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Abstract: The effect of geometric imperfections and viscous damping on the type of non-linearity
(i.e. the hardening or softening behaviour) of circular plates and shallow spherical shells with free
edge, is here investigated. The Von Kármán large-deflectiontheory is used to derive the contin-
uous models. Then, non-linear normal modes (NNMs), are usedfor predicting with accuracy the
coefficient, the sign of which determines the hardening or softening behaviour of the structure. The
effect of geometric imperfections, unavoidable in real systems, is studied by adding a static initial
component in the deflection of a circular plate. Axisymmetric as well as asymmetric imperfections
are investigated, and their effect on the type of non-linearity of the modes of an imperfect plate, is
documented. Transitions from hardening to softening behaviour are predicted quantitatively for im-
perfections having the shapes of eigenmodes of a perfect plate. The role of 2:1 internal resonance in
this process is underlined. When damping is included in the calculation, it is found that the softening
behaviour is generally favoured, but its effect remains limited.

Keywords:hardening/softening behaviour, spherical shells, circular plates, geometric imperfections,
damping.

1 Introduction

When continuous structures such as plates and shells undergo large amplitude motions, the geo-
metrical non-linearity leads to a dependence of free oscillation frequencies on vibration amplitude.
The type of non-linearity describes this dependency, whichcan be of the hardening type (the fre-
quency increases with amplitude), or of the softening type (the frequency decreases). A large amount
of litterature is devoted to predicting this type of non-linearity for continuous structures, and espe-
cially for structures with an initial curvature such as arches or shells, because the presence of the
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quadratic non-linearity makes the problem more difficult tosolve. On the other hand, the hardening
behaviour of flat structures such as beams and plates is a clearly established fact, on the theoretical
as well as the experimental viewpoint, seee.g. [1, 2, 3, 4, 5, 6]. The presence of the quadratic
non-linearity may change the behaviour from hardening to softening type, depending on the relative
magnitude of quadratic and cubic non-linear terms.

Among the available studies concerned with this subject, quite all of them that were published
before 1992 could not be considered as definitive since they generally restrict to the case of a single-
mode vibration through Galerkin method, see for example [7,8, 9] for shallow spherical shells,
or [10] for imperfect circular plates. Unfortunately, it has been shown by a number of more re-
cent investigations that too severe truncations lead to erroneous results in the prediction of the type
of non-linearity, see for example [11, 12], or the abundant litterature on circular cylindrical shells,
where the investigators faced this problem for a long time [13, 14, 15, 16, 17, 18]. As a consequence,
a large number of modes must mandatory be kept in the truncation of the Partial Differential Equa-
tions (PDEs) of motion, in order to accurately predict the type of non-linearity. Recent papers are
now available where a reliable prediction is realized, for the case of buckled beams [19], circular
cylindrical shells [20], suspended cables [21] and shallowspherical shells [22].

However, these last studies are restricted to the case of perfect structures, and the damping is
neglected in the computations; and both of them have an influence on the type of non-linearity, so
that a complete and thorough theoretical study that could beapplied to real structures need to address
the effect of imperfections and damping. The geometric imperfections have a first-order effect on the
linear as well as the non-linear characteristics of structures. A large amount of studies are available,
where the effect of imperfections on the eigenfrequencies and on the buckling loads, are generally
addressed, see for example [23, 24, 25, 26, 27, 28] for the case of circular cylindrical shells, [29] for
shallow cylindrical panels, [30] for the case of rectangular plates. Non-linear frequency-responses
curves are shown in [31, 32] for clamped circular plates, [33, 34, 35] for rectangular plates, [36]
for circular cylindrical shells, and [37] for circular cylindrical panels. Even though the presence
of geometric imperfection has been recognized as a major factor that could make the hardening
behaviour of the flat plate turn to softening behaviour for animperfection amplitude of a fraction of
the plate thickness [10, 38], a quantitative study, which isnot restricted to axisymmetric modes and
that does not perform too crude truncations in the Galerkin expansion, is still missing.

To the authors’ knowledge, the role of the damping in the prediction of the type of non-linearity
has been only recently detected as an important factor that could change the behaviour from hard-
ening to softening type [39]. In particular, it is shown in [39] on a simple two degrees-of-freedom
(dofs) system, that the damping generally favours the softening behaviour. The aim of the present
study is thus to apply this theoretical result to the practical case of a damped shallow spherical shell,
so as to quantitatively assess the effect of structural damping of the viscous type on the type of
non-linearity of a two-dimensional vibrating structure.

