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Abstract

Non-linear normal modes (NNMs) are used in order to derive reduced-order models for large amplitude, geometrically non-linear
vibrations of thin shells. The main objective of the paper is to compare the accuracy of different truncations, using linear and non-linear
modes, in order to predict the response of shells structures subjected to harmonic excitation. For an exhaustive comparison, three dif-
ferent shell problems have been selected: (i) a doubly curved shallow shell, simply supported on a rectangular base; (ii) a circular cylin-
drical panel with simply supported, in-plane free edges; and (iii) a simply supported, closed circular cylindrical shell. In each case, the
models are derived by using refined shell theories for expressing the strain–displacement relationship. As a consequence, in-plane inertia
is retained in the formulation. Reduction to one or two NNMs shows perfect results for vibration amplitude lower or equal to the thick-
ness of the shell in the three cases, and this limitation is extended to two times the thickness for two of the selected models.

Keywords: Shell vibrations; Non-linear normal modes; Model reduction; Geometrical non-linearity
1. Introduction

The large amplitude, geometrically non-linear vibrations
of shells leads to complicated motions with typical non-lin-
ear phenomena. As a consequence, a large number of
expansion functions is generally needed for discretizing
the structure in order to obtain convergence through the
Galerkin method. This results in large computational times
that could be prohibitive in the context of simulation or
control. For this reason, there is an important need for
the definition of reduced-order models (ROMs), which cap-
ture the most salient features of the non-linear dynamics
with a limited number of degrees-of-freedom (dofs).
Non-linear normal modes (NNMs) are defined in order
to bypass the limitations of the linear normal modes
(LNMs) in the non-linear range. The idea is to ‘‘decouple”
as much as possible the motions in selected sub-spaces of
the phase space. This is realized by imposing the invariance
of sub-spaces as the key property that must be conserved
when non-linearities come into play, and leads to the defi-
nition of NNMs as invariant manifolds of the phase space
[1]. As the method used for computing the NNMs is purely
non-linear, it is expected to give better results than using
the LNMs, or modes obtained via the proper orthogonal
decomposition (POD) method [2–5].

Several methods have then been proposed to compute
the NNMs. They generally rely on an asymptotic develop-
ment for approximating the invariant manifold [6–11].
More recently, purely numerical methods have been pro-
posed [12–14], but they are often restricted either by com-
plexity (i.e. computational time for calculating the
ROMs) or by practicality, as once the complex geometry
of the manifold is computed, one has to project the equa-
tions of motion onto it. In the context of shell vibrations,
reduction with asymptotic NNMs has already been applied
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Fig. 1. Geometry and coordinate systems for the selected shells.
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with success on a fluid-filled circular cylindrical shell
described by the Donnells’ shallow-shell assumptions [15],
and compared with the POD method [2]. It also allows pre-
diction of the type of non-linearity (hardening/softening
behaviour) for shallow spherical shells [16].

In this study, the asymptotic NNM method is applied to
shell structures, without the shallow-shell assumption. As a
consequence, in-plane inertia is retained in the equations of
motions, which are derived via a Lagrangian approach [17–
19]. In-plane inertia must be retained for shells that cannot
be considered shallow. The effect of retaining or neglecting
in-plane inertia has been addressed by Amabili [17] for
closed circular cylindrical shells, and by Abe et al. [20]
for curved panels but only in the linear (natural frequen-
cies) part of their study. As a consequence of taking into
account these additional degrees-of-freedom, the compu-
tation of the LNMs is tedious and is thus bypassed by
using as expansion functions an ad hoc basis verifying
the boundary conditions. As a consequence, linear cou-
pling terms among the discretized oscillator equations are
present.

The present study is focused on the computation of fre-
quency–response curves for harmonically forced shells
vibrating at large amplitude. As a complete bifurcation dia-
gram (with stable and unstable solution branches) in the
steady-state is sought, a continuation algorithm is naturally
selected. In this context, structures discretized by finite-ele-
ment based methods must obviously be reduced, as the
number of degrees-of-freedom involved in a classical mesh
is immediately too large to be treated by standard contin-
uation algorithm. For this reason, the LNMs and NNMs
are here used for producing this reduction.

The reduction method proposed in [15] is revised in
order to take into account the linear coupling terms
between oscillators. In particular, these terms link together
flexural and in-plane motions. The procedure is automated
and thus extends earlier results presented in [21] where the
in-plane motions of a plate were slaved to the flexural
motions by using an invariant manifold approach.
Amongst other things, the developments presented herein
on the reduction process with NNMs show that the method
can easily handle any set of non-linear oscillators, as well as
more refined shell theories. Consequently, the method has
the potential for a large class of structural problems, and
could be applied to finite elements analysis of shells, where
the discretization functions, as well as the underlying shell
theories are distinct from those used here [22], providing
that an automated step computing the projection onto
the linear modes have been programmed.

Three structures are selected in order to compare the
results. A doubly curved panel, and a circular cylindrical
panel, with the Donnell non-linear theory without the shal-
low-shell assumption, are first derived. Then a closed
empty shell, the kinematics of which is expressed with the
Flügge-Lur’e-Byrne non-linear theory, is studied. For each
case, the reference solution is compared to ROMs with an
increasing number of LNMs and NNMs. The amplitude of
the external forcing is also varied in order to test the valid-
ity limits of the asymptotic approach used to generate the
NNMs. As side result, upper validity limits, in terms of
vibration amplitude with respect to the thickness of the
shells, are derived for each model.
2. Theoretical formulation

2.1. Selected cases

Three cases have been selected for studying the
reduction method provided by the asymptotic NNM
formulation:

(i) A hyperbolic paraboloid panel with rectangular base,
referred to as the HP panel in the following.

(ii) A circular cylindrical panel, referred to as the CC
panel.

(iii) A closed circular cylindrical shell, referred to as the
Flügge shell.

An exhaustive presentation of the HP panel is given in
[18], whereas the CC panel and the Flügge shell are respec-
tively documented in [17,19]. These shell models have been
selected in order to draw out a complete picture of the
reduction process in different situations. In particular,
two different kinematics are used (Donnell’s non-linear
shell theory is used for case (i) and (ii), while case (iii) is
governed by Flügge-Lur’e-Byrne non-linear theory), and
the qualitative behaviour of the closed shell (case (iii)) is
appreciably different from the two panels due to the sym-
metry of the problem.

The three shell models will be presented in a unified
manner in this section, by emphasizing the general method
used to obtain the equations of motions. As a consequence,
only the common features of the three models are here
described. Peculiar features, such as boundary conditions
or projection functions used for discretization, will be
reported in Sections 4–6.

