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Non-linear vibrations of free-edgethin spherical shells:
Experimentson a 1:1:2 internal resonance

0. Thomas- C. Touzé - E. Luminais

Abstract This study is devoted to the experimental
validation of a theoretical model of large amplitude
vibrations of thin spherical shells described in a pre-
vious study by the same authors. A modal analysis of
the structure is first detailed. Then, a specific mode
coupling dueto a1:1:2 internal resonance between an
axisymmetric mode and two companion asymmetric
modes is especially addressed. The structure is forced
with asimple-harmonic signal of frequency closetothe
natural frequency of the axisymmetric mode. The ex-
perimental setup, which allows precise measurements
of thevibration amplitudesof thethreeinvolved modes,
is presented. Experimental frequency response curves
showing the amplitude of the modes asfunctions of the
driving frequency are compared to thetheoretical ones.
A good qualitative agreement is obtained with the pre-
dictionsgiven by themodel. Some quantitative discrep-
ancies are observed and discussed, and improvements
of the model are proposed.
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1 Introduction

When a thin shell is subjected to large amplitude
vibrations, of the order of magnitude of the thickness,
geometrical nonlinearitiescannot beneglected and give
rise to numerous nonlinear phenomena [1]. Among
these, nonlinear interactions between modes can result
in transfers of energy among them. In a structural
dynamics context, these phenomena are important
because an excitation of the structure in a specific
frequency band can giveriseto large amplitude oscilla-
tions at other frequencies. Moreover, a spatial redistri-
bution of energy can be observed from one mode shape
to another one, and parts of the structure not excited at
the primary resonance can receive energy through the
coupling and oscillate at large amplitude. Finally, such
a modal interaction is a usual way for a continuous
structure to transit to more complex dynamics and
chaos [2, 3]. This article presents a series of measure-
ments of a special nonlinear coupling between three
modesin one-to-one-to-two (1:1:2) internal resonance,
in the case of forced vibrations of a spherical shell.

In the abundant literature devoted to nonlinear vi-
brations of shells (see for example the reviews of
Qatu [4], Amabili and Paidoussis [5] and Alhazza and
Alhazza [6]), only afew studies propose experimental
investigations, as compared to the number of theoret-
ical works available. Moreover, the case of shallow
spherical shellsis generaly reduced to axisymmetric
vibrations, whereasasymmetric modesareof primeim-
portance to understand the global dynamics exhibited:



they are numerous as compared to the axisymmet-
ric ones, and since nonlinear couplings between any
modes are possible [7], an axisymmetric excitation of
the structure can lead to asymmetric vibrations. Exper-
iments on axisymmetric as well as asymmetric vibra-
tionsof aclamped spherical cap areproposedin[8], but
this study is restricted to linear vibrations. Non-linear
experimental studies on shells generally focus on one-
mode vibrations and on the associated hardening or
softening behavior. Amabili et al. [9, 10] experimen-
tally investigated nonlinear vibrations of cylindrical
shells, coupled with fluid or not, and reported other
experimental works. On spherical shells, experimental
results on snap-through behavior are exposed in [11]
and a few qualitative experiments on the special case
of aone-to-two (1:2) internal resonance between two
axisymmetric modesarereportedin[12]. Totheknowl-
edge of the authors, no experiments on multi-mode
asymmetric nonlinear response of spherical shellshave
been proposed yet.

The aim of the present study is precisely to inves-
tigate experimentally energy transfers via a nonlinear
mode coupling between axisymmetric and asymmet-
ric modes. A complete theoretical model, including
asymmetric vibrations, has been derived in [7], where
the particular case of a 1:1:2 interna resonance has
beentheoretically investigated. The 1:1:2 internal reso-
nanceinvolvesinour study amodal interaction between
two companion asymmetric modes, which have nearly
equal natural frequencies f; >~ f, (thus being in one-
to-one (1:1) internal resonance) and one axisymmetric
mode, whose natural frequency fs iscloseto twicethe
ones of the asymmetric companion modes (al three
being in 1:1:2 interna resonance, f; ~ f, >~ f3/2).
The measurements presented here have been obtained
with a spherical cap with a free edge, driven by a
simple-harmonic force at its center, in the vicinity of
the resonance of the axisymmetric mode. A transfer
of energy toward the asymmetric companion modes
is observed, those modes oscillating at half the driv-
ing frequency, thus creating a subharmonic in the shell
response. A 1:1 internal resonance between two asym-
metric modes has aready been studied by the authors
in the case of acircular plate, theoretically in [13] and
experimentally in [14]. The experimental setup used
here shares some common feature with the one used
in[14].

The outline of the paper is now exposed. Some ex-
perimental details used throughout the paper arefirstly

exposed in Section 2. Then, Section 3 providesamodal
analysisthat allows precise measurementsof all thelin-
ear parameters of the shell under study. Those param-
eters are compared to the ones obtained theoretically
in [7]. Section 4 briefly recalls the vibratory behavior
of the shell in forced 1:1:2 internal resonance as pre-
dicted by the theory exposed in [7]. In Section 5, the
experimental setup that allowsthe measurementsof the
nonlinear behavior of the shell is detailed. The experi-
mental resultsare exposed in Section 6 and compared to
theory in Section 7. An excellent qualitative agreement
is obtained between theory and experiments. How-
ever, some quantitative discrepanciesare observed, and
someimprovements of the theoretical model arefinally
suggested.

2 Experimental details
2.1 Geometry of the shell

In order to draw out precise comparisons between the
theoretical results and the experiments, a shell with
a nearly circular profile has been built. Its geometri-
cal characteristics are as follows: its outer diameter is
2a = 600 mm, thicknessish = 1 mm, center height is
H = 30 mm, and radius of curvatureis approximately
R = 1515 mm (Fig. 1). It is made of brass of Young's
modulus E, Poisson’sratio v, and density p, supposed
to be homogeneous and isotropic. Three small holes
(of diameter 2 mm) at the rim alow us to hang up the
shell with nylon threads.

A precise measurement of the shell profile has been
performed with adial comparator. The results are pre-
sented on Fig. 2. Two circular profile are also drawn,
one with aradius of curvature R = 1515 mm, the one
announced by the maker, and one that has been es-
timated by fitting a circle to the experimental points
(R = 1557 mm). One can observe that the profile of
the shell is close to acircle but that its curvature is not
uniform.