The article is organized as follows. In section 2, local equations and boundary conditions for
an imperfect circular plate with free edge, are given. Then the method used for computing the
type of non-linearity is explained. Section 3 investigateshow typical imperfections may turn the
hardening behaviour of flat plates to softening behaviour. Quantitative results are given for selected
imperfections having the shape of eigenmodes of the perfectstructure. Section 4 is devoted to the
effect of viscous damping. The particular case of a spherical imperfection is selected, and the results
are shown for three different damping dependances on frequency.
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2 Theoretical formulation

2.1 Local equations and boundary conditions

A thin plate of diameter2a and uniform thicknessh is considered, withh << a, and free-edge
boundary condition. The local equations governing the large-amplitude displacement of a perfect
plate, assuming the non-linear Von Kármán strain-displacement relationship and neglecting in-plane
inertia, are given for example in [40, 5]. An initial imperfection, denoted byw0(r, θ) and associated
with zero inital stresses is also considered, see Fig. 1. Theshape of this imperfection is arbitrary, and
its amplitude is small compared to the diameter (shallow assumption): w0(r, θ) << a . The local
equations for an imperfect plate deduce from the perfect case [41, 18, 42]. Withw(r, θ, t) being the
transverse displacement from the imperfect position at rest, the equations of motion write:

D∆∆w + ρhẅ = L(w, F ) + L(w0, F ) − cẇ, (1a)

∆∆F = −Eh

2
[L(w, w) + 2L(w, w0)] , (1b)

whereD = Eh3

12(1−ν2)
is the flexural rigidity,∆ stands for the laplacian operator,c accounts for

structural damping of the viscous type,F is the Airy stress function, andL is a bilinear operator,
whose expression in polar co-ordinates reads:

L(w, F ) = w,rr

(
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r
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F,θθ

r2

)

+ F,rr
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r
+

w,θθ
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)
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Figure 1: (a) Top view and (b) cross-section of an imperfect circular plate of radiusa and thickness
h. (c) The particular case of a spherical imperfection, with radius of curvatureR.

The equations are then written with non-dimensional variables, by introducing:

r = a r̄ , t = a2
√

ρh/D t̄ , w = h w̄ , w0 = h w̄0 (3)

F = Eh3 F̄ , c =
[

Eh3/a2
]
√

ρh/D c̄. (4)

As non-dimensional equations will be used in the remainder of the study, overbars are now omitted
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in order to write the dimensionless form of the equations of motion:

∆∆w + ẅ = ε [L(w, F ) + L(w0, F ) − cẇ] , (5a)

∆∆F = −1

2
[L(w, w) + 2L(w, w0)] , (5b)

whereε = 12(1 − ν2).
The boundary conditions for the case of a free edge write, in non-dimensional form [5]:

F,r + F,θθ = 0 , F,rθ + F,θ = 0 , at r = 1 (6a)

w,rr + νw,r + νw,θθ = 0 , at r = 1 (6b)

w,rrr + w,rr − w,r + (2 − ν)w,rθθ − (3 − ν)w,θθ = 0 , at r = 1. (6c)

In order to discretize the PDEs, a Galerkin procedure is used. As the eigenmodes can not be
computed analytically because the shape of the imperfection is arbitrary, the eigenmodes of the
perfect plateΨp(r, θ) are selected as basis functions. Analytical expressions ofΨp(r, θ) involve
Bessel functions and can be found in [5]. The unknown displacement is expanded with:

w(r, θ, t) =
+∞
∑

p=1

qp(t) Ψp(r, θ), (7)

where the time functionsqp are now the unknowns. In this expression, the subscriptp refers to
a specific mode of the perfect plate, defined by a couple(k, n), wherek is the number of nodal
diameters andn the number of nodal circles. Ifk 6= 0, a binary variable is added, indicating the
preferential configuration considered (sine or cosinecompanion mode). Inserting the expansion
(7) into Eqs. (5), and using the orthogonality properties ofthe expansion functions, the dynamical
equations are found to be, for allp = 1 ... N :

q̈p + 2ξpωpq̇p + ε

[

+∞
∑

i=1

αp
i qi +

+∞
∑

i,j=1

βp
ijqiqj +

+∞
∑

i,j,k=1

Γp
ijkqiqjqk

]

