is about one day. Moreover, once they are formed within

the unstable shear, cyclonic eddies tend to have a larger

extension along the shear than anticyclonic ones as ex-

pected from the linear stability analysis. Indeed, in the

FIG. 3. Stability properties of the anticyclonic and cyclonic localized shear flow for Bu 5 1.0 and various Rossby

numbers. (a),(c) The unstable growth rates, calculated both for the QG (filled dots) and the cyclogeostrophic pa-

rameters (open dots). (b),(d) The PV anomaly of the most unstable modes.
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frontal regime, according to Figs. 2b,e the wavelength of

the most unstable cyclonic mode is twice longer than the

anticyclonic one. An axisymmetrization process gener-

ally occurs during the nonlinear saturation, but the co-

herent structures remain elongated in the cyclonic shear

while axisymmetric eddies are formed in the anticy-

clonic shear (Fig. 7). According to previous studies

(Arai and Yamagata 1994; Graves et al. 2006), the ax-

isymmetrization process was found to be much weaker

for elliptical cyclones beyond the QG regime when the

isopycnal deviation becomes finite. The mean cyclonic

shear may amplify this tendency.

In the cyclogeostrophic regime (Fig. 8), the pertur-

bations grow faster in the anticyclonic shear, in agree-

ment with the linear stability analysis (Fig. 3). Here

again, the nonlinear evolution of the flow increases the

cyclone–anticyclone asymmetry, leading to strongly elon-

gated cyclones (Fig. 8, t 5 11T0) that split (Fig. 8, t 5 15T0)

into smaller circular eddies. This significant asymmetry

occurs when the relative vorticity is O(z/f ’ 1), even if

the global Rossby number is moderate (Ro 5 0.3). We

restrict our nonlinear simulations to moderate Rossby

numbers so as to avoid negative values of the potential

vorticity. Indeed, for negative PV oceanic shear flow

may become inertially unstable (Johnson 1963; Yanase

et al. 1993; Potylitsin and Peltier 1999), and small-scale

ageostrophic perturbations will grow quickly if the strat-

ification and the dissipation are not too strong (Stegner

et al. 2005; Teinturier et al. 2010). In such cases, the

rotating shallow-water formulation that filters out these

small-scale and three-dimensional motions could lead to

unrealistic results.

Moreover, if we analyze the vorticity field during the

nonlinear stage of the instability, we can detect some

differences between the cyclonic and the anticyclonic

structures (Fig. 9). Indeed, when the isopycnal devi-

ations become finite, the vorticity field seems to be

strongly perturbed in the core of cyclonic eddies while

anticyclonic eddies remain more coherent and circular.

This could be a signature of the cyclonic sensitivity

to external strain perturbations, induced by the mean

shear and the neighboring vortices, as suggested by the

study of Graves et al. (2006).

FIG. 4. Evolution of the e-folding time scaled by the local day for

anticyclonic (filled and empty triangles) and cyclonic (filled and

empty circles) shear as a function of the surface deviation l. Filled

symbols correspond to a Rossby number fixed at 0.1 and various

Burger numbers, whereas open symbols correspond to a Burger

number fixed at 1.0 and various Rossby numbers.

FIG. 5. Evolution of the most unstable wavelength normalized by (a) the shear width L and (b) the deformation

radius Rd for the anticyclonic (filled symbols) and the cyclonic (open symbols) shear as a function of the surface

deviation l.
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FIG. 6. Nonlinear evolution of PV for the (left) anticyclonic and (right) cyclonic shear at

Bu 5 1.0 and Ro 5 0.1. The extremum of PV anomaly is 60.35f/(gh0) and the contour interval

is 3 � 1022f/(gh0). Note that, for this figure and Figs. 7 and 8, the whole domain of calculation

extends to y 2 [25; 5].
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FIG. 7. Nonlinear evolution of PV for the (left) anticyclonic and (right) cyclonic shear at

Bu 5 0.1 and Ro 5 0.1. The maximum cyclonic PV anomaly is 1.4f/(gh0) and minimum of

anticyclonic PV anomaly is 20.6f/(gh0). The contour interval is 6 3 1022f/(gh0) for anticyclonic

shear and 0.14f/(gh0) for cyclonic shear.
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FIG. 8. As in Fig. 7 but at Ro 5 0.3 and Bu 5 1.0. The maximum cyclonic PV anomaly is

1.6f/(gh0), and the minimum of anticyclonic PV anomaly is 20.8f/(gh0). The contour interval is

4 3 1022f/(gh0) for anticyclonic shear and 8 3 1022f/(gh0) for cyclonic shear.
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4. Bickley jet

a. Basic flow

The barotropic instability of the two-dimensional

Bickley jet has been extensively studied (Lipps 1962;