2.2 Boundary conditions

In order to simulate free-edge boundary conditions, the
shell is held with two nylon threads, fixed by means of
small holes at the rim (Fig. 3).
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Fig. 3 Photographs of the experimental setup. (a) The spherical cap with excitation device and accelerometers. (b) Detail of the
coil-magnet exciter



Table1 Devicesused
during the modal analyzes

Noise synthesizer

Power amplifier

Scanning laser vibrometer
Deflection shape estimation

Briel & Kjez ~ PULSE

Qsc PLX 3402

Polytec OFV 056/0FV 3001 S
Polytec PSV 300

Fig. 4 Electromagnetic
exciter. The magnet is
radially centered in the coil

cavity. Dimensions arein coil

millimeter \

current
2.3 Excitation device

The shell is excited by means of a magnet, glued with
beeswax and driven by a coil (Figs. 3(b) and 4). The
coil isfed through apower amplifier by either arandom
noise for the modal analyzes (Section 3) or by a sine
signal for the nonlinear experiments (Section 6). This
excitation device has already been used in [14], where
theinterested reader can find apreci sedescription of the
calibration procedure that allows to evaluate the force
acting on the magnet as afunction of the current inten-
sity in the coil. It has been found that the force is pro-
portional to the intensity, under the condition that the
magnet has a constant position with respect to the coil.
Proportionality coefficient K depends on the position
of the magnet with respect to the coil. As the magnet
follows the shell oscillations during experiments, the
forceisactually not purely proportional totheintensity.
In particular, when the current is simple-harmonic, har-
monic distortion of the force signal occurs. However,
the lowest harmonic distortion is obtained by adjusting
precisely the position at rest of the magnet so that the
symmetry plane of the magnet coincides with the side
plane of the coil. The harmonic distortionisinthiscase
of the order of 1% for a magnet displacement ampli-
tude of the order of 2.5 mm[14], which ismuch greater

Magnet position at rest

bees wax
magnet |

than the maximum amplitudes encountered during the
nonlinear experiments (see Section 6: the amplitude of
the center of the shell isless than 0.5 mm in Fig. 16).
Themagnet isalso radially centered with respect to the
coil. No force transducer is used in the experiments:
the force acting on the magnet and thus on the shell is
estimated by measuring the intensity of the current in
the coil and by multiplying it with coefficient K.

3 Modal analysis of the shell

In this section, an experimental modal analysis of the
shell is presented. The parameters related to the linear
vibrations of the shell are estimated and compared to
the theory exposed in [7]. Those parameters will be
used in Section 7 to compare the theoretical model of
nonlinear vibrations to the experimental results.

3.1 Experiments

The devices used are listed in Table 1. The shell
is driven by a random noise signa through the
coil/magnet exciter. The driving amplitude is chosen
weak enough to ensure linear vibrations of the shell.
Two locations for the magnet (of mass 6 g) have been
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Fig. 5 Frequency response of the shell. (—) Center excitation. (- -) Rim excitation

chosen: the first one at the center of the shell to drive
mainly the axisymmetric modes, and the second one at
the rim, 10 mm from the edge of the shell, to drive the
other modes.

Thevelocity response of the shell ismeasured witha
laser vibrometer, at any point of a40 x 40 point square
grid. At each point, the power spectral density (PSD)
of the measured signal is estimated. Then, three types
of data are obtained:

e A mean PSD, obtained by averaging all the PSDs
obtained for all the grid points. Figure 5 shows the
PSDs for both excitation locations.

e Thevaluesof thenatural frequenciesof the structure,
obtained by the values of the peak frequencies of the
curves of Fig. 5.

e Variousoperational deflection shapes, obtained at the
peak frequencies of the curves of Fig. 5.

Onecan noticethat the measured natural frequencies
and mode shapes correspond to the spherical shell with
the added mass brought by the magnet.

3.2 Comparison with theory

By observing the deflection shapes and comparing
them to the theoretical ones obtained in [7], it is possi-
ble to identify most of the resonant frequencies. Asin
the theory, three mode families are obtained:

e the purely asymmetric modes display only nodal di-
ameters (no nodal circles),

e the axisymmetric modes display only nodal circles
(no nodal diameters),

¢ the mixed modes are the others.

The number (k, n) of nodal diameters (k) and circles
(n) of the modal shape associated with each natural
frequency is indicated in Fig. 5, the corresponding
values of the natural frequencies are listed in Table 2,
and some measured deflection shapes along with the
corresponding profiles are shown in Fig. 6. We can
observe that as the geometry of the shell is nearly ax-
isymmetric, all modes except the axisymmetric ones
appear by pair in the spectrum, the two members of a
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Fig. 6 Three-dimensiona view of the experimental deflection
shape. (), (b) Both companion asymmetric modes (6,0). (d) Ax-
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pair being denoted ascompanion modes. If thestructure
had a perfectly axisymmetric geometry, those compan-
ion modes would have exactly the same natura fre-
guencies. For this shell, the purely asymmetric modes
(k,0) show natura frequencies very close to each
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other, whereas some mixed compani on modes can have
spaced natural frequencies. Moreover, inthetheory, the
mode shapes of two companion modes have the same
geometry, the only differencelying in their angular po-
sition: the nodal diameters of one companion mode are



Table 2 Values of experimental and theoreti-
cal natural frequencies of the shell

Mode Experimental Theoretical
number  frequency (Hz) frequency (Hz)
(2,0) 13.75 175 11.02
(3,0) 34 355 26.37
(4,0) 5725 5825  46.90
(5,0) 83 83.75 7217
(6,0) 110 111 101.77
(7,0) 141 141.8 135.45
(8,0) 172.75 176 173.01
(9,0) 207 214 214.39
(10,0 248.75 252 259.57
(11,0 290.25 295 308.60
(12,0 33375 33825 361.53
0,1) 225 386.03
0,2) 354 393.11
(0,3) 444.25 423.17
(0,9 555.5 495.65

located at the maxima of the other. This property has
been qualitatively verified in the experiments, asit can
be observed in Fig. 6.

Figures 5 and 7(a), and Table 2 show qualitatively
that the asymmetric mode (k, 0) natural frequenciesare
arranged in the spectrum in an anal ogous manner com-
pared to the corresponding theoretical ones obtained in
[7]. Moreover, it has been verified that the experimen-
tal radial dependence of the asymmetric mode shapes
(their profiles) fit the corresponding theoretical ones
very well. For example, the compari son between exper-
imental and theoretical profilefor mode (6, 0) isshown
inFig. 6(c). In contrast, Fig. 7(b) and Table 2 show that
the experimental natural frequencies of the axisymmet-
ric modes, as well as the ones of the mixed modes,
poorly fit their corresponding theoretical values. An
example is fqy, the frequency of the first axisymmet-
ric mode, whose experimental value is 160 Hz lower
than in the theory. It has also been observed that the
deformed part of the deflection shapes of those modes
are all located in the half central part of the structure
and that the corresponding profiles poorly fit the corre-
sponding theoretical ones, asit is shown in Figs. 6(€)
and 6(h) for mode (0,1) and mode (2,1). Thisfact can
probably be explained by the geometry of the shell pro-
file, which is not perfectly circular (Fig. 2). A conclu-
sion isthat the slight imperfections of the geometrical
profile of the shell have amajor influence on the modes
with at least one nodal circle (the axisymmetric modes

as well as the mixed modes), whereas they do not sig-
nificantly influence the purely asymmetric modes.