Fig. 1 shows the geometry and coordinate system for a
typical shell. This geometry can handle the three cases
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and is thus used here as a generic model for presenting the
equations of motions. The curvilinear coordinate system is
denoted by ðO; x1; x2; zÞ, with the origin O at one edge of the
panel. R1 and R2 (assumed to be independent of x1 and x2)
are the principal radii of curvature, a and b are curvilinear
length, and h is the thickness. The membrane displacements
are denoted by u and v, and the normal displacement is w.
In the following, S refers to the surface of the shell, i.e.

S ¼ ½0; a� � ½0; b�.
2.2. Shell kinematics and external loads

The shell kinematics is described by relating the strain
components e1, e2 and c12 at an arbitrary point of the con-
sidered shell to the middle surface strains e1;0, e2;0 and c12;0,
and to changes in the curvature and torsion of the middle
surface k1, k2 and k12 by

e1 ¼ e1;0 þ zk1; ð1Þ
e2 ¼ e2;0 þ zk2; ð2Þ
c12 ¼ c12;0 þ zk12; ð3Þ

where z is the distance of the arbitrary point from the mid-
dle surface.

For the HP and CC panels, Donnell’s non-linear shell
theory is used to express the strain–displacement relation-
ship. The full expressions of the relationships between the
middle surface strain–displacement and the changes in cur-
vature and torsion can be found, for the HP panel in [18],
and for the CC panel in [19]. For the Flügge shell, Flügge-
Lur’e-Byrne non-linear theory is used, leading to a more
complicated relationship that is not reported here for the
sake of brevity. The interested reader is referred to
[17,23,24] for complete expressions of the kinematics in
that case.

The elastic strain energy US is expressed with the classi-
cal assumption of plane stress. According to the geometry
shown in Fig. 1, it reads

US ¼
1

2

Z
S

Z h=2

�h=2

ðr1e1 þ r2e2 þ s12c12Þ 1þ z
R1

� �

� 1þ z
R2

� �
dS dz; ð4Þ

where the stresses r1, r2 and s12 are related to the strains
for an homogeneous and isotropic material by

r1 ¼
E

1� m2
ðe1 þ me2Þ; ð5Þ

r2 ¼
E

1� m2
ðe2 þ me1Þ; ð6Þ

s12 ¼
E

2ð1þ mÞ c12: ð7Þ

The kinetic energy T S, by neglecting rotary inertia, reads

T S ¼
1

2
qh
Z
S

ð _u2 þ _v2 þ _w2ÞdS; ð8Þ
where q is the mass density, and overdot is used for
expressing time derivation.

The virtual work W done by the external forces reads

W ¼
Z
S

ðqx1
uþ qx2

vþ qzwÞdS; ð9Þ

where qx1
, qx2

and qz are the distributed forces per unit area
acting in x1, x2 and z directions respectively. For the three
cases studied, a pointwise normal excitation due to the con-
centrated force ~f , with purely harmonic content, is
considered:

qx1
¼ 0; qx2

¼ 0; and

qz ¼ ~f dðx1 � ~x1Þdðx2 � ~x2Þ cos xt; ð10Þ

where ð~x1;~x2Þ is the position of the excitation point, and x
the excitation frequency. With this expression, Eq. (9)
writes

W ðtÞ ¼ ~f cosðxtÞwðx1 ¼ ~x1; x2 ¼ ~x2; tÞ: ð11Þ
2.3. Lagrange equations of motions

The equations of motions are obtained via a Lagrange
formulation. The displacements are expanded on a set of
expansion functions /ðuÞmn ;/

ðvÞ
mn;/

ðwÞ
mn , satisfying identically

the boundary conditions

uðx1; x2; tÞ ¼
XMu;Nu

m;n¼1

umnðtÞ/ðuÞmnðx1; x2Þ; ð12aÞ

vðx1; x2; tÞ ¼
XMv ;Nv

m;n¼1

vmnðtÞ/ðvÞmnðx1; x2Þ; ð12bÞ

wðx1; x2; tÞ ¼
XMw;Nw

m;n¼1

wmnðtÞ/ðwÞmn ðx1; x2Þ: ð12cÞ

The explicit formulation for the selected expansion func-
tions will be given in Section 4 for the HP panel, Section
5 for the CC panel, and Section 6 for the Flügge shell.
The number of basis functions in each direction is free
and governed by the integers Mu;Nu;Mv;Nv;Mw, and Nw.
The damping forces are assumed to be of the viscous type.
They are taken into account using Rayleigh’s dissipation
function

F ¼ 1

2
c
Z
S

ð _u2 þ _v2 þ _w2ÞdS; ð13Þ

where c is the damping coefficient. In the remainder, modal
damping is assumed, such that c will give birth to modal
damping factors, that are different from one mode to
another.

Let q be the vector of generalized coordinates, gathering
together all the unknown functions of time introduced by
the expansions given in Eqs. (12)

q ¼ ½um;n; vm;n;wm;n�T; m ¼ 1; . . . ;Mu;Mv;Mw;

n ¼ 1; . . . ;N u;Nv;Nw: ð14Þ
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In the remainder, P refers to the dimension of q, i.e. the
number of generalized coordinates used for discretizing the
shell. The generic element of q is denoted by qp.

The generalized forces Qp are obtained by differentiation
of Rayleigh’s dissipation function F, provided by Eq. (13),
and of the virtual work W done by external forces, Eq. (9).
It reads

Qp ¼ �
oF
o _qp
þ oW

oqp

: ð15Þ

The Lagrange equations of motion can now be expressed:

8p ¼ 1; . . . ; P :
d

dt
oT S

o _qp

� �
� oT S

oqp

þ oU S

oqp

¼ Qp: ð16Þ

As a consequence of the kinetic energy expression, it is
found that oT S=o _qp ¼ 0. The derivation of the elastic strain
energy US with respect to qp shows very complicated
expressions involving quadratic and cubic non-linear cou-
pling terms among the equations. Finally, in the three con-
sidered cases, the result of the discretization gives a set of
coupled non-linear oscillator equations to solve. They
writes

€qp þ 2fpxp _qp þ
XP

i¼1

zp
i qi þ

XP

i;j¼1

zp
i;jqiqj þ

XP

i;j;k¼1

zp
i;j;kqiqjqk

¼ fp cosðxtÞ: ð17Þ

Modal damping in Eq. (17) is considered in the classical
form 2fpxp _qp, and f ¼ ½f1 . . . fP �T is the vector of the pro-
jected external forcing considered.