Howard and Drazin 1964; Maslowe 1991; Engevik

2004). For large or finite Burger numbers (i.e., two-

dimensional or QG models) the unstable jet generates

cyclonic and anticyclonic eddies symmetric in their size,

strength, and shape. For finite Rossby numbers the study

of Poulin and Flierl (2003) exhibits a significant cyclone–

anticyclone asymmetry. To explore the large-scale effect

on the jet stability, we study the linear and the nonlinear

destabilization of a barotropic jet in the frontal regime

(small Rossby number Ro 5 0.1 but finite isopycnal

deviation l 5 0.5). To allow easier comparisons with

previous stability analysis and analytical results, we use

the geostrophically balanced Bickley jet (Fig. 10) de-

fined as follows:

U(y) 5 cosh�2y 1 u
0

(5)

and

h(y) 5�l(tanhy 1 yu
0
), (6)

where the lateral extent of the domain is 2yb 5 20. Due

to geostrophic balance and periodic boundary condi-

tions, the mean velocity must vanish and the central jet is

surrounded by a weak reverse flow u0 5 2yb
21 tanhyb.

This reverse flow is not needed when using, for instance,

free-slip boundary conditions in a finite-width channel

(Poulin and Flierl 2003) and introduces a small differ-

ence in the basic flow, compared to previous studies. The

velocity, vorticity, surface deviation, and potential vor-

ticity of the Bickley jet for l 5 0.1 and l 5 0.5 are plotted

in Fig. 10.

b. Linear stability in QG and FG regimes

In Fig. 11 we present the growth rate of unstable modes

in the quasigeostrophic regime Bu 5 1.0 and Ro 5 0.1.

The maximum dimensionless growth rate smax 5 0.062 is

slightly larger than the value smax 5 0.05 found by Poulin

and Flierl. We have checked that this 20% difference

can be explained by the slight difference between the

basic flows (not shown). Since our nonlinear simulations

are performed with a spectral code enforcing periodic

boundary conditions, we present the linear stability anal-

ysis of the modified Bickley jet, Eqs. (5) and (6), despite

these differences. We have verified that the dependence

on the Burger number, discussed below, is insensitive to

these details (not shown).

We have also found that the stability curve presents

bumps only when the numerical convergence criterion

detailed in section 2b(1) is not satisfied. For N 5 256

collocation points, a first bump is observed at dimen-

sionless wavenumber k 5 1.5 and a second one at k 5 1.8.

Therefore, it seems that such bumps, also present in

Poulin and Flierl (2003), are numerical artifacts due to a

lack of resolution. In what follows the computations are

performed with N 5 1024 collocation points.

In appendix C, we derive analytically the neutral ei-

genmodes of the QG asymptotic model. This leads to two

neutral eigenmodes: a varicose mode at k 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Bu�1

p

FIG. 9. Vorticity for (left) anticyclonic shear at T 5 100T0 and (right) cyclonic shear at T 5 500T0 for Bu 5 0.1 and

Ro 5 0.1. The minimum of anticyclonic vorticity is 20.3f (the contour interval is 0.03) and the maximum of cyclonic

vorticity is 0.17f (contour interval is 0.017).
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and a sinuous mode at k 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� Bu�1

p
. The varicose

branch of instability disappears for Bu , 1, whereas the

sinuous branch disappears for Bu , 0.25. These bounds,

valid in the limit of vanishing Rossby number, illustrate the

stabilizing effect of a small Burger number Bu 5 (Rd/L)2,

that is, a small deformation radius. For Bu 5 1 (l 5 0.1),

the neutral mode wavenumber kRd 5 1.78 is very close

to the QG prediction kRd 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� Bu�1

p
5 1.73, despite

the finite Rossby number Ro 5 0.1. We expect the vari-

cose branch to disappear near l 5 Ro/Bu . 0.1 and the

Bickley jet to be completely stabilized near l . 0.4. The

actual thresholds differ somewhat in our shallow-water

calculations owing to the finite Rossby number and slightly

different basic flow.

As for the localized shear layer, we first study the

linear stability properties of the flow within the RSW

model from the quasigeostrophic regime (Ro 5 0.1, l 5

0.1) to the frontal regime (Ro 5 0.1, l’ 1). As expected,

for the whole parameter range studied we get only one

unstable mode, corresponding to the sinuous mode. This

normal mode is mainly localized in the center of the jet

and despite a small shift of the secondary PV peak the

unstable mode keeps the same shape (Fig. 12b).

As expected from the QG analysis, the Bickley jet is

strongly stabilized in the RSW model when the frontal

regime is reached. The growth rate strongly decreases

and the unstable wavelength increases when the surface

deviation parameter l becomes finite (Fig. 12a). In the

FIG. 10. The Bickley jet basic state (a) velocity, (b) vorticity, (c) relative surface deviation, and (d) PV for

l 5 0.1 and l 5 0.5.

FIG. 11. Growth rate of the Bickley jet at different resolution for

Bu 5 1.0 and Ro 5 0.1.
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RSW model, the modified Bickley jet is completely stabi-

lized when l . 0.6.