For any structure with perfectly free boundary con-
ditions and no rigid body motions, the center of mass
stays motionless during the oscillations. It is a con-
sequence of the second Newton's law applied to the
structure, free of external forces. Thus, if the bound-
ary conditions are perfectly free, the center of mass
of any deformed shapes is located on the plane of the
vibration nodes. The positions of the center of mass
of each experimental profiles of mode (0,1) have been
computed and are shown in Fig. 6(€). The details of the
computation can be found in Appendix 8. Figure 6(€)
shows that the center of mass is located very close to
the zero axis. One can conclude that our experimental
setup realizes boundary conditions that are very close
to a free edge and that, consequently, the associated
imperfections probably play a negligible role in the
discrepancies between theory and experiments.

Therelation betweenthenatural frequencies fy, and
the dimensionless theoretical angular frequencies wyn
is:

h [ B _
fion = . 1
kn = oraz\ 12p(1 — v2) @)

f*

A value of coefficient f* = 1.985 Hz has been esti-
mated by the slope of the least-square straight line of
Fig. 7(a) that approximates the values of the asym-
metric natural frequencies. By measuring the mass of
the structure, the value of the density of the mate-
rial has been evaluated to p = 8230 kgm~3. Using
Equation (1) with v = 0.33, oneobtains E = 111 GPa
for the Young's modulus of the material.

4 Theoretical behavior of theshell in 1:1:2
internal resonance
This section briefly recalls the main results obtained

in [7], allowing theoretical prediction of the vibratory
behavior of the shell.

4.1 Theoretical model

The dimensionless equations of motion for the shell
(dimensionless quantities are denoted by over-bars), in
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terms of transverse displacement w along the normal
to the mid-surface and airy stressfunction F, write for
al timet:

AAW + eq AF + 1w = gc L(w, F)

+eq[—21 w + pl, (29)

— a4

AAF — = Aw =

1 _
Rh3 —otw W),

(2b)

where A stands for the Laplacian operator, w denotes
the second time derivative of w, and p is a viscous

Experimental freq. [Hz]

damping coefficient. These eguations correspond to
a generalization to the case of a curved geometry of
von Karman's model for large-deflection vibrations of
plates[15]. For any detail on the assumptions, the free-
edge boundary conditions and other references on the
subject, the interested reader can refer to [7]. eq and &¢
are two “small” parameters that scale respectively the
quadratic and cubic terms in the equations of motion.
They fulfill the following relationship [7]:

: 3

Ec =

> |8



where x = 12(1 — v?)a*/R?h? is a geometrical pa-
rameter.

Thelocal dynamic partial differential Equations(2a)
and (2b) are expanded onto the linear mode basis. It
is then found that the corresponding modal coordi-
nates are solutions of an infinity of second order or-
dinary differential equations coupled by quadratic and
cubic nonlinear terms [7]. A particular 1:1:2 internal
resonance between two companion purely asymmetric
modes (denoted inthefollowing by mode 1 and mode2)
of dimensionless natural frequencies w; and w, and an
axisymmetric mode (mode 3) of dimensionless natural
frequency ws isstudied. Thisinternal resonance occurs
if:

w3 >~ 2w1 >~ 2w>. 4)

Considering Equation (3), afirst-order solution to this
particular 1:1:2 internal resonance is obtained by re-
taining only the quadratic nonlinear termsand the three
modal coordinates corresponding to the three modes
involved in the internal resonance. Thisdrastic trunca-
tion allowsderivation of thesimplest model; infact, the
normal form of the 1:1:2 internal resonance, which de-
scribes the first bifurcations of the system. Its validity
is also assessed by the fact that this simple truncation
captures al the qualitative features exhibited by the
experiments, as it will be shown in Section 6. The di-
mensionless displacement of the shell in steady stateis
then [7]:

w(f, 6, t) = ©a(, O)anu(t)
+ ®a(f, 0)02(t) + P3(M)s(t). 6)

where(r, 8) denotethe usual dimensionless polar coor-
dinatesand (¥, qj),1 = 1, 2, 3 denote the mode shape
andthemodal coordinateassociated with modei . When
the structure is driven at its center by a harmonic forc-
ing of angular frequency €2, the modal coordinates g;
verify the following dynamical equations:

Gy + @i01 = & [e1GhGs — 2101] . (6a)

G + wiGe = & [20203 — 2u202] , (6b)

G + @20 = e[oa0f + 040 — 211303 + Q cosQA],
(6¢)

where ¢ = gq, {o}i=1,.. 4 are the coefficients related
to the mode shapes of the shell and Q is related to
the forcing amplitude. {u;}i=1.23 arethe moda damp-
ing coefficients of the three involved modes, related to
damping factors {&; }i—1.2.3 by, forali =1, 2, 3:

Wi = >—. )

Their values can be estimated by experimental modal
analyzesandwill be presentedin Section 7. Onecan no-
tice that no forcing term appearsin Equations (6a) and
(6b) because modes 1 and 2 are asymmetric and thus
their modal shapes have nodes at the center (Fig. 6).
Moreover, thanks to the few parameters involved in
Equations (6a) and (6b), their solutions can easily be
fitted to experimental nonlinear responses in order to
estimate the nonlinear coefficients {«; }i =1, .. 4, SO asto
compare them to the theoretical ones obtained in [7].
Thiswill be presented in Section 7.

When the structure is driven in the vicinity of the
resonance of mode 3 (2 =~ w3), afirst-order solutionto
the set of equations (6a)—(6c), obtained by the method
of multiple scalesin [7], is:.

(@ = zicos(%t‘ -t Va) , (8a)
() = azcos(%t‘ et V3) , (8b)
Gs(t) = @ cos(Q21 — y3). (80)

{a }i=1.2.3 and {y }i=1.2.3 are the dimensionless ampli-
tudes and phase differences of the three modal coor-
dinates, anaytically obtained in [7] as functions of
forcing Q and excitation frequency 2. Their analyt-
ical expressionsarerecaled in Appendix 8. In[7], itis
shown that only three stable vibratory solutions can be
obtained in the steady state:

¢ the SDOF solution (single-degree-of-freedom), with
a; = a, = 0 and a3 # 0, which is the usual uncou-
pled solution;

e the C; solution, witha; # 0, a, = 0, a3 # 0: an en-
ergy transfer occurs between modes 3 and 1;

e the C, solution, witha; = 0, a; # 0, ag # 0: an en-
ergy transfer occurs between modes 3 and 2.
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It is also theoretically proved that a stable fourth solu-
tion with a; # 0, a, # 0, and az # 0 can be obtained
only if the structureis perfectly axisymmetric, that isto
say if w1 = wp, a1 = ap, and &; = &,. Thiscaseisun-
realistic in practice, as areal structure (and especialy
the shell under study) always owes imperfections that
lead to different values of parameters for the compan-
ion modes.