= 0. (8)

Linear coupling terms between the oscillator equations arepresent, as the natural modes have not
been used for discretizing the PDEs. Analytical expressions of the coupling coefficients(αp

i , β
p
ij , Γ

p
ijk)

are given in [42]. The generic viscous damping termc of Eq. (5a) has been specialized in the dis-
cretized equations so as to handle the more general case of a modal viscous damping term of the
form 2ξpωpq̇p, whereξp is the damping factor andωp the eigenfrequency of modep. On the other
hand, external forces have been cancelled, as the remainderof the study will consider free vibrations
only.

In order to work with diagonalized linear parts, the matrix of eigenvectorsP of the linear part
L = [αp

i ]p,i, is numerically computed. A linear change of co-ordinates is processed,q = PX,
whereX = [X1 ... XN ]T is, by definition, the vector of modal co-ordinates, andN is the number of
expansion function kept in practical application of the Galerkin’s method. Application ofP makes
the linear part diagonal, so that the discretized equationsof motion finally writes,∀ p = 1 ... N :

Ẍp + 2ξpωpẊp + ω2
pXp + ε

[

N
∑

i,j=1

gp
ijXiXj +

N
∑

i,j,k=1

hp
ijkXiXjXk

]

= 0. (9)
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The temporal equations (9) describe the dynamics of an imperfect circular plate. The type of
non-linearity can be inferred from these equations. Unfortunately, too severe truncations in (9),e.g.
by keeping only one dof (N = 1) when studying the non-linear behaviour of thepth mode, lead
to incorrect predictions. Non-linear normal modes (NNMs) offer a clean framework for deriving a
single oscillator equation capturing the correct type of non-linearity [12]. This is recalled in the next
section, where the analytical expression of the coefficientdictating the type of non-linearity is given.

2.2 Type of non-linearity

Non-linear oscillators differ from linear ones by the frequency dependence on vibration ampli-
tude. The type of non-linearity defines the behaviour, whichcan be of the hardening or the softening
type.

As shown in [12], NNMs provides an efficient framework for properly truncating non-linear
oscillator equations like (9) and predict the type of non-linearity (hardening or softening behaviour).
The method has already been successfully applied to the caseof undamped shallow spherical shells
in [22]. The main idea is to derive a non-linear change of co-ordinates, allowing one to pass from
the modalXp co-ordinates to new-definednormal co-ordinatesRp, describing the motions in an
invariant-based span of the phase space. The non-linear change of co-ordinates is computed from
Poincaré and Poincaré-Dulac’s theorems, by successive elimination of non-essential coupling terms
in the non-linear oscillator equations. Formally, it reads:

Xp =Rp +

N
∑

i=1

N
∑

j≥i

(ap
ijRiRj + bp

ijSiSj) +

N
∑

i=1

N
∑

j=1

cp
ijRiSj

+

N
∑

i=1

N
∑

j≥i

N
∑

k≥j

(

rp
ijkRiRjRk + sp

ijkSiSjSk

)

+
N

∑

i=1

N
∑

j=1

N
∑

k≥j

(

tpijkSiRjRk + up
ijkRiSjSk

)

, (10a)

Yp =Sp +

N
∑

i=1

N
∑

j≥i

(αp
ijRiRj + βp

ijSiSj) +

N
∑

i=1

N
∑

j=1

γp
ijRiSj

+
N

∑

i=1

N
∑

j≥i

N
∑

k≥j

(

λp
ijkRiRjRk + µp

ijkSiSjSk

)

+

N
∑

i=1

N
∑

j=1

N
∑

k≥j

(

νp
ijkSiRjRk + ζp

ijkRiSjSk

)

(10b)

A third-order approximation of the complete change of co-ordinates is thus computed. The analytical
expressions of the introduced coefficients{ap

ij , bp
ij , cp

ij, rp
ijk, sp

ijk, tpijk, up
ijk, }, and

{αp
ij, βp

ij, γp
ij, λp

ijk, µp
ijk, νp

ijk, ζp
ijk, } are not given here for the sake of brevity. The interested reader

may find them in [12] for the undamped case, and in [39] for the damped case.
Once the non-linear change of co-ordinates operated, proper truncations can be realized. In

particular, keeping only the normal co-ordinatesRp allows prediction of the correct type of non-
linearity for thepth mode. The dynamics onto thepth NNM reads:

