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Abstract

Non-linear vibrations of free-edge shallow spherical shells are investigated, in order to predict the trend of non-linearity (hardening/softening
behaviour) for each mode of the shell, as a function of its geometry. The analog for thin shallow shells of von Kármán’s theory for large
deflection of plates is used. The main difficulty in predicting the trend of non-linearity relies in the truncation used for the analysis of the
partial differential equations (PDEs) of motion. Here, non-linear normal modes through real normal form theory are used. This formalism
allows deriving the analytical expression of the coefficient governing the trend of non-linearity. The variation of this coefficient with respect to
the geometry of the shell (radius of curvature R, thickness h and outer diameter 2a) is then numerically computed, for axisymmetric as well as
asymmetric modes. Plates (obtained as R → ∞) are known to display a hardening behaviour, whereas shells generally behave in a softening
way. The transition between these two types of non-linearity is clearly studied, and the specific role of 2:1 internal resonances in this process
is clarified.
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1. Introduction

Geometrically non-linear vibrations of shallow shells is a
problem of widespread relevance, with a range of applications
from aerospace industry to musical acoustics [1–3]. Despite nu-
merous studies, some important features still remain partially or
completely unsolved, due to the non-linear nature of the prob-
lem. One of the most common property of non-linear oscilla-
tions is the dependence of the frequency of free oscillation on
vibration amplitude, which can be of the hardening or soften-
ing type. It is a well-known fact that flat plates display a hard-
ening behaviour, as it has been shown both theoretically and
experimentally (see e.g. [4–9]). Introducing an initial curvature
in the middle surface of the structure creates a quadratic non-
linearity, which, in turn, may change the non-linear behaviour
to softening type, depending on the balance of the magnitude
of quadratic and cubic terms [6,10,11]. It is thus a legitimate

question to determine the correct non-linear behaviour of shal-
low spherical shells, and more precisely, the transition from
the hardening (flat plate) behaviour to the softening one, as the
curvature increases.

Among the available studies concerned with this question,
almost all of them restrict to the case of axisymmetric vibra-
tions. Evensen and Evan-Iwanowski [12] found a softening
behaviour with the harmonic balance method, without studying
the transition from hardening to softening behaviour. Many in-
vestigators used a single-mode approach to study the effect of
geometry on the non-linear behaviour: Grossman et al. [13] in-
vestigated different type of boundary conditions and mentioned
the transition from hardening to softening behaviour as the rise-
to-thickness ratio increases, Yasuda and Kushida [14] found
the first mode to be softening for a little curvature whereas
the second stays of the hardening type. Singh et al. [15] and
Sathyamoorthy [16] studied the influence of transverse shear
deformation and rotatory inertia in the case of a moderately
thick shell. Some slight improvements were proposed in order
to overcome the single-mode truncation. Pandalai and Varadan
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[17] used a two-mode expansion, but for the precise transition
from hardening to softening behaviour, restrict once again to a
single-mode expansion [10]. Li [18] proposed a time-mode ap-
proach to solve the axisymmetrical vibrations, and studied the
effect of orthotropy. Gonçalves [19] used three modes to de-
rive free vibration results, but took only a few discrete values
for the geometry, and didn’t mention internal resonances. Other
geometrical parameters have been studied, as the effect of geo-
metrical imperfections on the type of non-linearity [20]. Leissa
and Kadi [21] studied the transition for a shallow shell hav-
ing a rectangular boundary. Doubly-curved shallow shells have
also been investigated, by Shin [22] with the assumption of a
single-mode, recently by Alhazza [23] with the direct method
proposed by Nayfeh [24], and by Amabili [25] for a number of
different geometries.

During the last decade, a number of different proofs showed
that too severe truncations lead to erroneous results in the pre-
diction of the trend of non-linearity. Nayfeh et al. [26] seem to
be the first to point out the shortcomings of using a single-mode
approach, which could lead to quantitative as well as qualita-
tive erroneous results. The most direct solution is to keep a
sufficient number of modes in the analysis, which renders ana-
lytical expressions almost intractable and leads to intensive nu-
merical computations. This approach has been used by Amabili
et al. [27–29] for the non-linear behaviour of circular cylindri-
cal shells in order to clarify controversial results upon the trend
of non-linearity (see e.g. [27,30–33]). They used a model with
up to 23 degrees of freedom (dofs) [29], and highlight the fun-
damental role played by axisymmetrical contractions in asym-
metrical vibrations. Moreover, Pellicano et al. [29] propose a
map of non-linearity, showing the trend of non-linearity as a
function of the two independent geometrical parameters of the
shell, with a severely reduced models composed of three modes.