4.2 Theoretical frequency response curves

Inthe (as, 22) plane, the SDOF solutionisstableoutside
aninstability region, insidewhich thecoupled solutions
C; and C; originate. This region is shown with a gray
shaded areainFig. 8. It isthen possibleto predict which
solution (SDOF, Cq, or C,) is obtained by observing
the position of the SDOF solution with respect to the
instability region [7].

Figure 8 showsthevaluesof {(a;, yi)}i—1,23 asfunc-
tions of Q for aparticular value of Q, when Q isclose
to ws. InFig. 8, for each couple of amplitude and phase

10

Excitation frequency

solution, the subscripts denote the number of the mode
(mode 1, 2, or 3) and the superscripts refer to the so-
[ution branch (SDOF, Cy, or Cy). One recalls that the
values of a; (resp. ap) for the SDOF and C; (resp. C1)
solutions are zero and are not shown in Fig. 8. The an-
alytical expressions of {y;}i—1.2.3, hot included in [7],
can be found in Appendix 8.

A few remarkable properties of the frequency re-
sponse curves are now enumerated.

e Solution branches a$* and ag* coincides with the
limits £; and £, of the instability regions.

¢ The frequencies of the minima of £, and £, corre-
spond respectively to 2w; and 2w,, twice the natural
frequencies of modes 1 and 2. In these cases, phases
¥+t and y5 have the particular value /2.

e More than one stable solution coexists in some fre-
guency intervals. Inthe case of Fig. 8, SDOF and C;
solutions coexist in [wa, wp] and SDOF and C, solu-
tionscoexistin[wc, wq]. The SDOF solutionisstable
for Q < wy or Q > wy, C; solutionisstable only in
[wp, @] and C; solution isstable only in [@, wg]. As
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Fig. 9 Experimental setup for measuring the frequency response curves

a conseguence, depending on the initial conditions,
jump phenomenacan occur at frequencies w, and wy,
between SDOF and C; solutions, at frequency @ be-
tween C; and C solutions, and at ¢ and wq between
SDOF and C, solutions.

* & denotes the frequency where £, and £, meet. A
stability exchange occurs between C; and C, solu-
tion at this frequency, if the SDOF solutionisinside
the instability region at this frequency. As a conse-
guence, thereis no frequency interval where C; and
C, solutions coexist.

5 Measurementsof the 1:1:2 internal resonance

In this section, the special procedures that lead to the
measurements of a particular 1:1:2 internal resonance
on the shell introduced in Sections 2 and 3 are de-
scribed. It occurs between mode (0,1) (denoted in the
following by mode 3, of natural frequency fs closeto
225 Hz) and with both companion modes (0,6) (de-
noted in the following by mode 1 and mode 2, of natu-
ral frequencies f; and f, closeto 110 and 111 Hz, see
Table 2).

5.1 Experimental setup

The experimental setupisshowninFigs. 9and 10. The
measuring devices are listed in Table 3.

Thelocation of the magnet for the excitation is cho-
sen at the center of the shell, so that only the axisym-
metric mode (mode 3) is directly excited. The driving
signal is chosen simple-harmonic, with its frequency

11

far chosenin thevicinity of the natural frequency f3 of
mode 3.

Three transducers (two accelerometers and a laser
vibrometer) are used for measuring the time evolutions
of thethreeinvolved modes. Thelaser vibrometer beam
points the center of the shell, allowing measurement of
mode 3 time evolution only. Accelerometer A (resp. B)
isprecisely located on anode of mode 2 (resp. mode 1),
so that it measures the time evolution of mode 1 (resp.
mode 2) only. To check thelocation of the accelerome-
ters, theshell issubjected to an acoustic noiseexcitation
and thefrequency response functions of the accelerom-
eter signals, with respect to the acoustic pressure, are
measured. Figure 11 isobtained and one can verify that
only one peak is obtained for each accelerometer. For
accelerometer A, the peak frequency isaround 110 Hz,
the natural frequency of mode 1; and for accelerome-
ter B, the peak frequency isaround 111 Hz, the natural
frequency of mode 2.

The three signals are filtered so that only their fun-
damental component (of frequency fg/2 for modes 1
and 2 and fy for mode 3) is retained. This operation

Table3 Devicesused during the measurement of the frequency
response curves

Accelerometers Bried & Kjag 4375
Charge amplifier  Briel & Kjaa NEXUS
Laser vibrometer  Polytec OFV 303/ OFV 3001S
Filters Difameasuring SCADASII
systems

Sine and noise Brid & Kjag 1049

synthesizer
Power amplifier Bried & Kjag 2706




Fig. 10 (&) Fixation of the
shell with nylon threads;
location of

accelerometers A and B,
respectively, on nodal
diameters of modes 2 and 1,
|ocation of the magnet and
the laser beam at the center
of the shell. (b) Measured
mode shape of mode 3, in
RMS amplitude. (c) and (d)
M easured mode shapes of
companion asymmetric
modes 1 and 2, in RMS
amplitude
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Fig. 11 Frequency 0 ,
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accelerometer A and B with —10t
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aso eliminates the dight contribution of mode 3 to
the accelerometer signals, since points A and B are
not located on the nodal circle of mode 3. The cutoff
frequencies of the filters are adjusted so that the fun-
damental component of the signalsis not altered. This
filtering operation is needed because we want to com-
pare the present experimental resultsto the theoretical
ones described in Section 4, which were obtained with

107

12

108 109 110 111 112 113 114
Frequency [Hz]
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a first-order perturbative development. Then, the root
mean square (RMS) values of the amplitudes of the
threefiltered signals are measured by voltmeters.

Two oscilloscopes (named A and B in Fig. 9) are
used to measure the phase differences of the accelerom-
eter signalswith respect to thevibrometer signal to esti-
mate thevalues of y; and y, in Equations (8a) and (8b).
As the fundamental frequencies of the signals are not



identical, aspecial procedure, detailed in Appendix C,
is used to estimate y; and y,. Phase y3 is measured
in astraightforward manner by using oscilloscope C to
measurethetimedelay of thevibrometer signal withre-
spect to the force signal. Both signal s are processed by
identical filtersto cancel the influence of the phase dif-
ferences between the input and the output of thefilters.
The force signal used here isin fact a signal propor-
tional to the current intensity in the coil, obtained by
the terminal voltage of the ammeter. Asit isshownin
[14], this signal can be considered to be proportional
to the force acting on the structure, with a negligible
frequency dependence, and thus in phase with it.