2.4. Discussion on in-plane inertia

In-plane inertia must be retained for shells that cannot
be considered shallow. Moreover, for higher vibration
modes of shallow shells, in-plane inertia must also be
retained. A specific case is a closed circular cylindrical
shells for modes with a number of circumferential waves
lower than four or five. However, even for shallow curved
panels and closed shells with circumferential wavenumber
equal or higher than five, in-plane inertia can play a signif-
icant role, as shown by Amabili [17]. For very shallow pan-
els, the effect of in-plane inertia can be negligible on both
natural frequencies and non-linear responses.

The drawback of retaining in-plane inertia is that addi-
tional degrees-of-freedom must be taken into the expansion
as a consequence that the simplified Donnell’s shallow-shell
formulation cannot be used. Secondly, the computation of
the eigenmodes can become more difficult. Analytical
eigenmodes of panels with in-plane inertia are simply
obtained in case of simply supported boundary conditions.
In other cases, the formulation become much more com-
plex and it is convenient to approach the problem numer-
ically, e.g. by using the Rayleigh–Ritz method. For these
reasons, ad hoc expansion functions are here used for dis-
cretizing the problem.
3. Reduced-order modeling

3.1. Reference solution

The response of the three selected shells to concentrated
harmonic force is sought. The excitation frequency x is
selected close to the first eigenfrequency of the systems.
Frequency–response curves are numerically obtained with
the software AUTO [25], by continuation of the solutions
with the pseudo-arclength method. Bifurcation analysis,
branch switching and computation of the stability is per-
formed by AUTO. In practice, the shell response to har-
monic excitation is found in two steps. Firstly, the
frequency x is set apart of the eigenfrequency, and the exci-
tation amplitude is used as bifurcation parameter. From
the stable state at rest, the excitation amplitude is raised
from zero to the desired magnitude. Once this value is
reached, the excitation frequency is then selected as bifur-
cation parameter to obtain the frequency–response curve.

The reference solution is obtained with the described
method, applied to Eq. (17). The convergence of the solu-
tions with respect to the number P of generalized coordi-
nates retained has already been done in previous studies.
It has been shown that, for the HP panel, P ¼ 22 basis
functions were needed for obtaining convergence [18].
For the CC panel, 19 basis functions were needed [19],
whereas convergence was obtained for the Flügge shell
with 16 basis functions [17]. As a consequence of these
large values, computation time associated with the numer-
ical simulations with AUTO for obtaining a single fre-
quency–response curve are large.

The next two subsections describe two strategies for
reducing the dimension P, i.e. the number of oscillator
equations to simulate to recover the correct behaviour.
These reduction strategies are crucial in order to reduce
the important computational time associated to simula-
tions with a large number of dofs, that are unavoidable
when dealing with geometrically non-linear structures.

Direct integration of the equations of motion is also per-
formed in order to obtain time responses of the selected
structures. The Gear’s BDF method, implemented in the
DIVPAG routine of the Fortran Library IMSL, has been
selected to handle the high-dimensionality of the problem
associated with stiff behaviour.

3.2. Numerical computation of the linear normal modes

The first idea for reducing the size of the system is to use
the linear normal modes (LNMs). Let L ¼ ½zp

i �p;i be the lin-
ear part of Eq. (17), and P the matrix of eigenvectors
(numerically computed) of L such that: P�1LP ¼ K, with
K ¼ diag½x2

p�, and xp the eigenfrequencies of the structure.
A linear change of coordinates is computed, q ¼ PX, where
X ¼ ½X 1 . . . X P �T is, by definition, the vector of modal coor-
dinates. Application of P makes the linear part diagonal, so
that the dynamics can now be expressed in the eigenmodes
basis, and reads, 8p ¼ 1; . . . ; P :
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€X p þ 2fpxp
_X p þ x2

pX p þ
XP

i;j¼1

gp
ijX iX j

þ
XP

i;j;k¼1

hp
ijkX iX jX k

¼ F p cosðxtÞ: ð18Þ

The application of P let the viscous damping
unchanged, and F ¼ P�1f ¼ ½F 1 . . . F P �T is the new vector
of modal forces. The quadratic and cubic non-linear cou-
pling coefficients fgp

ijg and fhp
ijkg are computed from the

fzp
i;jg and fzp

i;j;kg appearing in Eq. (17) with matrix opera-
tions involving P. The dimension of X is P, but truncation
can now be realized by keeping any number of LNMs. Let
P LNM be the dimension of the truncation operated in X.
Convergence studies will be realized by increasing P LNM

from 1 to P. Since the LNMs possesses some interesting
properties (in particular orthogonality), it is awaited to
obtain convergence for P LNM 6 P .
3.3. Non-linear normal modes (NNMs)

Asymptotic approximation of the NNMs of the
unforced structure is used to obtain further reduction of
the size of the system. NNMs are defined as invariant man-
ifold in phase space, tangent at the origin (representing the
structure at rest) to the linear eigenmodes [1]. The proce-
dure, based on normal form theory, is here briefly recalled.
A complete description is provided in [15,10].

A non-linear change of coordinates is performed, in
order to express the dynamics within the phase space
spanned by the invariant manifolds. The invariance prop-
erty is the key that allows finding reduced-order models
of lower dimension than those obtained using the eigen-
modes [10]. The modal velocity Y p ¼ _X p is used to recast
the dynamical equation (18) into its first-order form. The
non-linear change of coordinates, up to the third order, is
computed once and for all. It reads, 8p ¼ 1; . . . ; P

X p ¼ Rp þ
XP

i¼1

XP

jPi

ðap
ijRiRj þ bp

ijSiSjÞ þ
XP

i¼1

XP

j¼1

cp
ijRiSj

þ
XP

i¼1

XP

jPi

XP

kPj

ðrp
ijkRiRjRk þ sp

ijkSiSjSkÞ

þ
XP

i¼1

XP

j¼1

XP

kPj

ðtp
ijkSiRjRk þ up

ijkRiSjSkÞ; ð19aÞ

Y p ¼ Sp þ
XP

i¼1

XP

jPi

ðap
ijRiRj þ bp

ijSiSjÞ þ
XP

i¼1

XP

j¼1

cp
ijRiSj

þ
XP

i¼1

XP

jPi

XP

kPj

ðkp
ijkRiRjRk þ lp

ijkSiSjSkÞ

þ
XP

i¼1

XP

j¼1

XP

kPj

ðmp
ijkSiRjRk þ fp

ijkRiSjSkÞ ð19bÞ
The newly introduced variables, ðRp; SpÞ, are respectively
homogeneous to a displacement and a velocity, and are
called the normal coordinates. The introduced coefficients
in Eqs. (19) are the transformation coefficients, whose ana-
lytical expressions are given in [15]. Substitution of (19)
into (18) gives the dynamics expressed in the invariant-
based span of the phase space. It reads, 8p ¼ 1; . . . ; P