R̈p + ω2
pRp + 2ξpωpṘp +

(

εhp
ppp + Ap

ppp

)

R3
p + Bp

pppRpṘ
2
p + Cp

pppR
2
pṘp = 0, (11)
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whereAp
ppp, Bp

ppp, andCp
ppp are new coefficients coming from the change of co-ordinates.Their

expressions involve the quadratic coefficients{gp
ij} only, together with some of the transformation

coefficients,{ap
ij , bp

ij , cp
ij} from Eqs (10) [39]:

Ap
ppp = ε

[

N
∑

l≥i

gp
pla

l
pp +

∑

l≤i

gp
lpa

l
pp

]

, (12a)

Bp
ppp = ε

[

N
∑

l≥i

gp
plb

l
pp +

∑

l≤i

gp
lpb

l
pp

]

, (12b)

Cp
ppp = ε

[

N
∑

l≥i

gp
plc

l
pp +

∑

l≤i

gp
lpc

l
pp

]

. (12c)

The asymptotic third-order approximation of the dynamics onto thepth NNM given by Eq. (11)
allows one to accurately predict the type of non-linearity of mode p. A first-order perturbative
development from Eq. (11) gives the dependence of the non-linear oscillation frequencyωNL on the
amplitude of vibrationa by the relationship:

ωNL = ωp(1 + Tpa
2), (13)

whereωp is the natural angular frequency. In this expression,Tp is the coefficient governing the type
of non-linearity. IfTp > 0, then hardening behaviour occurs, whereasTp < 0 implies softening
behaviour. The analytical expression forTp writes [12, 22]:

Tp =
1

8ω2
p

[

3(Ap
ppp + εhp

ppp) + ω2
pB

p
ppp

]

, (14)

Finally, the method used for deriving the type of non-linearity can be summarized as follows. For
a geometric imperfection of a given amplitude, the discretization leading to the non-linear oscillator
equations (9) is first computed. The numerical effort associated to this operation is the most im-
portant but remains acceptable on a standard computer. Thenthe non-linear change of co-ordinates
is computed, which allows derivation of theAp

ppp andBp
ppp terms occuring in Eq. (14), the sign

of which determines the type of non-linearity. Numerical results are given in the next section for
specific imperfections.

3 Effect of imperfections

This section is devoted to numerical results about the effect of typical imperfections on the type of
non-linearity of imperfect plates. Two typical imperfections are selected. The first one is axisymmet-
ric and has the shape of mode (0,1), the second one has the shape of the first asymmetric mode (2,0).
Consequently, damping is not considered, so that in each equation we have:∀ p = 1 ...N, ξp = 0.
The study of the effect of damping will be done separately andis postponed to section 4.

3.1 Axisymmetric imperfection

In this section, the particular case of an axisymmetric imperfection having the shape of mode
(0,1) (i.e. with one nodal circle and no nodal diameter), is considered.The expression of the static
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deflection writes:
w0(r) = a(0,1)Ψ(0,1)(r), (15)

whereΨ(0,1)(r) is the mode shape, depending only on the radial co-ordinater as a consequence
of axisymmetry, anda(0,1) the considered amplitude. The mode shapeΨ(0,1)(r) depends on Bessel
function [5], and is shown in Fig. 2. The eigenmode is normalized so that

∫ 1

0
Ψ2

(0,1)(r)dr = 1.

a(0,1)

h

(a) (b)

a=1

Figure 2: (a) Three-dimensional view and (b) cross-sectionof the circular plate with geometric
imperfection having the shape of the first axisymmetric mode. As non-dimensional quantities are
used,a = 1 and the amplitudea(0,1) of the imperfection is made non-dimensional with respect tothe
thicknessh.

Fig. 3 shows the effect of the imperfection on the eigenfrequencies, for an imperfection ampli-
tude from 0 (perfect plate) to10h. It is observed that the purely asymmetric modes(k, 0), having no
nodal circle andk nodal diameters, are marginally affected by the axisymmetric imperfection. The
computation has been done by keeping 51 basis functions: purely asymmetric modes from (2,0) to
(10,0), purely axisymmetric modes from (0,1) to (0,13) and mixed modes from (1,1) to (6,1), (1,2),
(2,2), (3,2) and (1,3). More details and comparisons with a numerical solution based on finite ele-
ments are provided in [42, 43]. The slight dependence of purely asymmetric eigenfrequencies on an
axisymmetric imperfection has already been observed in [44] with the case of the shallow spherical
shell.