Considering thepropertiesof thefrequency response
curves presented in Section 4.2, it appears that easier
observation of both coupled solutions C; and C, are
obtainedif thenatural frequency f3 of mode3islocated
between 2 f; and 2 f,. For thisreason, asmall ballast is
glued with beeswax at the center of the shell in order
todlightly lower f3. A ballast of 7.5 g was used for the
experiments discussed in Section 6 to lower f3 from
approximately 225 to 220 Hz. It has been verified that
the addition of thisballast does not change the val ues of
f; and f,, since the corresponding mode shapes have
nodes at the center of the shell.

5.2 Processing the signals

According to the model described in Section 4, the di-
mensionlessdisplacementsof theshell at themeasuring
points A, B, and C (Fig. 10) writes:

— — _ . S—_Z_
wa(t) = Reo(rm) cos686 a; COS<§t N sz y3>

+ Roy(fm) @3 cos(Qt — 1), (93)
wa(t) = Reolfm) & c05<%t_— 2 er y3>

+ Roy(Fm) s cos(Qt — y3). (90)
we(t) = Roi(0) 83 cos(Qt — y3), (%)
where the mode shapes have been written as:
@4(r, 0) = Reo(r) cos(69),
(1, 0) = Reo(r) sin(66 + 656),
D3(r, 0) = Rou(r). (10)
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In the previous equations, r, denotes the common ra-
dius of locations of the accelerometers (points A and
B), {& }i=1.2.3 and {yi }i—1.2 3 arethe dimensionlessam-
plitudes and phases introduced in Equation (8), Reo(r)
and Ry (r) are the radial part of the mode shapes. 56
represents a small angle introduced here to take into
account the dlight imperfections of the geometry of the
shell. Those imperfections are responsible for an an-
gular shift in the location of the nodal diameters of
the companion asymmetric modes with respect to the
perfect case where the nodes of one of the companion
modes are located exactly midway between the nodes
of the other [14, 16]. However, in our case, §6 ~ 1°
and cos686 = 0.9945 ~ 1 so that this quantity will be
neglected in the following.

According to the filtering operations, Equation (9)
becomes

f
wa(t) = a; cos (Zn gt _n er y3> , (119)
f
wa(t) = azcos(ant — yz;m), (11b)
wc(t) = agcos(2r fat — ys), (11c)

where t is the time, {w;}i—a g.c denotes the dimen-
sioned displacements of points A, B, and C and
{& }i—a.B.c their amplitudes. The three measured sig-
nals and the force signal can be written as:

sa(t) = V23 cos( fut — pa), (129)
se(t) = V253 cos( fyrt — @g), (12b)
sc(t) = V252 cos(2r fut — gc), (12c)
sr(t) = v22 cos(27 fy). (12d)

where {s1°}i —A.B.c arethethree measured RMS ampli-
tudes, sg the RMS amplitude of the force signal, and
{¢i}i=a.B.c are the phases differences with respect to
the force signal. Bearing in mind that sy and sg are
acceleration signals and that s¢ isavelocity signal and
by assuming that those signals are pure sine functions,
the identification between Equations (11) and (12)



gives:

s2 s2
a]_ == N/E—AZ, az = \/i —82,
w2t w2t
0 (13a)
V2 X
az = —_—
3 27T fdr’
Y3 =¢c +m/2. (13b)

Phases y; and y, are obtained by aprocedure described
in Appendix C.

The dimensioned force acting at the center of the
structure can be written as:

F(t) = Fg cos(2rfgt), with Fg = K+/21, (14)

where | isthe RMS amplitude of the current intensity
in the coil, obtained with the ammeter. In this study,
coefficient K is estimated by adjusting the parameters
of the theoretical model, so that theory and experiment
match in the case of a low Fq4 and thus of a linear
frequency response curve. The value K = 0.653 N/A
was found (Section 7).

5.3 Dimensioned parameters
In order to compare the experimental results with the
theoretical results, the relations between the dimen-

sionless parameters introduced in Section 4, and their
dimensioned counterpart are given here, from[7]. One

has:
_ a2 [12p(1 —v?)_
r=ar, t=—/ —t, 154
hV £ (15a)

3

hs - _
w(r,0,t) = ;w(r,e, t), (15b)
Fig. 12 Theoretical SDOF 0.5
frequency response curve
and instability region for -

four different forcing levels.
(—) ag stable. (---) ag
unstable. (1)

Fgr = 0.0277 N (Fig. 13),
(2) Fo = 0.138 N (Fig. 14),
(3) Fgr = 0.556 N (Fig. 15),

Amplitudes [mm]

h3 o h3 _
2 Reo(rm)ai, ax = 2 Reo(rm)az,

a; =
h3 _
B=_; Ro1(0)as, (15¢)
h 1 Eh’
_ AN - - =
=120-)g Fo=gpaQ (150

The analogous relation for the frequenciesis given by
Equation (1).

6 Experimental results

In this section, three sets of experimenta results are
exposed. Firstly, some frequency response curves are
shown. Then, the measurement of theinstability region
is described. Finally, the vibratory patterns of the shell
at the driving frequency as well as at half the driving
frequency are shown for the coupled regimes C;
and Co.

6.1 Freguency response curves

Frequency response curves have been obtained by
holding constant the amplitude Fq of the excitation
and measuring the amplitudes a;, a, and ag, for var-
ious frequencies fq of excitations, during step-by-
step forward and backward sweeps. Figure 12 gath-
ers the theoretical SDOF solutions corresponding to
the four selected values of the excitation amplitude
Fa € {0.0277, 0.138, 0.556, 1.108} N as well as the
instability region. This figure is useful to predict the
occurrence of the coupled solutions, by observing the