€Rp þ x2
pRp þ 2fpxp

_Rp þ hp
ppp þ Ap

ppp

� �
R3

p þ Bp
pppRp

_R2
p

þ Cp
pppR2

p
_Rp þ Rp

"XN

j>p

h
ðhp

pjj þ Ap
pjj þ Ap

jpjÞR2
j þ Bp

pjj
_R2

j

þðCp
pjj þ Cp

jpjÞRj
_Rj

i

þ
X
i<p

ðhp
iip þ Ap

iip þ Ap
piiÞR2

i þ Bp
pii

_R2
i þ ðC

p
pii þ Cp

ipiÞRi
_Ri

h i#

þ _Rp

XN

j>p

Bp
jpjRj

_Rj þ Cp
jjpR2

j

� �
þ
X
i<p

ðBp
iipRi

_Ri þ Cp
iipR2

i Þ
" #

¼ F p cosðxtÞ: ð20Þ

Eq. (20) is the normal form, up to the third order, of Eq.
(18), computed without the forcing term on the right-hand
side. The forcing term F ¼ ½F 1 . . . F P �T is added after the
non-linear change of coordinates on the normal oscillator
equations. As a consequence of this treatment of the forc-
ing term, the non-linear change of coordinate is time-inde-
pendent. Hence two approximations have been used to
build the reduced-order model based on NNMs. Firstly,
the invariant manifolds are approximated via an asymp-
totic development up to order three. Secondly, time-inde-
pendent NNMs are used to approximate time-dependent
manifolds. In the mechanical context, a time-dependent
formulation for computation of NNMs have been pro-
posed by Jiang et al. [13,26], by adapting a numerical
Galerkin procedure earlier developed by Pesheck et al.
[12,27]. Their numerical results shows, amongst other
things, that for moderate values of the forcing, the oscilla-
tions of the manifolds are small. Moreover, taking them
into account requires a huge numerical effort.

Due to these two approximations, it is thus expected to
obtain very good results for moderate values of the forcing
and of the amplitude of the response. By increasing the ampli-
tude of the forcing, the results are expected to deteriorate. One
purpose of the present study is also to give an upper validity
limit, in terms of the amplitude of the response, of these
approximated NNMs, as three different cases are tested.

On the other hand, the proposed method bears a num-
ber of advantages. On the theoretical viewpoint, the main
advantage of the NNM method is that it relies on the idea
of invariance, ensuring proper truncations, as already
shown in [10], and in [2] where a full comparison with
the POD method is performed. Secondly, as compared to
more numerically involved methods as the one by Jiang
et al. [13], the reduction process is here quick and easy to
use. Finally, the number of NNMs that one must keep in



0.5

1

1.5

2

m
ax

(w
   

 /h
)

1,
1

reference

NNM

LNM

(A)

      5
the truncation is known beforehand by simply looking at
the internal resonances in the linear spectrum. If no inter-
nal resonance is present, a single NNM is enough to catch
the dynamics. This will be shown in Sections 4 and 5. If
internal resonances are present, one has to keep all the
NNMs involved in the internal resonance. One key point
of the method presented here, relying on normal form the-
ory, is that no extra work is needed to handle the case of
internal resonance. In Section 6 concerned with the Flügge
shell, as a consequence of the fact that the shell is closed,
degenerate eigenvalues are present, giving birth to compan-
ion modes, linearly independent but having the same eigen-
frequency. Thus 1:1 internal resonance are present, and
two NNMs will be kept in order to reduce the system.
0.8 1 1.2 1.4 1.6 1.8 2
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ω/ω1

Fig. 2. Frequency–response curve for the HP panel, harmonically excited
in the vicinity of the first eigenfrequency x1. The reference solution is
compared to the solution given by keeping a single linear mode (LNM) or
a single NNM. The excitation amplitude is ~f ¼ 4:37 N. Point (A), with
x ¼ 1:3x1, is used for time integration, see Fig. 5.
4. Hyperbolic paraboloid panel

4.1. Boundary conditions and projection functions

The HP panel is shown in Fig. 1. The curvilinear axial
coordinates are specified by setting x1 ¼ x, and x2 ¼ y.
The radii of curvature are such that Rx ¼ �Ry .

Classical simply supported boundary conditions at the
four edges are assumed, so that:

v ¼ w ¼ N x ¼ Mx ¼ 0 at x ¼ 0; a; ð21aÞ
u ¼ w ¼ N y ¼ My ¼ 0 at y ¼ 0; b; ð21bÞ

where Nx;N y are the normal forces and Mx;My the bending
moments per unit length.

The basis functions are respectively

/ðuÞm;nðx; yÞ ¼ cosðmpx=aÞ sinðnpy=bÞ; ð22aÞ
/ðvÞm;nðx; yÞ ¼ sinðmpx=aÞ cosðnpy=bÞ; ð22bÞ
/ðwÞm;nðx; yÞ ¼ sinðmpx=aÞ sinðnpy=bÞ: ð22cÞ

Two non-linear terms û and v̂ are added to Eqs. (22a)
and (22b), respectively, in order to identically satisfy the
boundary conditions, as shown in [18].
4.2. Simulation results

Numerical simulations have been performed for a HP
panel with a ¼ b ¼ 0:1 m, Rx ¼ �Ry ¼ 1 m, and thickness
h ¼ 1 mm. The material is linear elastic with Young’s mod-
ulus E ¼ 206:109 Pa, density q ¼ 7800 kg m�3 and Pois-
son’s ratio m ¼ 0:3. The response of the HP panel to
harmonic excitation in the vicinity of the first eigenfrequen-
cy x1 is numerically computed. The convergence of the
solution has been carefully studied in [18] for an excitation
amplitude ~f of 4.37 N applied at the center of the panel. It
has been shown that 22 basis functions were necessary to
obtain convergence. More precisely, the generalized coor-
dinates retained for this reference solution are w1;1, w1;3,
w3;1, w3;3, u1;1, u3;1, u1;3, u3;3, u1;5, u5;1, u3;5, u5;3, u5;5, v1;1,
v3;1, v1;3, v3;3, v1;5, v5;1, v3;5, v5;3, v5;5. The damping parameter
fp has been set to 0.004 for each mode: 8p ¼ 1 . . .
22; fp ¼ 0:004.