First, the effect of the imperfection on the axisymmetric modes (0,1) and (0,2) is studied. In this
case the problem is fully axisymmetric so that all the truncations can be limited to axisymmetric
modes only, which drastically reduces the numerical burden. The result for mode (0,1) is shown in
Fig. 4. It is observed that the huge variation of the eigenfrequency with respect to the amplitude of
the imperfection results in a quick turn of the behaviour from the hardening to the softening type,
occuring for an imperfection amplitude ofa(0,1) = 0.38h. This small value has direct implication for
the case of real plates. As the behaviour changes for a fraction of the plate thickness, it should not be
intriging to measure a softening behaviour with real plateshaving small imperfections. This result
can also be compared to an earlier result obtained by Hui [10]. Although Hui did not study free
edge boundary condition, he reported a numerical result forthe case of simply supported boundary
conditions, where the behaviour changes for an imperfection amplitude of 0.28h. The second main
observation inferred from Fig. 4 is the occurrence of 2:1 internal resonance between eigenfrequen-
cies, leading to discontinuities in the coefficientT(0,1) dictating the type of non-linearity. This fact
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Figure 3: Non-dimensional natural frequenciesω(k,n) of the imperfect plate versus the amplitude of
the imperfection having the shape of mode (0,1).
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Figure 4: Type of non-linearity for mode (0,1) with an axisymmetric imperfection having the shape
of mode (0,1).
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has already been observed and commented for the case of shallow spherical shells in [22]. It has also
been observed for buckled beams and suspended cables [19, 21]. This is a small denominator effect
typical of internal resonance,i.e. when the frequency of the studied mode (0,1) exactly fulfillsthe
relationship2ω(0,1) = ω(0,n) with another axisymmetric mode. 2:1 resonance arises here with mode
(0,2) at 1.85h and with mode (0,3) at 5.66h. On a practical point of view, one must bear in mind
that when 2:1 internal resonance occurs, single-mode solution does not exist anymore, only coupled
solutions are possible. Hence the concept of the type of non-linearity, intimately associated with a
single dof behaviour, loses its meaning in a narrow intervalaround the resonance.

0 0.75 1.74 3 4 5.43 6 7 8 9 9.92 11
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Figure 5: Type of non-linearity for mode (0,2) with an axisymmetric imperfection having the shape
of mode (0,1). 2:1 internal resonances with modes (0,3), (0,4) and (0,5) occurs respectively for
a(0,1)/h= 1.74, 5.43 and 9.92.

The numerical result for mode (0,2) is shown in Fig. 5. Once again, the geometric effect is
important and leads to a change of behaviour occurring ata(0,1)= 0.75h, i.e. for a small level of
imperfection. 2:1 internal resonance also occurs, thus creating narrow region where hardening be-
haviour could be observed. This result extends Hui’s analysis since only mode (0,1) was studied.
Moreover, as a single-mode truncation were used in [10], 2:1resonances were missed.

Finally, the effect of the imperfection on asymmetric modesis shown in Fig. 6 for modes (2,0)
and (4,0). The very slight variation of the eigenfrequencies of these modes versus the axisymmetric
imperfection results in a very slight effect of the geometry. It is observed that before the first 2:1
internal resonance, the type of non-linearity shows small variations. Hence, it is the behaviour of the
other eigenfrequencies and the occurrence of 2:1 internal resonance that makes, in these cases, the
behaviour turn from hardening to softening behaviour. For mode (2,0) this occurs for an imperfection
amplitude ofa(0,1)= 0.44h, where 2:1 resonance with mode (0,1) is observed. For mode (4,0), the
first 2:1 resonance occurs with mode (0,2) ata(0,1)= 1.39h, but do not change the behaviour. It is the
resonance with mode (0,1) ata(0,1)= 4h which makes the behaviour turn from hardening to softening.