(4) Fq = 1.108 N (Fig. 16). i

o1 = 0.75,a, = 0.7, o N

£ =5x 1074, S : 1

£ =6x10" il |

£3=6.5x 1074 5 R S s RS e e
219 2195 220 2205 221 2215 222 2225 223

14

Excitation frequency [Hz]
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Fig. 13 Frequency response curve for Fg = 0.0277 N (Experience (1)). (—) ag from theory. (o) az obtained with an increasing
frequency sweep. (2) ag obtained with a decreasing frequency sweep
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Fig. 14 Frequency response curve, for Fq = 0.138 N (Experience (2)), (—) a1, y1, as, y3 from theory, (o) a; and y1, (x) az and ys,
experiments with an increasing frequency sweep, (o) a1 and y1, () as and y3, experiments with a decreasing frequency sweep
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Forcing: 0.554 N
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Fig. 15 Freguency response curve, for Fg = 0.556 N (Experi-
ence (3)), (—) a1, y1, @, ¥2, as, and y3 from theory, (o) a; and
y1, ((J) a2 and y,, (*) ag and y3, experiments with an increasing

position of the SDOF curves with respect to the in-
stability regions. Thefour corresponding experimental
frequency response curves are shown in Figs. 13-16,
aongwiththecorresponding theoretical curvesthat are
discussed in Section 7. Those forcing conditions have
been selected so that remarkable nonlinear vibratory
regimes are obtained.

e For Fy = 0.0277 N (Experience (1), Fig. 13), no
coupled solution is obtained as the SDOF curve does
not enter theinstability region. It hasthe shape of the
usual frequency response curve of alinear 1-degree-
of-freedom system.

e For Fg = 0.138 N (Experience (2), Fig. 14), the
SDOF solution enters only the £, boundary of the
instability region so that only a C; solution can be
observed.
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frequency sweep, () & and y1, (V) 8 and y2, (4) as and ys,
experiments with a decreasing frequency sweep

e For Fg = 0.556 N (Experience (3), Fig. 15), the
SDOF solution enters both £, and £, bound-
aries at two distinct locations, so that the SDOF
solution for fq = f (where f is the frequency
of the meeting point of £; and £,, see Fig. 8)
is stable. As a consequence, with an increas-
ing frequency sweep, one obtains the following
succession of solutions: SDOF, C;, SDOF, C,,
SDOF.

e For Fg = 1.108 N (Experience(4), Fig. 16), theforc-
ing level is large enough so that the SDOF solu-
tion enters both £, and £, boundaries and is un-
stable for fg = f. Thus, an exchange of stability
between C; and C, solution occurs around fg = f
and with an increasing frequency sweep, one obtains
thefollowing succession of solutions: SDOF, Cy, Cy,
SDOF.
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Fig. 18 RMSvelocity
amplitude of the shell
during a C; coupling,

obtained with
fgr = 218.3 Hz and
Fe = 15N

Fig. 19 RMSvelocity
amplitude of the shell
during a C; coupling

obtained with
fgr = 222.8 Hz and
For =15N

Frequency f4/2

6.2 Instability region

The boundaries £, and £, of theinstability region can
be estimated experimentally by the following proce-
dure: each point, related to a particular amplitude of
excitation, is obtained by measuring amplitude az and
excitation frequency fgy, at the precise location where
the SDOF solution becomes unstable and coupled so-
lutions arise (C, to obtain £; and C, to obtain £L,).
This measurement is realized by sweeping forward
and backward in frequency, and is repeated for dif-
ferent forcing levels. The obtained results are shownin
Fig. 17.

6.3 Deflection shape in the nonlinear regime

The nonlinear vibratory regimes corresponding to C;
and C, solutions can bevisualized with ascanning laser
vibrometer. The structureisdriven at center with asine
force signal, with Fy and fy chosen so that C; or C,
solutions are reached. The velocity of the structure is

18

Frequency fg,

Frequency fq,

measured in each point of a 40 x 40 grid. Due to the
presence of the coupling with modes 1 and 2, the sig-
nals are periodic of frequency fq /2. Figures 18 and
19 show the deflection shapes at frequencies fq/2 (the
subharmonic) and fg (the excitation frequency), ob-
tained by calculating a fast Fourier transform of the
measured signals. One can observe that the deflection
shape at the subharmonic frequency is mainly gov-
erned by the mode shapes of mode 1 for C; coupling
and mode 2 for C, coupling. Moreover, the deflection
shape at the excitation frequency fq is mainly com-
posed by mode 3 deflection shape for C, coupling. For
C; coupling, some harmonics of mode 1 as well as a
linear coupling with mode (9,0) (of natural frequency
214 Hz) probably explainsthe deformation of the shape
near the boundary of the shell. As these figures show
the RMS values of the deflection shapes, al extrema
are positive. As a consequence, all anti-nodes are up-
ward, in contrast to Fig. 6 in which as usual, for two
successive anti-nodes, one is upward and the other is
downward.



Table4 Model parameters obtained theoretically in [7] (first column) and by fitting the theoretical frequency response curves

to the experimental ones, for various experiments

Modal Experience (1) Experience(2) Experience (3) Experience(4) Instability region

Theory anaysis (Fig. 13) (Fig. 14) (Fig. 15) (Fig. 16) (Fig. 17)
K (N/A) - - 0.653 0.653 0.653 0.653 -
f1 (H2) 10177 1101 - 110.20 110.12 110.03 110.15
fo (H2) 10177 11086 — - 110.92 110.82 110.95
f3 (H2) 386.03 22005  220.15 220.2 220.3 2204 220.2
£ (107% - 45 - 4 4 4 5
& (1074 - 5.4 - - 55 55 6
£(107%) - 6.7 6.5 6.4 6.5 6.5 6.4
o 30 — - 0.75 0.75 0.75 0.75
Ay 30 - - - 0.7 0.7 0.75
ag 138 - - 0.95 0.95 11 -
ay 138 - - - 0.9 12 -

7 Comparison with theory

In this section, the experimental results discussed in
Section 6 are compared to the theoretical onesobtained
in[7]. Moreprecisely, asal thequalitativefeaturespre-
dicted by the simple truncated 3-degrees-of-freedom
model of Equation (6a)—(6c¢) have been observed in the
experiments, we are now in position for fitting the pa-
rametersof thisgeneric model to the experimental reso-
nance curves. Thisenables, in particular, the estimation
of the nonlinear quadratic coefficients {«;}i—1.. 4 that
will be compared to the ones obtained in the theoretical
case of aperfect shell with perfectly free-edge bound-
ary conditions.

7.1 Fitting of the theory on the experiments

Table4 gathersthe parameter valuesidentified fromthe
various experiments. Thefirst column recalls the natu-
ral frequenciesand thevaluesof coefficients{e; }i—1. . 4
obtained in [7] for a perfect spherical cap (the values
of the natural frequencies are those of Table 2). The
second column is obtained with ausual modal analysis
procedure, performed with the LMS CadaX software
and with an acoustic excitation of the structure of low
level so that the response of the structure is linear. It
enabled the estimation of the natural frequencies and
the damping factors of the three involved modes. The
five last columns gathers the parameter values identi-
fied with Figs. 1317, by adjusting their values so that
the theoretical curvesfit the experimental points. This
procedureisdone by using theremarkabl e properties of
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the theoretical frequency response curves enumerated
in Section 4.2.