As far as linear stability is concerned, the Bickley jet

is always destabilized by a nearly symmetric sinuous

mode. There is no signature of a selective destabilization

of anticyclonic vorticity region in the frontal regime.

The evolution of the dimensionless e-folding time

1/(smaxT0) and the dimensionless wavelength 2p/(kRd) as

a function of the relative surface deviation l are plotted in

Fig. 13. The e-folding time of the sinuous mode of the

barotropic Bickley jet increases from 20 to 250 days when

the relative deviation becomes finite l 5 0.5. We should

note here that these values overestimate the observed

e-folding time of the large-scale oceanic jet. For ex-

ample, available measurements (Halkin and Rossby

1985) indicate that, for the Gulf Stream, Ro 5 0.1–0.2

and Bu 5 0.1, which is close to the parameters we

consider. However, the Gulf Stream exhibits a short

e-folding time between 3 and 6 days (Watts and Johns

1982; Kontoyiannis and Watts 1994) and a longer one

between about 12 and 25 days (Lee and Cornillon 1996).

This discrepancy may be due to the barotropic limitation

of the RSW model. The baroclinicity of oceanic jets

has a strong impact on their stability. In a wide range of

parameters, Baey et al. (1999) show that the baroclinic

instability can be more efficient to create vortices than

the barotropic instability. Hence, if the frontal regime

stabilizes the barotropic jets, we could expect that the

stability of large-scale oceanic jets are controlled only by

the baroclinic processes.

c. Nonlinear evolution

As for the localized shear flow, the nonlinear evolu-

tion of the jet instability and the vortex formation are

FIG. 12. (a) Growth rate of the Bickley jet for various deviation of the free surface l; the Rossby number is fixed at

Ro 5 0.1. The dashed line with square spots indicates (kmax, smax) for intermediate values of l. (b) PV anomaly of the

most unstable mode.

FIG. 13. Semilog plot of (a) the dimensionless e-folding time and (b) the dimensionless wavelength for the Bickley jet

as a function of the relative surface deviation l.
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studied by direct numerical simulations. The dynamical

evolution of the unstable Bickley jet is computed in the

quasigeostrophic regime (Fig. 14, left) and in the frontal

regime (Fig. 14, right). As expected, for the quasigeo-

strophic regime (l 5 0.1), the nonlinear saturation of the

sinuous mode does not induce a substantial cyclone–

anticyclone asymmetry. Vortices of both signs are formed

with very similar size, shape, and amplitude. However, for

finite isopycnal deviation (l 5 0.5) once coherent vortices

are formed, the cyclonic eddies tend to be stretched in an

elongated boomerang shape, while the large-scale an-

ticyclones remain coherent and almost circular. A sim-

ilar behavior was found by Poulin and Flierl (2003) when

the Rossby number reaches finite values. In this cyclo-

geostrophic regime the surface deviation becomes finite

as in the frontal regime. Hence, even if the linear growth

of unstable sinuous mode does not lead to a strong

cyclone–anticyclone asymmetry, the nonlinear evolution

of the system does.

5. Parallel wake flows

a. Basic flow

Unlike the Bickley jet, parallel wake flows may ex-

hibit a significant cyclone–anticyclone asymmetry at the

linear stage of the instability. According to both numer-

ical (Perret et al. 2006a; Dong et al. 2007) and laboratory

studies (Perret et al. 2006b), when the deformation radius

is smaller than the typical width of the wake (i.e., in the

frontal regime), the wake flow tends to have the same

stability properties as two independent shear layers.

The most unstable mode is localized in the anticyclonic

shear, and the convectively unstable flow behaves as

a noise amplifier (Perret et al. 2006a). The main goal of

this section is to quantify the linear or the nonlinear

coupling mechanism between the two opposite shears

of a wake flow. Hence, in the following stability anal-

ysis, we construct various parallel wake flows as a

combination of two localized shear flows having the

same amplitude. The typical width of the wake D is de-

fined as the distance between the two shears, that is,

the distance between the two vorticity extrema. For an

oceanic or a laboratory wake, the typical width D cor-

responds to the mean island diameter or the cylinder

diameter. As in section 3, the extent of each localized

shear is L, and we introduce the dimensionless wake

parameter d 5 D/L. The parallel wake flow is divided

in three regions (Figs. 15a,b): two lateral shears sep-

arated by a central region of extent d 5 D 2 L having

a constant velocity U/V0 5 21. Hence, we study a

family of wake flow profiles having various widths d

according to

FIG. 14. Nonlinear evolution of PV for the Bickley jet at (left)

l 5 0.1 and (right) l 5 0.5 and Ro fixed at 0.1. The maximum and

minimum PV anomaly is 60.15f/(gh0) for l 5 0.1 and 60.5f/(gh0)

for l 5 0.5. The contour interval is 5 3 1023f/(gh0) for l 5 0.1 and

2 3 1022f/(gh0) for l 5 0.5.
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y #�d� 1

2
: U(y) 5�c(y 1 d/2)e�2(y1d/2)2

,

yj j# d� 1

2
: U(y) 5�1,

and

y $
d� 1

2
: U(y) 5 c(y� d/2)e�2(y�d/2)2

,

where c 5 2e1/2 is a normalization coefficient. The relative

surface deviation of this parallel wake flow family is de-

rived from U(y) according to the geostrophic balance

condition

U(y) 5�1

l

dh

dy

� �
.