These results corroborate those obtained on shallow spherical shells [22]. The fundamental
importance of axisymmetric modes in the study of asymmetricones is confirmed, showing once
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Figure 6: Type of non-linearity for (a): mode (2,0), and (b):mode (4,0), with an axisymmetric
imperfection having the shape of mode (0,1).

again that reduction to single mode has no chance to deliver correct results. The behaviour of purely
asymmetric modes is found to be of the hardening type until the 2:1 internal resonance with mode
(0,1) occurs. However, a specificity of mode (2,0) with regard to all the other purely asymmetric
modes is that after this resonance, hardening behaviour (though with a very small value ofT(2,0)), is
observed. This was also the case for shallow spherical shells [22]. Finally, for very large values of
the imperfection, the behaviour tends to be neutral.

3.2 Asymmetric imperfection

In this section, the effect of an imperfection having the shape of mode (2,0), is studied. Due to
the loss of symmetry, degenerated modes are awaited to ceaseto exist : the equal eigenfrequencies of
thesineandcosineconfiguration of degenerated modes split. In the following,distinction is made
systematically between the sine or cosine configuration of companion modes,e.g. mode (2,0,C)
(resp (2,0,S)) refers to the cosine (resp. sine) configuration. More precisely, the imperfection has the
shape of (2,0,C), and is shown in Fig. 7.

The behaviour of the eigenfrequencies with the imperfection is shown in Fig. 8. As expected,
the variation of the eigenfrequency corresponding to (2,0,C) is huge whereas (2,0,S) keep quite a
constant value. The symmetry is not completely broken. One can show that only eigenmodes of
the type (2k, n) split. On the other hand, as shown in Fig. 8, modes (3,0), (5,0), (1,1) are still
degenerated.

The numerical results for type of non-linearity relative tothe two configurations (2,0,C) and
(2,0,S), are shown in Fig. 9. The natural frequency of mode (2,0,C) undergoes a huge variation,
which result in a quick change of behaviour, occurring at 0.54h. Then, a 2:1 internal resonance with
(0,2) is noted, but without a noticeable change in the type ofnon-linearity, as the interval where
the discontinuity is present is very narrow. In this case, the behaviour ofT(2,0,C) looks like the one
observed in the precedent case,i.e. the variation ofT(0,1) versus an imperfection having the same
shape. On the other hand, the eigenfrequency of mode (2,0,S)remains quite unchanged, so that the
behaviour ofT(2,0,S) is not much affected by the imperfection, until the 2:1 internal resonance is
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nodal diameters of:
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(b)(a) (c)

Figure 7: (a) 3-d view, (b) top view and (c) cross-section alongθ = 0 for the plate with imperfection
having the shape of mode (2,0,C).

0 20 40 60 80
0

2

4

6

8

10

(2
,0

,C
)

am
pl

itu
de

 o
f i

m
pe

rf
ec

tio
n 

a 
   

   
   

/h

(k,n)ω [non−dim](2,0,C)(2,0,S)

(0,1) (3,0) (4,0,C)(4,0,S) (5,0) (1,1)

(2,1,S)

(2,1,C)

(0,2)

Figure 8: Non-dimensional natural frequenciesω(k,n) of the imperfect plate versus the amplitude of
the imperfection having the shape of mode (2,0,C).

encountered. In that case, the resonance occurs with the other configuration,i.e. mode (2,0,C).
Finally, the results for the first two axisymmetric modes (0,1) and (0,2) are shown in Fig. 10.

Mode (0,1) shows a very slight variation of its eigenfrequency with respect to the asymmetric imper-
fection (2,0,C). Consequently, the type of non-linearity is not much affected, until the eigenfrequency
of (2,0,C) comes to two timesω(0,1): 2:1 internal resonance occurs, and the behaviour becomes soft-
ening. On the other hand, the eigenfrequency of (0,2) is moreaffected by the imperfection. This
result in an important decrease ofT(0,2) while still remaining positive. A 2:1 internal resonance with
(0,3) is encountered for 3.51h, and two others 2:1 resonance, with (0,4) and (0,5), occurs around 8h.
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Figure 9: Type of non-linearity for (a): mode (2,0,C) and (b): (2,0,S); for an imperfection having the
shape of mode (2,0,C).

However the interval on which the type of non-linearity changes its sign is so narrow that it can be
neglected. The behaviour is thus mainly of the hardening type for (0,2).
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Figure 10: Type of non-linearity for (a): mode (0,1) and (b):(0,2); for an imperfection having the
shape of mode (2,0,C).