Fig. 2 shows the frequency–response curve for this refer-
ence solution, numerically obtained by a continuation
method (pseudo-arclength is used) implemented within
the software AUTO [25]. The reference solution with 22
basis functions is compared to two severely reduced-order
models, composed of a single oscillator equation. The first
one is obtained by keeping in the truncation only the first
LNM (P LNM ¼ 1). Eq. (18) are restricted to the first one

€X 1 þ 2f1x1
_X 1 þ x2

1X 1 þ g1
11X 2

1 þ h1
111X 3

1

¼ F 1 cosðxtÞ: ð23Þ

Branches of solution are numerically obtained by continu-
ation with AUTO, then the original coordinates are recov-
ered via: q ¼ PX, where, in X, only the first coordinate X 1

is different from zero.
The second reduced-order model is obtained by keeping

the first NNM: Eq. (20) are truncated by letting
Rp ¼ 0; 8p ¼ 2 . . . 22: The dynamics onto the invariant
manifold is then governed by

€R1 þ 2f1x1
_R1 þ x2

1R1 þ ðh1
111 þ A1

111ÞR3
1 þ B1

111R1
_R2

1

þ C1
111R2

1
_R1 ¼ F 1 cosðxtÞ: ð24Þ

Eq. (24) is solved numerically with AUTO, then one
uses Eqs. (19) to come back to the modal coordinates,
and finally the matrix of eigenvectors P allows reconstitu-
tion of the amplitudes in the basis of selected projection
functions. Thanks to the non-linear nature of the change
of variable (19), all the modal amplitudes are non-zero.

Fig. 2 shows the main coordinate w1;1, having the most
significant response. One can observe that the non-linearity
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is of the hardening type, and that the amplitude of the
response, of the order of two times the thickness, is large.
The two reduced models have been selected because they
share the same complexity: a single oscillator equation is
used. Whereas reduction to a single linear mode gives poor
result, reduction to a single NNM give a satisfactory result,
with a slight overestimation of the maximum vibration
amplitude.

Moreover, as shown in Fig. 3, the reduced model com-
posed of a single NNM, thanks to the non-linear change
of coordinate, allows recovering all the other coordinates
that are not directly excited. Fig. 3 shows the six main
coordinates, i.e. the first four coordinates in transverse
direction, w1;1, w3;1, w1;3 and w3;3, as well as the first two
longitudinal coordinates u1;1 and v1;1. It is observed that
with the NNM ROM, energy is recovered in all the coordi-
nates, with a good approximation of the original ampli-
tudes. On the other hand, for the model composed of a
single linear mode, non-zero amplitudes are recovered only
on w1;1, u1;1 and v1;1, as these three coordinates are linearly
coupled to create the first eigenmode described by X 1 which
is simulated. But a vanishing response is found with this
LNM ROM for w3;1, w1;3 and w3;3.

This first result emphasizes the main characteristic of the
NNM ROM: the geometrical complexity due to the curva-
ture of the invariant manifold, is first computed in the non-
linear change of coordinates. Once the dynamics reduced
to the manifold, a single oscillator equation is sufficient
to recover the dynamics. Then, coming back to the original
coordinates allows recovering energy onto the slave modes
thanks to the non-linear projection.
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Fig. 4 shows a representation of the invariant manifold
(the first NNM) for the HP panel. The dimension of the
phase space is 45 (22 oscillator equations with displacement
and velocity as independent variables plus the external
forcing), and the NNM surface is two-dimensional. A pro-
jection in the reduced space ðw1;1; _w1;1;w3;1Þ is shown. A tra-
jectory is also represented, which has been computed by
numerically integrating the original system described by
Eq. (17). The closed orbit represents the true solution, as
the reference equations have been used. One can observe
that the closed orbit do not fully belong to the invariant
manifold. This is the consequence of the two assumptions
used to generate the NNM solutions: a third-order asymp-
totic development is used to approach the invariant mani-
fold, and secondly, a time-invariant manifold is used. As a
consequence, the trajectory do not fall completely within
the NNM. However a good approximation of the local
geometry is provided.

The time solutions for the four most significant coordi-
nates is shown in Fig. 5. Once again, the reference solution
is compared to the two reduced models composed of a sin-
gle linear and non-linear mode. Time integrations have
been performed for ~f ¼ 4:37 N and x ¼ 1:3x1 (Point (A)
in Fig. 2). Whereas the reduction to a single linear mode
is not acceptable, the solutions provided by a single
NNM are very good. Despite the fact that only one
oscillator-equation is simulated, a variety of complex
signals are recovered thanks to the non-linear change of
coordinates.

The convergence of the solution with an increasing
number of LNMs is shown in Fig. 6 for the excitation
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amplitude of 4.37 N. It is found that the convergence is
very slow: 15 LNMs are necessary to obtain an acceptable
solution. The solution with 11 LNMs is qualitatively differ-
ent from the converged solution with a strange loop
appearing in the frequency response, and is thus not
acceptable. Hence a very slow convergence with respect
to increasing P LNM is found, and using the linear normal
modes is not very favourable as compared to the projection
functions used. On the other hand, it has been found that
increasing the number of NNMs kept in the truncation in
Eq. (20) do not change anything in the solution: the added
NNMs have been found to stay with constant neglectable
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amplitude, and the same solution is found as the one
obtained with a single NNM. This is a logical consequence
of the invariance property of the NNMs. Hence the solu-
tion with a single NNM seems to be the best ROM possi-
ble. The only way to improve the results found here is not
in increasing the number of NNMs, but in overshooting
the two limitations of the present approximation used for
generating the NNMs.

Finally, the robustness of the ROMs with respect to
increasing the amplitude of the forcing, is studied. Fig. 7
shows the results obtained for a lower excitation ampli-
tude: ~f ¼ 2:84 N, and for a larger one:~f ¼ 6:62 N. For
~f ¼ 2:84 N, the result given by the NNM ROM is almost
perfectly coincident with the reference solution obtained
with 22 basis function, whereas the model with a single
linear mode give unacceptable results. For the larger ampli-
0.8 1 1.2 1.4 1.6 1.8
0

0.5

1

1.5

m
ax

(w
   

 /h
)

1,
1

ref
NNM

LNM

ω/ω 1

Fig. 7. Frequency–response curve for (a) ~f ¼ 2:84 N, and (b) ~f ¼ 6:62 N. Ref
(LNM) and a single non-linear mode (NNM).
tude, ~f ¼ 6:62 N, the result deteriorates for the NNM-
reduced model, which is not able to catch the saturation
loop found by the reference solution at the top of the fre-
quency–response curve. The observation of the other coor-
dinates (not shown for the sake of brevity) shows that this
loop reflects the fact that most of the energy is, at this
point, absorbed by the higher modes, the amplitude of
which significantly and abruptly increase. This subtil
change in the dynamics of the system is not caught by
the reduced model, which overpredict the maximum
amplitude.

As a conclusion on the HP panel, the dynamics has been
reduced from 22 dofs to a single NNM. Results shows that
the reduction, computed with an asymptotic expansion to
approach the invariant manifold, gives very good results
for vibration amplitudes up to 1.5 times the panel thickness
h. Beyond this value, the two approximations used for gen-
erating the ROM do not hold anymore. On the other hand,
using truncations with LNMs did not allow substantial
improvement as compared to the selected basis functions
used for discretizing the problem.