In order to avoid the main drawbacks associated to the large
number of modes retained, significant efforts have been made
toward definitions of reduced-order models (ROMs), able to
predict the correct non-linear behaviour with a limited number
of equations. A complete review of the available mathemati-
cal methods is provided by Steindl and Troger [34]. Strategies
based upon the application of the multiple scales method di-
rectly into the PDE have been proposed by Nayfeh and cowork-
ers [24,35], and has been successfully applied to the cases of
non-linear vibrations of buckled beams [36,37], shallow sus-
pended cables [38] and doubly-curved cross-ply shallow shells
[23]. Non-linear normal modes (NNMs), defined as invariant
manifolds in phase space [39], state a proper framework to em-
bed the influence of all linear modes into a single NNM. It has
been shown that the motion onto the invariant manifold, de-
fined by a single oscillator equation, predicts the correct trend
of non-linearity [40].

The objective of this paper is to derive the correct trend
of non-linearity for axisymmetric as well as asymmetric non-
linear vibrations of shallow spherical shells, by using the frame-
work of NNMs, defined through real normal form theory, as
proposed in [40]. The paper is divided into three main parts:
first, a non-linear model of the shell is briefly presented, re-
lying on the analog for thin shallow shells of von Kármán’s

theory for large deflection of plates. A thorough presentation
of the model as well as experimental validations are available
in [41,42]. Then the framework of NNMs is presented and
the analytical coefficient governing the trend of non-linearity
is derived. Important comments from the analytical formula,
with respect to modal truncation and 2:1 internal resonances,
are given. Finally, results are presented for purely asymmet-
ric modes, axisymmetric and mixed modes (asymmetric modes
with at least one nodal circle).

2. Governing equations

The aim of this section is to provide the PDEs of motion
for a shallow spherical shell. Only the main results are given,
the interested reader is referred to [41] for more details on the
non-linear model.

2.1. Local equations

A spherical shell of thickness h, radius of curvature R and
outer diameter 2a, made of a homogeneous isotropic material
of density �, Poisson ratio � and Young’s modulus E, is con-
sidered (see Fig. 1). Large transverse deflections and moderate
rotations are considered, so that the model is a generalization
of von Kármán’s theory for large deflection of plates. The main
geometrical hypotheses, which are relevant for this study are
the following:

• the shell is thin: h/a>1 and h/R>1;
• the shell is shallow: a/R>1.

Other assumptions are classical for large deflection von Kár-
mán’s type models [41]. Finally, as this study is concerned with
the trend of non-linearity, which is dictated by the conservative
problem, damping and external forces are not taken into ac-
count. The equations of motion are given in terms of the trans-
verse displacement w along the normal to the mid-surface and
the Airy stress function F , for all time t :

D��w + 1

R
�F + �hẅ = L(w, F ), (1a)

��F − Eh

R
�w = −Eh

2
L(w, w), (1b)

where D = Eh3/12(1 − �2) is the flexural rigidity, ẅ is the
second partial derivative of w with respect to time, � is the
laplacian and L is a bilinear quadratic operator. With the as-
sumption of a shallow shell fulfilled, the spatial operators are
written in polar coordinates, and thus reads:

�(·) = (·),rr + 1

r
(·),r + 1

r2 (·),��, (2)

and

L(w, F ) = w,rr

(
F,r

r
+ F,��

r2

)
+ F,rr

(w,r

r
+ w,��

r2

)

− 2
(w,r�

r
− w,�

r2

)(F,r�

r
− F,�

r2

)
. (3)
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Fig. 1. Geometry of the shell: three-dimensional sketch and cross section.

Free-edge boundary conditions are considered:

F and w are bounded at r = 0, (4a)

F,r + 1

a
F,�� = 0, F,r� + 1

a
F,� = 0, at r = a, (4b)

w,rr + �

a
w,r + �

a2 w,�� = 0, at r = a, (4c)

w,rrr + 1

a
w,rr − 1

a2 w,r + 2 − �

a2 w,r��

− 3 − �

a3 w,�� = 0, at r = a. (4d)

The above equations stem from the vanishing of the external
force at the edge: Eqs. (4b) are related to the membrane forces,
Eq. (4c) to the bending moment and Eq. (4d) to the twisting
moment and transverse shear force.