4 Effect of damping

In this section, the effect of viscous damping on the type of non-linearity, is addressed. The par-
ticular case of the shallow spherical shell is selected to establish the results. The equations of motion
are first briefly recalled. Then specific cases of damping are considered, hence complementing the
results of [22], that were limited to the undamped shell.
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4.1 The shallow spherical shell equations

The local equations of motions for the shallow spherical shell can be obtained directly, see [44]
for a thorough presentation. They can also be obtained from Eqs (5), by selecting an imperfection
having a spherical shape, as shown in Fig. 1(c), see [42]. With R the radius of curvature of the
spherical shell (R >> a to fulfill the shallow assumption), the local equations write [44]:

∆∆w + εq ∆F + ẅ = ε [L(w, F ) − cẇ + p(r, θ, t)] , (16a)

∆∆F −
√

κ∆w = −1

2
L(w, w), (16b)

where the aspect ratioκ of the shell has been introduced:

κ =
a4

R2 h2
, (17)

andεq = 12(1 − ν2)
√

κ. The boundary conditions for the case of the spherical shellwith free edge
write exactly as in the case of the imperfect circular platesso that Eqs (6) are still fulfilled [44, 42].
A peculiarity of the spherical shell is that all the involvedquantities, linear (eigenfrequencies and
mode shapes) and non-linear (coupling coefficients and typeof non-linearity) only depends onκ,
which is the only free geometric parameter. Hence all the results will be presented as functions ofκ.

A Galerkin expansion is used for discretizing the PDEs of motion. As the eigenmodesΦp(r, θ)
are known analytically [44], they are used for expanding theunknown transverse displacement:

w(r, θ, t) =
+∞
∑

p=1

Xp(t) Φp(r, θ). (18)

The modal displacementsXp are the unknowns, and their dynamics is governed by,∀ p ≥ 1:

Ẍp + 2ξpωpẊp + ω2
pXp + εq

+∞
∑

i,j=1

g̃p
ijXiXj + ε

+∞
∑

i,j,k=1

h̃p
ijkXiXjXk = 0. (19)

The analytical expressions for the quadratic and cubic coupling coefficients(g̃p
ij, h̃

p
ijk) involve inte-

grals of products of eigenmodes on the surface, they can be found in [44, 22]. As in the previous
section, a modal viscous damping term of the form2ξpωpẊp is considered, whereas external forces
has been cancelled as only free responses are studied.

The type of non-linearity can be inferred from Eqs (19) by using the NNM method. The results
for an undamped shell has already been computed and are presented in [22]. However, an extension
of the NNM-method, taking into account the damping term, hasbeen proposed in [39]. Amongst
other things, it has been shown on a simple two-dofs system ofcoupled oscillators, that the type
of non-linearity depends on the damping. The aim of this section is thus to complement the results
presented in [22] for documenting the dependence of a shell on viscous damping and for assessing
its effect.

4.2 Numerical results

Three cases are selected in order to derive results for a variety of damping behaviours:
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case (i) ∀ p = 1 ... N, ξp = ξ / ωp

case (ii) ∀ p = 1 ... N, ξp = ξ

case (iii) ∀ p = 1 ... N, ξp = ξωp

whereξ is a constant value, ranging from 0 to 0.3. Case (i) corresponds to a decay factor (2ξpωp =
2ξ) that is independent from the frequency,i.e. with a constant2ξ value for any mode. With a
small value ofξ, it may model the low-frequency (i.e. below the critical frequency) behaviour of
thin metallic structures such as aluminium plates [45, 46].Case (ii) describes a decay factor that
is linear with the frequency, and may model for instance damped structures as glass plates in the
low-frequency range [45]. Finally, case (iii) accounts fora strongly damped structure, with a center
manifold limited to a few modes.
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Figure 11: Type of non-linearity for (a): mode (0,1) and (b):(4,0) versus the aspect ratioκ of a
shallow spherical shell. Increasing values of damping for case (i) (∀ p = 1 ... N, ξp = ξ / ωp), are
shown, withξ = 0 and 0.01 (red), 0.1 (cyan) and 0.3 (violet).