The typical variations of the relative surface deviation and

the potential vorticity, for a wake profile corresponding to

d 5 2.5, are plotted in Fig. 15 for the quasigeostrophic

regime (l 5 0.1) and the frontal regime (l 5 0.5).

b. Linear stability in the QG, FG, and
cyclogeostrophic regimes

The linear stability of a parallel wake profile corre-

sponding to d 5 2.5 is studied in the quasigeostrophic

regime, in the frontal regime (various Burger numbers

while the Rossby number is kept small at Ro 5 0.1), and

in the cyclogeostrophic regime (various Rossby numbers

while the Burger number is kept constant at Bu 5 1).

The eigenmode, called mode A (mode C), corresponds

to an unstable perturbation preferentially localized in

the anticyclonic (cyclonic) shear region of the wake pro-

file as shown in Fig. 16. However, in the quasigeostrophic

regime (Bu 5 1 corresponding to l 5 0.1), each eigen-

mode (A or C) extends spatially in both shears (Fig. 16b).

In this regime, the two most unstable modes have roughly

the same growth rates: saL/V0 ’ 0.52 and scL/V0 ’ 0.45

(Fig. 16a). These values are very close to the growth rates

FIG. 15. (a) Velocity profile and (b) vorticity profile for a parallel wake flow of typical width d 5 2.5. The corresponding

(c) relative surface deviation and (d) PV are plotted for l 5 0.1 (solid line) and l 5 0.5 (dashed line).
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of the anticyclonic and the cyclonic localized shear layers

found in section 3 (Fig. 2). The differences between the

growth rates sa and sc are probably due to small ageo-

strophic effects induced by the small but nevertheless

finite Ro 5 0.1. Hence, unstable perturbations will grow

exponentially at the same rate on both sides of the wake.

Whereas, for a frontal regime (Bu 5 0.2), corresponding

to significant surface deviation l 5 0.5, the most unstable

eigenmode (mode A) is strictly localized in the anticy-

clonic shear region (Fig. 16d), and the mode C has a re-

duced growth rate scL/V0 ’ 0.14 (Fig. 16c). For the

cyclogeostrophic regime Bu 5 1 and Ro 5 0.5 the growth

FIG. 16. The two most unstable branches growth rate of wake flow for d 5 2.5 in (a) QG regime, (c) frontal regime,

and (e) cyclogeostrophic regime and PV anomaly of the most unstable modes in (b) QG, (d) FG, and (f) cyclo-

geostrophic regimes.
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rate of the unstable mode A, localized in the anticyclonic

shear, remains constant saL/V0 ’ 0.6 while the growth

rate of the cyclonic mode C is, here again, strongly re-

duced scL/V0’ 0.16 (Fig. 16e). Hence, in both cases, the

unstable perturbations will grow much faster on the an-

ticyclonic side of the wake. We recover here the results

previously found in the frontal regime (Perret et al. 2006a)

and extend them to the cyclogeostrophic case: beyond the

quasigeostrophic regime the linear stability of wake flow

may induce a selective destabilization of regions with an-

ticyclonic vorticity.

If we reduce the central region (d / 0 corresponding

to d / 1), the parallel wake flow becomes similar to

a parallel jet flow. In this case, as for the Bickley jet, we

expect the most unstable eigenmode to be a sinuous

mode and therefore the cyclone–anticyclone asymmetry

should be strongly weakened at the linear stage of the

instability. Hence, to study the influence of the width

parameter on the wake flow stability, we compare the

previous cases where d 5 2.5 with the case where d 5 1.22

(Fig. 17). As expected, Fig. 17b shows for the quasigeo-

strophic regime (l 5 0.1) that the most unstable branch

corresponds to a symmetric mode (i.e., a sinuous pertur-

bation) and the second branch to an antisymmetric mode

(i.e., a varicose perturbation). In this regime, the maxi-

mum sinuous growth rate ssL/V0 ’ 0.6 is significantly

higher than the maximum varicose growth rate syL/V0 ’
0.35. Hence, like the Bickley jet, the most unstable

mode corresponds to a symmetric perturbation even if the

growth rate of the antisymmetric perturbation (varicose

mode) is not negligible. When the wake enters the frontal

regime (l 5 0.5 corresponding to Bu 5 0.2 and Ro 5 0.1),

the symmetry properties of the two most unstable eigen-

modes change. The unstable modes corresponding to the

sinuous branch (varicose branch) remain almost sym-

metric (antisymmetric) in the center of the wake, but not

on the border of the jet. The amplitude of the most un-

stable modes of the sinuous branch are slightly amplified

on the anticyclonic side of the wake, while the unstable

modes of the varicose branch tend to be slightly amplified

on the cyclonic side of the wake. When the wake enters

the cyclogeostrophic regime (l 5 0.5 corresponding to

Bu 5 1 and Ro 5 0.5), the most unstable mode remains

symmetric (sinuous mode) and both the cyclonic and the

anticyclonic shears are destabilized.