The frequency response curve of Fig. 13 enables
the estimation of coefficient K between the current in-
tensity and the force amplitude Fq. A value of K =
0.653 N/A wasfound, by using Equations (15) and the
valuesidentified in Section 3 for p, E, and v.

7.2 Results

First of all, by observing Figs. 13-19, an excellent qual -
itative agreement is obtained with theory, since all the
subtle features of the nonlinear behavior of the system
are predicted by the model. In particular, the succes-
sion of SDOF, C,, and C, solutions during afrequency
sweep are well predicted by theory.

However, slight discrepancieson the parametersval -
ues are observed, from one experiment to another and
amgor difference is noticed between the theoretical
values of {«j}i—1... 4 (first column of Table 4) and the
ones obtained experimentally (other columns). More-
over, the more the forcing level is increased, the less
the theoretical curvesfit the experimental points. More
precisely, one can enumerate the following differences
between theory and experiments.

e Forlargeforcinglevels (Fg = 1.108 N, Fig. 16), the
fine geometry of the experimental points is not re-
spected by theory, aswell asthelimits of the stability
frequency bands of the coupled solutions.

e For forcing levels large enough to obtain theoret-
icaly an exchange of stability, a small frequency
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Fig. 20 Superposition of the experimental az branches of C; and C, solutions with the experimental boundary of theinstability region,
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Fig. 21 Frequency response curve for Fg = 0.0909 N. (—) ag from theory. (o) az obtained with an increasing frequency sweep
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band where both coupled solutions coexist is ob- solutions are translated toward the low frequencies
tained. Thisis the case for Fg = 1.108 N (Fig. 16) when the forcing level is increased.
for theinterval [221.1, 221.3] Hz. Thisfeatureisnot e Figure 21 shows a frequency response curve where
in agreement with theory. only a SDOF solution is obtained, for aforcing level
e In the experiments, az branches for C; and C, solu- (Fgr = 0.091 N) greater than the one of Fig. 13. In
tions do not coincide with the boundary of the insta- this case, one can observe that the SDOF solution
bility region, which isthe casefor theory. By observ- is curved toward the low frequencies, as if it was
ing Fig. 20, it seems that az branches for C; and C, governed by a softening nonlinear behavior. Another
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example is the frequency response curve of Fig. 22,
obtainedwithaforcinglevel of Fg, = 0.185N. Those
two measurements have been obtained by slightly de-
creasing the added mass so that the natural frequency
of mode 3 isincreased, to avalue of 220.8 Hz, close
to f, the frequency of the meeting point of £; and
L>. Thus, the SDOF solution can be observed for
larger forcing levels than those of the experiments
of Figs. 13-16. On can notice that in the case of
Fig. 22, due to the particular meeting of the SDOF
solution and the instability region, the succession of
vibratory regimes is SDOF, C;, SDOF, C;, SDOF,
C,, and SDOF when one follows an increasing fre-
guency sweep. Dueto the curvature of the SDOF so-
lution, the theoretical second C; solution does not
fit the corresponding experimental points (around
far = 220.6 HZ).

In addition, some sol utions with amplitude modula-
tions have been noticed for some localized frequency
bands. An exampleisshownin Fig. 23. Thisamplitude
modulation has been observed in afrequency band ap-
proximately 0.1 Hz large centered on 220.5 Hz, at the
lowest frequencies of the second C; solutions of the
frequency response curve of Fig. 22.

As a consequence, three main conclusions on the
validity of the model can be formulated.

e The qualitative agreement between the theoretical
and experimental frequency response curves lead to
conclude that even if it is drastic, the 3-degrees-of-
freedom model described by Equations (5) and (6a)—
(6¢) isagood first approximation of the behavior of
the system.

e Due to the curvature of some SDOF solutions, the
cubic terms in (6), neglected in the model, should
be taken into account, as this feature is a charac-
teristic of a cubic nonlinearity of the softening type
[17, 18]. The correction brought by the cubic terms
is of the same order of magnitude as the nonreso-
nant terms that couple the three involved modes to
the other modes of the system. For this reason, the
formalism of nonlinear modes could be used to keep
a 3-degrees-of-freedom model [19]. Using a model
including the cubic terms will probably enable to
predict most of the previously enumerated features,
especialy the trandation of ag branches as the forc-
ing level increases.

e The imperfections of the curvature (Fig. 2) of the
shell have to be taken into account. Even if those
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imperfections seems to be dlight, some major differ-
ences with theory have been noticed for al the mode
shapes with at least one nodal circle (Fig. 6(e) and
(h)) as well as for the values of the corresponding
natural frequencies (Table 2). This could explain the
major discrepancies between the theoretical values
of coefficients {«;}i—1... 4 With respect to the ones
obtained experimentally (Table 4).

8 Conclusion

The main goal of this paper was to present an ex-
perimental validation of a theoretical model of large
amplitude vibration of thin spherical shells exposed in
a previous work [7]. The particular vibratory regimes
arising from a 1:1:2 internal resonance, between two
asymmetric companion modes and one axisymmetric
mode, have particularly been addressed. Some reso-
nance curves showing the amplitudes and the phases
of the three involved modes, as functions of the driv-
ing frequency and with a constant forcing level, have
been presented. The vibratory patterns of the shell in
the nonlinear coupled regimes have al so been measured
with a scanning laser vibrometer.

The measurements have been compared to theory
and an excellent qualitative agreement was found. In
particular, all subtle successions of coupled solutions
were obtained experimentally in a manner similar to
those predicted by theory. However, some quantitative
discrepancies were noticed. Firstly, amajor difference
has been noticed between the theoretical and experi-
mental values of the coefficientsthat govern the energy
transfers between the three involved modes. Secondly,
some discrepancies in the geometry of the coupled
branches of solution curves were observed, becoming
larger with the excitation force level.