The effect of increasing damping is shown for modes (0,1) and(4,0), for case (i) in Fig. 11,
case (ii) in Fig. 12, and case (iii) in Fig. 13. Mode (0,1) undergoes a rapid change of behaviour:
the transition from hardening to softening type non-linearity occurs atκ= 1.93. Then 2:1 internal
resonance with mode (0,2) occurs atκ= 36, but the behaviour remains of the softening type. Mode
(4,0) displays a hardening behaviour until the 2:1 resonance with mode (0,1) atκ= 174.1. The
first resonance with (0,2) atκ= 36.9 does not change the behaviour on a large interval. Adding the
damping of case (i) shows that the discontinuity ocurring at2:1 internal resonance is smoothened.
However, it happens for a quite large amount of damping in thestructure. Damping values of 0,
1e-4, 1e-3 and 1e-2 have been tested and give exactly the samebehaviour so that only one curve
is visible in Fig. 11. Large values of the damping termξ, namely 0.1 and 0.3 (which correspond
to strongly damped structures) must be selected to see the discontinuity smoothened. Moreover,
outside the narrow intervals where 2:1 resonance occurs, the effect of damping is not visible. As a
conclusion for case (i), it appears that this kind of dampinghas a really marginal effect on the type
of non-linearity, so that undamped results can be estimatedas reliable for lightly damped structures
with modal damping factor below 0.1.
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Figure 12: Type of non-linearity for (a): mode (0,1) and (b):(4,0) versus the aspect ratioκ. Increas-
ing values of damping for case (ii) (∀ p = 1 ... N, ξp = ξ), are shown, withξ = 0 and 0.01 (red),
0.1 (cyan) and 0.3 (violet).

Case (ii) corresponds to a more damped structure than case (i). However, it is observed in Fig. 12
that the discontinuity is not smoothened at the 2:1 internalresonance. Inspecting back the analytical
results show that this is a natural consequence of the expression of the coefficients of the non-
linear change of co-ordinates for asymptotic NNMs. When thespecific case of constant damping
factors is selected, small denominators remain present. Onthe other hand, outside the regions of
2:1 resonance, the effect of damping is pronounced and enhances the softening behaviour. But once
again, very large values of damping factors such as 0.3 must be reached to see a prominent influence.
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Figure 13: Type of non-linearity for (a): mode (0,1) and (b):(4,0) versus the aspect ratioκ. Increas-
ing values of damping for case (iii) (∀ p = 1 ... N, ξp = ξωp), are shown, withξ = 0 and 1e-4
(black), 1e-3 (magenta) and 1e-2 (red).

Finally, case (iii) depicts the case of a rapidly increasingdecay factor with respect to the fre-
quency. As the overall damping in the structure is thus larger, smaller values ofξ have been selected,
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namely 1e-4, 1e-3 and 1e-2.ξ= 1e-4 gives quite coincident results withξ= 0. But fromξ= 1e-3, the
effect of the damping is very important: the discontinuities are smoothened, except the larger one
occurring for mode (4,0) with mode (0,1). Forξ= 1e-2, 2:1 resonance are not visible anymore. A
particular result with this value is for mode (4,0): the smoothening effect is so important that the
non-linearity remains of the hardening type. Finally, the fact that the damping generally favours the
softening behaviour can not be declared as a general rule, asone counterexample has been exhib-
ited here. From these results, it can be inferred that the damping has little incidence on the type of
non-linearity for thin structures, until very large valuesare attained. It is observed that the damping
generally favours the softening behaviour, but this rule isnot true in general. In particular when
the transition from hardening to softening type non-linearity is due to a 2:1 internal resonance, and
is not the direct effect of the change of geometry, a large value of damping may favours hardening
behaviour, as observed here for mode (4,0) in case (iii).

5 Conclusion

The effect of geometric imperfections on the hardening/softening behaviour of circular plates
with a free edge has been studied. Thanks to the NNMs, quantitative results for the transition from
hardening to softening behaviour has been documented, for anumber of modes and for two typical
imperfections. Two general rules have been observed from the numerical results: for modes which
eigenfrequency strongly depends on the imperfection, the type of non-linearity changes rapidly,
and softening behaviour occurs for a very small imperfection with an amplitude being a fraction of
the plate thickness. On the other hand, some eigenfrequencies show a slight dependence with the
considered imperfection. For these, 2:1 internal resonances are the main factor for changing the
type of non-linearity. In a second part of the paper, the effect of viscous damping on the type of
non-linearity of shallow spherical shells have been studied. It has been shown quantitatively that
this effect is slight for usual damping values encountered in thin structures.
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