5. Circular cylindrical panel

5.1. Boundary conditions and projection functions

The CC panel is shown in Fig. 8. The coordinates used
to describe the geometry are x1 ¼ x and x2 ¼ h, where ðx; hÞ
are the cylindrical coordinates shown in Fig. 8. As a conse-
quence, the radii of curvature are such that R1 ¼ Rx ¼ 1,
and R2 ¼ R. The angular span is a, length is a and thickness
h. The selected boundary conditions are:

w ¼ N x ¼ Mx ¼ 0; N x;y ¼ 0; at x ¼ 0; a; ð25aÞ
w ¼ N y ¼ My ¼ 0; Ny;x ¼ 0; at y ¼ 0; b; ð25bÞ

where y ¼ Rh and b ¼ Ra. They modelize a restrained con-
dition in transverse direction with fully free in-plane
displacements.
1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

m
ax

(w
   

 /h
)

1,
1

ω/ω 1

ref

NNM

LNM

erence solution (ref) is compared to truncations with a single linear mode
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The basis functions are respectively

/ðuÞm;nðx; yÞ ¼ cosðmpx=aÞ cosðnph=aÞ; ð26aÞ
/ðvÞm;nðx; yÞ ¼ cosðmpx=aÞ cosðnph=aÞ; ð26bÞ
/ðwÞm;nðx; yÞ ¼ sinðmpx=aÞ sinðnph=aÞ: ð26cÞ

Two non-linear terms û and v̂ are added to Eqs. (26a)
and (26b), respectively, in order to identically satisfy the
boundary conditions, as shown in [19,28].
5.2. Simulation results

Numerical simulations have been performed for a spe-
cific panel with a ¼ 0:1 m, R ¼ 1 m and h ¼ 1 mm. The
angular span is a ¼ 0:1 rad, so that the panel length equals
the circumferential width. Material properties are identical
to that used for the HP panel so that E, q and m are
unchanged. The CC panel response to harmonic excitation
in the vicinity of the first eigenfrequency is studied. The
convergence of the reference solution has been carefully
checked in [19,28], for an excitation amplitude of
~f ¼ 4:4 N applied at the center of the panel. It has been
found that the minimal number of basis functions should
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0

0.25

0.5

0.75

ω/ω1

LNM

m
ax

(w
   

  /
h)

1,
1

Fig. 9. Maximum amplitude of coordinate w1;1 versus excitation frequency f
reference solution. Truncated solution with a single linear mode (LNM) is als
be 19. This solution will be referred to as the reference solu-
tion; the selected basis functions are: w1;1, w1;3, w3;1, w3;3,
u1;0, u1;2, u1;4, u3;0, u3;2, u3;4, v0;1, v2;1, v4;1, v0;3, v2;3, v4;3, v0;5,
v2;5, v4;5. Damping coefficient fp has been set equal to
0.004 for each generalized coordinate.

Fig. 9 shows the response of the main coordinate w1;1 for
an excitation amplitude of ~f ¼ 2:2 N. The reference solu-
tion, obtained with 19 dofs, is contrasted to two ROMs
composed of a single dof: a single LNM and a single
NNM. The results are comparable to those obtained for
the HP panel. The response of the panel is of the hardening
type. The restriction to a single linear mode is a too severe
truncation that leads to a huge overestimation of the hard-
ening behaviour of the panel. On the other hand, the
response provided by the NNM ROM is quasi-coincident
with the reference solution.

As already mentioned for the HP panel, the NNM
ROM allows recovering non-directly excited coordinates
thanks to the non-linear relationship between the original
(modal) coordinates and the master mode that is retained
for simulation. Comparison of other coordinates are
shown in Fig. 10. A particular feature of this model is
the weak coupling observed between the coordinates. This
is revealed here by the very small values of maximum
amplitude of the non-directly excited coordinates, recov-
ered via the changes of variables: they are an order of mag-
nitude less compared to the HP panel. On the geometrical
viewpoint, it means that the invariant manifold is rather
flat. The non-linearity is here more focused on the self-
exciting terms present in the normal form than in the
coupling amongst eigenmodes, which are treated by the
curvature of the NNM manifold. The convergence of
the reduced systems have also been tested. As in the prec-
edent case of the HP panel, a very slow convergence with
increasing the number of linear modes have been found:
15 LNMs were necessary in order to recover the original
results. Other more severe truncations with a number of
linear modes less or equal than 8 gave unacceptable results.

Fig. 11 shows the comparison between the NNM ROM
and the reference solution, for an excitation amplitude of
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10
4.4 N. The results provided by the single linear mode ROM
has not been plotted as it was completely unacceptable. As
a consequence of the weak coupling amongst generalized
coordinates detected before, the NNM simulation fails in
recovering the resonance curve for this level of excitation.
It can be explained by the fact that the NNM ROM, in
its third-order asymptotic approximation used here, has
the primary ability to catch very well the coupling amongst
linear modes through the non-linear change of coordinates.
As these couplings are here weak, the ROM is rapidly lim-
ited by its third-order expansion, that shows some difficul-
ties to recover the non-linearity exhibited in this case.
Moreover, the reference simulation shows an important
asymmetry between outwards displacements (Fig. 11a with
the maximum amplitude) and inwards displacements
(Fig. 11b with the minimum amplitude). This asymmetry
is caught by the NNM ROM but dramatically increased.
This, once again, shows that, in this case, the third-order
expansion is not enough to have a good approximation
of the dynamics.

Direct integration of the equations of motion for the ref-
erence model is compared to the single LNM and NNM
time simulations in Fig. 12, for this large value of excitation
~f ¼ 4:4 N, and x ¼ x1. As predicted by the frequency–
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response curve, the asymmetry is overestimated by the
NNM ROM. However, as in the case of the HP panel, a
large variety of non-linear temporal signals are well recov-
ered, whereas a single oscillator-equation is simulated.

Finally, in the case of the CC panel, the NNM ROM
gives good results for vibration amplitudes up to 0.9h.

6. Closed circular cylindrical shell

6.1. Boundary conditions and projection functions

The third example is a closed, empty shell of length a.
The geometry and coordinate system is deduced from the
CC panel by selecting a ¼ 2p for the angular span.
Whereas the strain–displacement relationship for the two
precedent example was given by Donnell’s non-linear the-
ory with in-plane inertia, Flügge-Lur’e-Byrne non-linear
theory is used here. The reader is referred to [17,23,24]
for a more thorough description of the kinematics.