Therefore, at the linear stage of the wake instability

a cyclone–anticyclone asymmetry starts to appear in the

frontal or the cyclogeostrophic regime, but the ampli-

tude of the asymmetry depends both on the Rossby

number and the relative width of the wake d. When the

width of the wake is large (d 5 2.5), the cyclonic and

anticyclonic shears of the wake are less connected and

for smaller deformation radius (frontal regime) or finite

Rossby numbers the most unstable perturbation is fully

localized within the anticyclonic shear (Fig. 16d or Fig.

16f). For smaller width (d 5 1.22), the unstable pertur-

bations of large-scale (Bu � 1) or cyclogeostrophic

(Ro’ 1) wake flows may destabilize almost equally both

sides of the wake (Figs. 17d,f). Hence, the cyclone–

anticyclone selection of the unstable modes at the linear

stage of the instability depends on both Bu and Ro, and

the width parameter of the wake d.

c. Coupling of the cyclonic and anticyclonic shears

To quantify more accurately the coupling between the

unstable modes on the anticyclonic and the cyclonic sides

of the wake, we introduce the correlation coefficient R,

R(q
1
, q

2
) 5

Re

ð
q

mode 1
* q

mode 2
dy

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
jq

mode 1
j2 dy

ð
jq

mode 2
j2 dy

r ,

where q* indicates the complex conjugate, Re the real

part, and q1(y) and q2(y) are the spatial distribution of

the two most unstable eigenmodes PV. When R 5 0, the

two modes are uncorrelated spatially, whereas for R 5 1

the two modes are spatially identical. If R . 0.2 (this

threshold is arbitrary), we say that the two eigenmodes

are coupled, whereas if R , 0.2 we say that they are un-

coupled. Moreover, we define the parameter g [ d/Rd 5

(d 2 1)/Bu1/2 to quantify the relative extent of the central

zone of the wake separating the two shears on both sides

of the wake. According to Fig. 18, in the geostrophic re-

gime (Ro 5 0.1), the boundary between the coupled and

the uncoupled modes depends mainly on g. At the first

order of approximation, the critical line gc 5 2.5 defines

reasonably well the separation between the coupled and

the uncoupled eigenmodes for a wide range of Burger

numbers. However, this critical value may slightly de-

crease for a finite Rossby number; indeed, for Ro 5 0.5

and Bu 5 1 we have found gc 5 1.8. Hence, when the two

shear layers of the wake profile are separated by more

than two or three deformation radii, the unstable eigen-

modes tend to be uncoupled at the linear stage of the

instability. In such case, we can use the results of the first

section on each localized shear flows, indicating that the

anticyclonic shear of the wake is the most unstable when

the isopycnal displacement become finite.

d. Nonlinear evolution

The nonlinear evolution of the instability of parallel

wake flows and the vortex formation are studied by di-

rect numerical simulations (Figs. 19 and 20). In agree-

ment with our previous results on the stability of parallel

wake flows, the nonlinear interactions between vorti-

ces of opposite sign enhance the cyclone–anticyclone
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asymmetry of large-scale wakes (Perret et al. 2006a).

Cyclonic vortices are stretched or strongly deformed

into triangular shapes in comparison with the anticy-

clonic vortices (Fig. 19), which remain robust and cir-

cular in the frontal regime (Bu 5 0.2 and Ro 5 0.1). For

a small width parameter (d 5 1.22) the first meanders

lead to the formation of vortices of both signs with a

slight cyclone–anticyclone asymmetry (Fig. 20, top mid-

dle), then the nonlinear interactions between vortices

lead to a strong distortion of cyclonic structures (Fig. 20,

bottom middle). Moreover, for both quasigeostrophic

and frontal regimes, the opposite sign vortices are aligned

FIG. 17. The two most unstable branches growth rate of wake flow for d 5 1.22 in (a) QG regime, (c) frontal regime,

and (e) cyclogeostrophic regime and PV anomaly of the most unstable modes in (b) QG, (d) FG, and (f) cyclo-

geostrophic regimes.
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along the same line, unlike the standard Karman vortex

street. For a larger width parameter (d 5 2.5) the first

meander leads to a significant cyclone–anticyclone asym-

metry in the vortex formation (Fig. 19, top middle). This

is the signature of a selective destabilization of the anti-

cyclonic shear region of the wake at the linear stage of the

instability. Indeed, for this case (d 5 2.5, g ’ 3.3), ac-

cording to Figs. 16 and 18, the perturbations growing

in each shear layer are not coupled. Coherent vortices

emerge first on the anticyclonic side of the wake and, once

they are formed, the nonlinear interactions with the cy-

clonic shear lead to the formation of distorted cyclones.