Considering those discrepancies, improvements of
the model were proposed. Firstly, it was found that the
imperfections of the geometry of the shell, slight in ap-
pearance, seem to have amagjor effect on the vibratory
response of the shell. This conclusion was observed in
a previous study of the authors when measuring the
hardening and softening behavior of the shell [20]. As
a consequence, it should be necessary to take into ac-
count in the model the real geometry of the shell. This
could be done either with afinite-element formulation
or by expanding the geometrical imperfections on the
modesof aperfect spherical cap. Secondly, it wasfound



that the influence of the cubic terms arising from the
geometrical nonlinearities seemed to be important and
thusshould beincludedinthemodel, in order to recover
the particul ar features associated to cubic terms. Those
terms, that appear in the full version of Equations 6
(see [7]), are of the same order of magnitude as al
the nonresonant terms that couple the three modes in-
volved in the interna resonance to the other modes
of the structure. As a consequence, the formalism of
nonlinear modes (see, e.g., [19, 21]) could be used to
overcomes the errors associated to too sever trunca-
tions and to keep a 3-degrees-of-freedom efficient re-
duced order model. An improved model that takes into
account the geometrical imperfections as well as the
cubic nonlinear terms is in progress and will soon be
submitted.
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Appendix A: Computation of the center of mass of
mode shapes

Deformed shape @ of the shell can be represented by a
surface of equation z = ®(r, 6), where(r, 0, z) arethe
cylindrical coordinates of any point of the surface, with
(r,0) €[0, 1] x [0, 27[. The vertical coordinate z,, of
the center of mass of mode shape ® is defined by:

mzmy = / zdm,
S

where S is the surface of the mode shape, m the total
mass, and dm is a mass surface element. m and dm
have to be defined on the undeformed configuration of
the structure, sothat m = phra? anddm = phrdédr.
If & isaxisymmetric, it writes ®(r, 8) = ®(r) and one
obtains:

(16)

Zm = %/Oarcb(r)dr. an

23

Equation (17) has been applied to the experimental
profiles of the mode shapes shown in Fig. 6(€), and
the integrals have been numerically computed by the
trapezoidal method.

Appendix B: Theoretical amplitudes and phases
This section briefly recalls the theoretical expressions
of {a}i—123 exposed in [7] and adds the ones for

{¥i }i=1.2.3- The following detuning parameters are in-
troduced:

2 = w1 + €00, w3 = 201 + €01,

w3 + £07. (18)

B.1 SDOF solution
For the SDOF solution, a;

_ Q

Q= ————, y3=—arctan ==, (19)
2(;3,/(7224‘%-3?(1_)% o2
B.2 C; solution
For C; solution, a, = 0. One obtains:
_ 2w
&= =L 4207 + (01 + 022, (20)
ag
2 (wz€10%82 + a1 E30w2a2
v = arctan (2 S 1€3w3a3_) —. @
(01 + 02) azw1af — 20010384
m-2|-nx | 12 (22)
40[3
-
yi = — arctan ML (23)
o1+ 02
with
2w1w3
I = [211103 — 02(01 + 02)] (24)
o103
2w
2 = = [200p1 + (o1 + 02)]. (25)

o103



B.3 C, solution

For C, solution, a; = 0. One obtains:

_ 20
& = 22 [4g2% + (o1 + 02 — 200, (26)
o2
2 (0tabr@RB2 + ctrEainlal
vs = arctan (abowdas t ;530)36‘3) —
(01 + 02 — 200) aawrds — 202000385
(27)
a=2|-I3=+ Q* r2 28
a = —13 Ef — 14 (28)
25w
= —arctan ——>—"——, 29
Y2 o1+ 09 — 200 (29)
with
20003
I3 = [21213 — 02(01 + 02 — 200)] (30)
(05,107}
20,0
s = 222055 + palon + 02 — 200)] . (31)
(65107

Appendix C: Measurement of the phases
differences

All three transducer signals are processed by iden-
tical filters, whose common cutoff frequency has been
adjusted to 220 Hz, in order to select the fundamental
component of the accelerometer signals (of frequency
fqr/2) aswell asthe fundamental component of the vi-
brometer signal (of frequency fq ). After filtering, the
timeevolution of sy and sc (defined by Equations (12))
have the shapes shown on Fig. 24. Times ta and tc

Amplitude
o

to ta 764 tc
At Time

Fig. 24 Time evolution of sy and sc

where those signals are zero fulfill the following rela-
tionships:

21 fata = 20a + 1 + 20 a7,

T
2n fytc = oc + 5 + Acm, (32

where A 5 and Ac aretwo integers. By considering that
Sa isan acceleration and s¢ is avelocity, one obtains

+
B2 = gn—olta/2),

v3 = ¢c — ¢(far), (33)

where ¢( f) is the phase difference between the output
and theinput of thefilter used to processthe accelerom-
eter and vibrometer signals, whose response function
isshown on Fig. 25. Asaconsequence, by using Equa-
tions (32) and (33), one obtains;

v = 2 far At — 20(far/2) + o(far) + A, (34)

where Ay =tp —tc and A is an integer. A measure
of y1 (and thus y,) is then obtained by measuring At
with an oscilloscope and corrected it with the phase
response of the filter by Equation (34). The value of A
is adjusted so that 3, and (y,) falls between O and 7.

0707 --

0.5¢

Amplitude [Adim]

0 50 100 150 220 250 300

Frequency [Hz]

Phase [r rad]

220 250

Frequency [Hz]

Fig. 25 Input/output frequency response function of the low-
pass filter with 220 Hz cutoff frequency



Appendix D: Notations and acronyms

FRF
PSD
RMS
SDOF
C1, G
L1, Lo
a,h,H, R

0, E,v

(k, n)
fkny Cgkn
f*

fi, wi,

Hi, &
(r.0),(r,0)
w(f. 6,t)
q>i (r7 9)7
Run(r)

Gi (t)

Qi

Q

Far _
fdr , Q2

8, &

S
ISH

wa (1), we (t)

(Fm. 0A), (Fm. 08)
S (1)

(s, ¢a)

|

Frequency response function

Power spectral density

Root mean square

Single-degree-of-freedom vibratory
regime

Coupled regime respectively with mode 1
and mode 2

Boundaries of the instability regions
associated to C; and C,

Radius, thickness, center height and
radius of curvature of the shell

Density, Young's modulus and Poisson’s
ration of the shell material

Proportionality coefficient between the
current intensity in the coil and the
force created on the magnet

number of nodal diameters and nodal
circles of amode shape

Dimensioned and dimensionless natural
frequency of mode (k, n)

Coefficient between dimensioned and
dimensionless frequencies

Dimensioned and dimensionless natural
frequencies of modei

Damping coefficient and damping factor
of mode i

Dimensioned and dimensionless polar
coordinates

Dimensionless displacement of the shell

Deflection shape of modei

Radia part of the shape of mode (k, n)

Modal coordinate of mode i

Coefficients of quadratic nonlinear terms

Amplitude of forcing term of mode 3

Amplitude of driving force

Dimensioned and dimensionless driving
frequencies

Dimensioned and dimensionless
amplitudes of vibrations of mode i

Phase of mode i

Dimensioned and dimensionless
frequency of meeting of the instability
region boundaries

Dimensioned and dimensionless
displacement of transducer o

Location of accelerometers A and B

Signal measured by transducer «

RMS amplitude and phase of s,

RMS amplitude of the current intensity in
the coil
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