The boundary conditions are simply supported at the
two ends x ¼ 0; a

w ¼ Mx ¼ v ¼ N x ¼ 0; at x ¼ 0; a; ð27Þ

where Mx and Nx are respectively the bending moment and
the axial force per unit length.

The response of the shell to harmonic forcing in the
vicinity of mode ðm; nÞ, where m is the number of longitu-
dinal half-waves, and n of circumferential waves, is consid-
ered. Based on past studies, where a detailed convergence
study was considered for mode (1,5) (see e.g. [17] and ref-
erences therein), the minimal expansion used for discretiz-
ing the shell has been found to be the following:

uðx; h; tÞ ¼
X2

k¼1

½u1;5k;cðtÞ cosð5khÞ þ u1;5k;sðtÞ sinð5khÞ� cosðk1xÞ

þ
X2

m¼1

u2m�1;0ðtÞ cosðk2m�1xÞ þ û; ð28aÞ

vðx; h; tÞ ¼
X2

k¼1

½v1;5k;cðtÞ sinð5khÞ þ v1;5k;sðtÞ cosð5khÞ� sinðk1xÞ

þ ½v3;10;cðtÞ sinð10hÞ þ v3;10;sðtÞ cosð10hÞ� sinðk3xÞ;
ð28bÞ

wðx; h; tÞ ¼ ½w1;5;cðtÞ cosð5hÞ þ w1;5;sðtÞ sinð5hÞ� sinðk1xÞ

þ
X2

m¼1

w2m�1;0ðtÞ sinðk2m�1xÞ; ð28cÞ

where km ¼ mp
a , and û is a non-linear term added to satisfy

exactly the boundary condition N x ¼ 0. Because of the cir-
cumferential symmetry, degenerate modes appear in the
structure; they are here denoted with the additional sub-
script c or s, indicating if the generalized coordinates is
associated with a cos or sin function in the angular coordi-
nate h for w. This expansion gives the reference solution,
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which is obtained here with 16 generalized coordinates.
One can observe that the basis functions are in fact the
eigenmodes of the empty shell for the transverse
component.

The point excitation considered is located at a node of
the mode ð1; 5; sÞ. Consequently, mode ð1; 5; cÞ is called
the driven mode, and mode ð1; 5; sÞ, which is not directly
excited by the external load, is the companion mode. The
damping coefficient fp is selected such that fp ¼ f ¼ 0:001
for each asymmetric modes, whereas for axisymmetric
modes (present in the truncation via w1;0; w3;0; u1;0 and
u3;0) we have: f1;0 ¼

x1;0

x1;5
f and f3;0 ¼

x3;0

x1;5
f.

6.2. Simulation results

Numerical simulations have been performed for a shell
whose geometric dimensions are: a ¼ 520 mm, R ¼
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149:4 mm, h ¼ 0:519 mm. Material properties are:
E ¼ 1:98� 1011 Pa, q ¼ 7800 kg m�3, m ¼ 0:3. As a conse-
quence of the circumferential symmetry and the appearance
of degenerate modes, 1:1 internal resonances are present in
the system. More particularly in the present case, the driven
mode and the companion mode are 1:1 internally resonant.
Hence the minimal model that could capture the dynamics
should contain at least two oscillator equations. This mini-
mal model is given by keeping the first two NNMs, corre-
sponding respectively to the continuation of driven and
companion modes, in the same way as the truncation real-
ized on a fluid-filled cylindrical shell described by Donnell
shallow-shell theory, see [15,2].

In the remainder of the study, the reference solution
obtained with 16 basis functions will be compared to the
solution given by the reduced model composed of 2
NNMs. The comparison with a truncation of linear modes,
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Table 1
Comparisons of accuracy and computational times for the three selected
models

Reference LNM NNM

HP Panel 22 dofs 1 dof 1 dof
Comp. time 1 h 56 min 36 s 4 min 47 s
Validity limits / 0.1h 1.5h

CC Panel 19 dofs 1 dof 1 dof
Comp. time 1 h 28 min 35 s 3 min 43 s
Validity limits / 0.1h 0.9h

Flügge shell 16 dofs 2 dofs 2 dofs
Comp. time 1 h 37 min / 2 min 48 s
Validity limits / 0.1h 3h

The computational time is defined as the time needed for computing a
typical frequency–response curves. For the reference solution, this
includes the time spent during an AUTO-run. For the LNM ROM, to the
time spent in an AUTO-run is added the time spent in the linear change of
coordinates (application of P). For the NNM ROM, the time spent for
computing and applying the non-linear change of coordinate is also
added. The amplitude of the forcing used for this table is: 4.37 N for the
HP panel, 4.4 N for the CC panel, and 2 N for the Flügge shell. Com-
putations have been realized on a standard PC with a Pentium IV pro-
cessor working at 2.4 GHz. Computational time associated to the Flügge
shell reduced to two LNMs is not mentioned as the model has not been
able to recover to two solution branches.
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as in the precedent cases, will not be shown for the follow-
ing reason. Once again, the convergence of the solution
with the number of linear modes was very slow. Moreover,
all the truncations tried with an increasing number of linear
modes predicted a hardening-type non-linearity, except the
solution with 16 linear modes which recovers the original
solution with a softening-type non-linearity for the driven
mode. Hence the minimal number of linear modes is also
16, and no other truncation is acceptable.

Fig. 13 shows the comparison between the reference
solution and the reduced model composed of two NNMs,
for an excitation amplitude ~f ¼ 2 N. The solution is com-
posed of two branches. The first branch corresponds to the
single-mode response: the companion mode has a zero
amplitude. This branch displays a softening-type non-line-
arity, and shows two branch points (BP), from which the
second branch arises. This second branch corresponds to
coupled solutions where both driven and companion mode
have a non-zero amplitude. Following branch 2, a bifurca-
tion occurs via torus (Neimarck-Sacker) bifurcations (TR),
leading to a quasi-periodic regime.

As shown in Fig. 13, the reduced model perfectly recov-
ers all the details of this complicated bifurcation diagram.
A slight overestimation of the softening non-linearity is
detected, but all the bifurcation points, as well as their nat-
ure, are perfectly recovered. In contrast, no other solution
with a truncation with the linear modes, was able to catch
the softening type non-linearity. This excellent result con-
firms earlier investigations led on a fluid-filled cylindrical
shell, see [15,2].

The robustness of the ROM is tested by increasing the
external forcing amplitude up to ~f ¼ 4 N. The correspond-
ing frequency–response is shown in Fig. 14. Despite an
increase in the overestimation of the maximum amplitude,
all the bifurcation points are once again recovered. From
these studies, it can be concluded that the ROM is reliable
for vibration amplitudes up to 3h.