6. Conclusions

The stability of various parallel flows was investigated

in the context of the RSW model. This simple model

describes the barotropic surface motion in the upper

thermocline and neglects the baroclinic interactions of

the surface and the deep oceanic flow. However, this

model captures the non-QG dynamics and the fast

inertia–gravity wave motion. Several aspects of the

cyclone–anticyclone asymmetry of large-scale and par-

allel flows (shear, jets, and wakes) were then studied.

According to the various stability analysis performed

on a wide variety of parallel flows, we emphasize that

the barotropic instability of oceanic shears, jets, and

wake flows favors the formation of large-scale anticy-

clonic eddies. In both the frontal regime (small Rossby

number and finite isopycnal displacements) and the

cyclogeostrophic regime (finite Rossby number) an an-

ticyclonic shear flow will have higher growth rates than

a cyclonic one. The linear stage of the instability induces

a strong cyclone–anticyclone asymmetry and favors

the development of unstable perturbations in the anti-

cyclonic shear. The nonlinear saturation leads to the

formation of coherent and almost axisymmetric anticy-

clones, whereas the cyclones tend to be more elongated

in the shear direction once they are formed. Other

studies on the stability of isolated eddies have shown

that, beyond the QG regime, anticyclones tend to be

more stable and coherent than their cyclonic counter-

parts (Arai and Yamagata 1994; Baey and Carton 2002;

Stegner and Dritschel 2000; Graves et al. 2006). Hence,

the opposite stability properties of anticyclonic shear

regions (unstable) and anticyclonic eddies (stable) may

help to contribute to the predominance of large-scale

and long-lived anticyclones in the oceans.

The second result of this paper is to confirm that the

cyclone–anticyclone asymmetry of parallel flows may

occur at the linear stage or at the nonlinear stage of the

instability, respectively. Two different mechanisms are

then involved. Indeed, unlike a localized shear flow, the

stability analysis of a Bickley jet, in the frontal regime,

reveals no distinction between regions of positive (cy-

clonic) or negative (anticyclonic) vorticity. The most

unstable perturbation corresponds here to a sinuous mode,

leading to the meandering of the whole jet. However,

when the nonlinear saturation occurs and coherent struc-

tures are formed, large-scale anticyclones tend to be axi-

symmetric, whereas the cyclonic structures are highly

distorted and elongated along the jet meander. We recover

here the patterns of non-QG turbulent flows where several

coherent structures interact together with a predominance

of large-scale (larger than the deformation radius) and

robust anticyclones (Arai and Yamagata 1994; Polvani

et al. 1994; Linden et al. 1995). The nonlinear mechanism

involved here could be the strong sensitivity of cyclonic

structures to external strain perturbations studied by

Graves et al. (2006). The Bickley jet favors the emergence

of robust anticyclonic eddies only at the nonlinear stage.

Moreover, we demonstrate how the coupling between

opposite shears may suppress, at the linear stage of the

instability, the cyclone–anticyclone asymmetry. Assum-

ing that the deformation radius is a characteristic length

scale of interaction between localized structures, two

localized shear flows will not ‘‘feel’’ each other if they are

distant enough. We found that, if the distance D 2 L 5

gRd separating two shear regions is larger than two or

three deformation radii, the two localized shears will be

linearly uncoupled. In such case, if the widths L of the

shears are large enough, the flow will exhibit a significant

cyclone–anticyclone asymmetry. Hence, for large-scale

wakes the linear perturbations will grow much faster in

the anticyclonic vorticity region. However, if the two

shear regions are too close to each other (g & 2), the

opposite shears will be coupled at the linear stage and the

FIG. 18. Coupling of the two most unstable modes in the Bu–g

parameter space for geostrophically balanced flows (Ro 5 0.1).
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most unstable perturbation will then be a sinuous mode.

In such case, no distinction occurs between the cyclonic or

the anticyclonic vorticity region in the linear stage of in-

stability, as for the Bickley jet.

Even if the baroclinic instability is not taken into

account, this study may contribute to a better under-

standing of the preferred formation of large-scale anti-

cyclones. In the frontal regime (small Rossby number and

finite isopycnal displacements) or the cyclogeostrophic

regime (finite Rossby number) only large-scale anticy-

clones will emerge in a reasonable time if the barotropic

shear instability is the dominant mechanism of eddy

formation. For realistic large-scale wakes, such as the

Hawaiian or the Canaria archipelago wakes, the eddy

formation is mainly governed by the barotropic shear

instability. However, for these specific cases, both large-

scale anticyclonic shear (width larger than the deformation

radius) and smaller cyclonic shear coexist. The large-scale

anticyclonic shear will be in FG regime, whereas the cy-

clonic shear will obey the QG or the cyclogeostrophic

regime. In such conditions both shears are unstable with

similar growth rates, the anticyclonic shear in the FG re-

gime being slightly less (more) unstable than the cyclonic

shear in the QG regime (cyclogeostrophic). Thus, eddies

of both signs, but different size, will be formed. The cy-

clonic eddies should then be smaller and form before the

anticyclonic ones. Therefore, a more detailed study, taking

into account the interactions and the relative stability be-

tween shears of different width and intensity, is needed to

provide quantitative predictions on typical vortex shed-

ding frequencies.

Acknowledgments. We gratefully acknowledge Jean-
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FIG. 19. Nonlinear evolution of PV field for a wake profile corresponding to d 5 2.5 (left) in QG regime, (middle) in frontal regime, and

(right) in cyclogeostrophic regime. The range of PV is 60.5f/(gh0) in QG regime, 61.6f/(gh0) in frontal regime, and 61.9f/(gh0) in

cyclogeostrophic regime. The contour intervals are 3.0 3 1023f/(gh0) in QG regime, 0.11f/(gh0) in frontal regime, and 0.13f/(gh0) in

cyclogeostrophic regime.
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APPENDIX A

Rayleigh Criterion for the Frontal Geostrophic
Model

Here we extend the classical Rayleigh criterion for

instability of parallel incompressible two-dimensional

flows to the frontal geostrophic model. The dimension-

less frontal model is written as

›h

›t
� J h, (1 1 h)Dh 1

1

2
($h)2

� �
5 0, (A1)

where h is the surface deviation and J(a, b) 5 ›xa›yb 2

›ya›xb is the Jacobian operator (Cushman-Roisin 1986).

Any parallel flow h0(y) is a stationary solution of Eq.

(A1). To study the stability of that flow, we decompose

the surface deviation h as follows:

h 5 h
0
(y) 1 ~h(x, y, t),

where ~h is a small perturbation. The linearized frontal

equation is then

›~h

›t
� (1 1 h

0
)[J(h

0
, D~h) 1 J(~h, Dh

0
)]

� J(h
0
, $h

0
� $~h)� 1

2
J(~h, ($h

0
)2) 5 0. (A2)

FIG. 20. As in Fig. 19 but corresponding to d 5 1.22. The range of PV is 60.5f/(gh0) in QG and frontal regimes and 61.5f/(gh0) in

cyclogeostrophic regime. The contour intervals are 3.0 3 1022f/(gh0) in QG and frontal regimes and 0.16f/(gh0) in cyclogeostrophic regime.
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The perturbation ~h may be decomposed into normal

modes,

~h(x, y, t) 5 ĥ(y)ei(kx�vt), (A3)

where k is prescribed and v and ĥ(y) are complex un-

knowns. The solution has to be bounded as x / ‘, im-

plying that k is real. Introducing (A3) into (A2) yields

vĥ 1 k(1 1 h
0
)

dh
0

dy
k2ĥ� d2ĥ

dy2

 !
1 ĥ

d3h
0

dy3

" #

� k
dh

0

dy

� �2
dĥ

dy
1 ĥ

d2h
0

dy2

dh
0

dy

" #
5 0. (A4)

Setting the phase velocity c 5 v/k 5 cr 1 ici, one can

write

(1 1 h
0
)

dh
0

dy

d2ĥ

dy2
1

dh
0

dy

� �2
dĥ

dy

� c 1 (1 1 h
0
)

dh
0

dy
k2 1

d3h
0

dy3

 !
�

d2h
0

dy2

dh
0

dy

" #̂
h 5 0.

(A5)

Assuming that the basic state profile is monotonic, dh0 /

dy 6¼ 0, then one can divide the previous equation by

dh0/dy,

(1 1 h
0
)

d2ĥ

dy2
1

dh
0

dy

dĥ

dy
� c

dh
0
/dy

1 (1 1 h
0
) k2 1

d3h
0
/dy3

dh
0
/dy

 !
�

d2h
0

dy2

" #̂
h

5
d

dy
(1 1 h

0
)

dĥ

dy

� �
� c

dh
0
/dy

1 (1 1 h
0
) k2 1

d3h
0
/dy3

dh
0
/dy

 !
�

d2h
0

dy2

" #̂
h 5 0.