7. Discussion

Reduction methods is a central question in the simula-
tion of vibrating structures. Many different methods have
been proposed in the past, one of the most popular being
the Proper Orthogonal Decomposition (POD) method [3–
5,29]. In this paper, the NNMs of the unforced structure
are tested as basis functions for reducing the dynamics
for shell models with harmonic forcing.

On the computational viewpoint, one of the main draw-
back of the present method is the number of coefficients
that have to be computed for obtaining the reduced model.
The main task consists in the computation of all the linear
fzp

i gp;i¼1...P , quadratic fzp
i;jgp;i;j¼1...P and cubic fzp

i;j;kgp;i;j;k¼1...P

coupling coefficients appearing in Eq. (17). This can be seen
as an extra work as compared to other methods, e.g. dis-
cretization based on finite elements procedures, where these
coefficients are generally not computed for solving out tem-
poral response for instance. However, in the context of this
study where one is interested with frequency–response
curves with bifurcation points, this step is necessary. It
can also be remarked that the computation of these coeffi-
cients are here realized on the basis of analytical develop-
ments, however they can easily be implemented within a
finite-element based discretization. The second family of
coefficients that have to be computed are those from the
non-linear change of coordinates defined by Eqs. (19).
However the numerical burden associated with this step
is limited, so that this does not appear as a limiting factor
of the method. Moreover, all these computations are made
once and for all, and for the unforced structure, so that
these can be seen as off-line calculations, that have not to
be repeated for computing other responses. This is of
course an advantage as compared to the POD method.

An assessment of the computational burden associated
with the numerical results shown in previous section is
given in Table 1. The computational times are only indica-
tory, as they strongly depend on the processor and on
numerous parameters that can be tuned in a typical
AUTO-run. Moreover, the computation of solution
branches with AUTO depends on the complexity of the
solution, thus the computational time also depends on
the amplitude of the forcing. These values are here given
in order to better quantify the gain in using ROMs in typ-
ical situations, which is very important. A typical AUTO-
run for computing a single-dof frequency–response curve
is of the order of 30 s (values given for the LNM ROM).
For the NNM ROM, about 3 min are spent in order to
compute the non-linear change of coordinates, that are
added to the 30 s of the AUTO-run. However, as the
non-linear change of coordinates is computed once and
for all, the single-dof NNM ROM can be used for comput-
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ing any solution, so that the computational time indicated
in the NNM column must be understood as an upper limit.
From Table 1, one can see that the computation times
obtained with the NNM ROMs have been reduced by a
significant factor, ranging from 23 (HP panel) to 32
(Flügge shell).

The upper validity limit has also been estimated in each
case by increasing the amplitude of the forcing. No validity
limits is indicated for the reference solution. However, if
larger values of the forcing would have been considered,
the convergence study with the projection functions should
have been done once again. The reduction to a single LNM
generally provided poor results, and once the value of 0.1
times the thickness h is reached, the reduction to a single
LNM is not acceptable. For the single NNM ROM, this
value is much larger. It has been found that the NNM
ROM was very accurate for amplitude up to 1.5h for the
HP panel, 0.9h for the CC panel, and 3h for the Flügge
shell. To these three cases, the case of the water-filled circu-
lar cylindrical shell studied in [2] can be added, where the
accuracy has been estimated to 2.5h.

Finally, one can also remark that the present reduction
method is particularly efficient for harmonically forced
responses, as the motion is confined in the vicinity of the
NNMs. However, for other dynamical behaviour (e.g. free
vibration of response to white noise), the benefit in using
NNMs instead of LNMs is questionable. Due the dynam-
ical characteristics, it is not awaited, in these cases, to
obtain as good results as those presented here for forced
responses.

Further research in the area of model reduction with
NNMs will consist in application of the present method
to structures discretized with finite elements procedures.
As shown in this study, the method can handle different
kinematics, and thus can be interfaced with a finite ele-
ments method. Overcoming the limitation of the asymp-
totic development is also the key to a reliable solution
that is not amplitude-dependent.

8. Conclusion

The non-linear response to harmonic forcing in the
vicinity of the first eigenfrequencies of three shell structures
have been studied. Particular attention has been paid to the
derivation of reduced-order models (ROMs), that could be
able to describe with accuracy the non-linear frequency–
response curves. Linear normal modes and non-linear nor-
mal modes computed by an asymptotic approach have
been used, for three selected systems: a hyperbolic parabo-
loid panel, a circular cylindrical panel and a closed empty
circular cylindrical shell.

For the first two cases, the reduction to a single NNM
has been possible, showing very good results for moderate
vibration amplitude. On the other hand, it has been
observed that using the LNMs did not allow for a substan-
tial improvement of the results, as compared to the first
expansion functions used for discretizing the panels. A sin-
gle LNM gives unacceptable results, and the linear conver-
gence was very slow in the two cases. Using NNMs thus
appears as the best solution for reducing the system. In
the third case, a 1:1 internal resonance was present in the
system, so that the minimal model was composed of two
NNMs, and showed very good results in recovering every
bifurcations points as well as the nature of the dynamical
regimes.

However, the NNM ROMs have been computed with
two approximations: a third-order asymptotic development
is used to approach the invariant manifold, and time-
invariant NNM is used whereas a time-dependent one
should be used to recover the dependence introduced by
the external forcing. Hence, for large amplitude of vibra-
tions, the results deteriorate.

As a conclusion, one can note that the present reduction
method bears a number of advantage, as it is quick and
easy-to-use, and overcomes the problems of internal reso-
nances without extra work. Its reliability can be said to
be very good up to h for shell structures, and generally
can give good results up to 2h except in the case where
the coupling between the modes is weak. To overcome this
limitation, the two approximations presently used for gen-
erating the NNMs must be revised.
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[10] C. Touzé, O. Thomas, A. Chaigne, Hardening/softening behaviour in
non-linear oscillations of structural systems using non-linear normal
modes, J. Sound Vib. 273 (1–2) (2004) 77–101.

[11] I.V. Andrianov, Asymptotic construction of nonlinear normal modes
for continuous systems, Non-linear Dynam. 51 (1–2) (2008) 99–109.

[12] E. Pesheck, C. Pierre, S.W. Shaw, A new Galerkin-based approach
for accurate non-linear normal modes through invariant manifolds, J.
Sound Vib. 249 (5) (2002) 971–993.



    15
[13] D. Jiang, C. Pierre, S.W. Shaw, Nonlinear normal modes for
vibratory systems under harmonic excitation, J. Sound Vib. 288 (4–
5) (2005) 791–812.

[14] R. Arquier, S. Bellizzi, R. Bouc, B. Cochelin, Two methods for the
computation of nonlinear modes of vibrating systems at large
amplitudes, Comput. Struct. 84 (24–25) (2006) 1565–1576.
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