Assuming, moreover, that ĥ is a localized perturbation, then
Ð1‘

�‘
jĥj2 dy exists and limy!‘

ĥj j 5 0. Multiplying the

equation by the conjugate of the perturbation ĥ* and integrating between 2‘ and ‘, we getð1‘

�‘

ĥ*
d

dy
(1 1 h

0
)

dĥ

dy

� �
dy�

ð‘

�‘

c

dh
0
/dy

�
1 (1 1 h

0
) k2 1

d3h
0
/dy3

dh
0
/dy

 !
�

d2h
0

dy2

#
jĥj2 dy 5 0. (A6)

The first term may be integrated by parts:ð1‘

�‘

ĥ*
d

dy
(1 1 h

0
)

dĥ

dy

� �
dy 5 (1 1 h

0
)ĥ*

dĥ

dy

� �1‘

�‘

�
ð1‘

�‘

(1 1 h
0
)

dĥ

dy

���� ����2 dy.

(A7)

The first term on the right-hand side tends to zero at

infinity; Eq. (A6) then becomes

c

ð1‘

�‘

ĥj j2

dh
0
/dy

dy 1

ð‘

�‘

(1 1 h
0
)

dĥ

dy

���� ����2 dy

1

ð‘

�‘

(1 1 h
0
) k2 1

d3h
0
/dy3

dh
0
/dy

 !
�

d2h
0

dy2

" #
ĥj j2 dy 5 0.

(A8)

There is only one imaginary term in this equation, which

must then vanish:

c
i

ð1‘

�‘

ĥj j2

dh
0
/dy

dy 5 0. (A9)

Therefore, to be unstable (ci 6¼ 0), the flow must have

a nonmonotonic basic state surface deviation:

9y
0
/
dh

0

dy
(y

0
)5 0.

APPENDIX B

Sensitivity of an Isolated Shear to Details of the
Velocity Profile

The isolated shear defined in section 3 has two lateral

vorticity peaks (Fig. B1b). To test the influence of the

lateral shears on the stability of a localized shear flow,

we compare two parallel flows having the same central

shear but different lateral ones (Figs. B1a,b). According

to Figs. B1c,d, the growth rate and the wavelength of the

most unstable modes are weakly affected by the lateral

shears. Hence, if we remain far from an outcropping

configuration, the central shear controls the instability of

this localized barotropic flow and the results of the fol-

lowing stability analysis can be extended to a large variety

of shear flows.
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APPENDIX C

Neutral Eigenmodes of the Bickley Jet in
a Quasigeostrophic Model

Any profile n0(y) is a stationary solution of the qua-

sigeostrophic Eq. (3). Inserting n 5 n0( y) 1 c(x, y, t)

into (3) and neglecting terms quadratic in c yields the

linearized QG equation:

›

›t
1U

›

›x

� �
(Dc� Bu�1c)� ›c

›x
(U � Bu�1U) 5 0,

where U 5 2dn0/dy and U0 5 d2U/dy2. Considering a

normal mode c(x, y, t) 5 f(y) exp[ik(x 2 ct)] yields the

Rayleigh–Kuo equation,

(U � c)[f0� (k2 1 Bu�1)f]� (U0� Bu�1U)f 5 0.

(C1)

From now on, U(y) 5 cosh22y is the Bickley profile. A

neutral eigenmode has, by definition, a zero growth rate

or equivalently a real phase velocity c. Hence, we look

for a real phase velocity c and a real wavenumber k such

that Eq. (C1) admits a bounded solution f(y).

Neutral eigenmodes of the Bickley jet have been

found in the context of b-plane incompressible dynamics

(Engevik 2004). In that case, the normal modes satisfy

(U � c)(f0� k2f)� (U0� b)f 5 0. (C2)

Equation (C2) is singular at the abscissa yc of the critical

layer such that U(yc) 5 c unless U0(yc) 5 b9; that is, b 5

(4–6c)c. Equation (C2) then admits at least the following

solutions:

f
1
5 e�my(3 tanh2y 1 3m tanhy 1 m2 � 1)

and

f
2

5 emy(3 tanh2y� 3m tanhy 1 m2 � 1),

FIG. B1. Comparison between a standard localized shear profile (solid line) and a localized shear flow with less

steep lateral shears (dashed line): (a) velocity profile, (b) vorticity profile, and growth rates of the unstable mode for

(c) the QG regime l 5 0.1 and (d) the frontal regime l 5 1.0.
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where m2 5 k2 1 4 2 6c. For these solutions to be boun-

ded when y / 6‘, we need 3 2 3m 1 m2 2 1 5 0; that is,

either m 5 1 or m 5 2, in which case f1 is a multiple of f2.

This leads to two neutral eigenmodes for each value of c

(Engevik 2004).

Now Eq. (C1) is of the form (C2) with b 5 Bu21c. The

quasigeostrophic neutral eigenmodes are found using

simple substitution into the b-plane results. Because b 5

Bu21c, the solutions of b 5 (4 2 6c) are c 5 0 (critical

layer at infinity) and c 5 2/3 2 Bu21/6. The latter case,

the only one we consider here, leads to m2 5 k2 1 Bu21.

Finally, m 5 1 and m 5 2 leads to two neutral eigenmodes:

one with k 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Bu�1

p
and one with k 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� Bu�1
p

.
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