2.2. Dimensionless form of the equations

Dimensionless variables are introduced by

r = ar̄, t = a2
√

�h/D t̄, w = hw̄, F = Eh3F̄ . (5)

Substituting the above definitions in equations of motion,
Eq. (1a,b), and dropping the overbars in the results, one obtains:

��w + εq�F + ẅ = εcL(w, F ), (6a)

��F − √
��w = − 1

2L(w, w), (6b)

where the aspect ratio � of the shell has been introduced:

� = a4

R2 h2 . (7)

As it will be shown next, for a fixed value of the Poisson ratio
�, all the linear results (eigenfrequencies and mode shapes), as
well as the trend of non-linearity, only depend on �, which is
the only free parameter related to the geometry of the shell. The
two other parameters εq and εc appearing in Eq. (6) are equal to

εq=12
(

1−�2
) a2

Rh
=12

(
1−�2

)√
�, εc=12

(
1−�2

)
. (8)

Their subscripts comes from the fact that they balance, re-
spectively, the quadratic and the cubic terms in the non-linear
ordinary differential equations governing the dynamics of the
problem (see Eq. (11)).

2.3. Linear analysis

The linearized equations of motion are analyzed to derive the
eigenmodes and eigenfrequencies of the problem, as a function
of the geometry. The eigenmodes are the solutions of:

��� + ��� − �2� = 0, (9a)

��� = ��, (9b)

where � refers to the eigenmodes of the transverse motion
and � to those of the membrane motion. The coefficient � =
12(1−�2)� is the only parameter of the linear problem. All the
study could have been realized by taking � as the geometrical
parameter, as it is sometimes done by various authors [12,19].
However, the results will be presented as functions of �, in
order to set apart the material property which appear through
the Poisson ratio � in the expression of �. In the remainder of
this study, � is kept constant at � = 0.33.

Transverse and membrane mode shapes are numbered �(k,n)

and �(k,n) where k is the number of nodal diameters and n

the number of nodal circles. Axisymmetric modes are such that
k =0. For k�1 (asymmetric modes), the associated eigenvalue
has a multiplicity of two, so that for each eigenfrequency, there
are two independent mode shapes, called preferential configu-
rations or companion modes. Among these modes, purely asym-
metric modes (such that k�2 and n=0) are distinguished from
mixed modes (such that k�1 and n�1).

The linear analysis provided in Ref. [41] shows that all de-
formed shapes, except membrane mode shapes for purely asym-
metric modes, have a negligible dependence on the geometry.
On the contrary, the eigenfrequencies dependence on the as-
pect ratio �, represented on Fig. 2, shows different behaviour,
which leads to classify the modes into two families.

The first family contains the purely asymmetric modes, since
their eigenfrequencies display a slight dependence on curvature.
The second family contains axisymmetric and mixed modes.
They show a huge eigenfrequency dependence on curvature.
Due to these different behaviours, the study of the trend of non-
linearity will distinguish: purely asymmetric modes, axisym-
metric and mixed modes.

2.4. Modal expansion

The complete non-linear equations of motion (6) are pro-
jected onto the natural basis of the transverse eigenmodes.
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Fig. 2. Dimensionless natural frequencies �kn of the shell as a function of the aspect ratio �, for � = 0.33.

The displacement is thus written as:

w(r, �, t) =
+∞∑
p=1

Xp(t)�p(r, �), (10)

where the subscript p refers to a specific mode of the shell,
defined by a couple (k, n) and, if k �= 0, a binary vari-
able which indicates the preferential configuration consid-
ered (sine or cosine companion mode). The modal displace-
ments Xp are the unknowns, and their dynamics is governed
by ∀p�1:

Ẍp + �2
pXp + εq

+∞∑
i=1

+∞∑
j=1

	p
ijXiXj

+ εc

+∞∑
i=1

+∞∑
j=1

+∞∑
k=1


p
ijkXiXjXk = 0. (11)

The expression of the non-linear coefficients are

	p
ij = −

∫ ∫
S⊥

�pL(�i , �j ) dS − 1

2

+∞∑
b=1

1

�4
b

×
∫ ∫

S⊥
L(�i , �j )Υb dS

∫ ∫
S⊥

�p�Υb dS, (12)


p
ijk = 1

2

+∞∑
b=1

1

�4
b

∫ ∫
S⊥

L(�i , �j )Υb dS

×
∫ ∫

S⊥
�pL(�k, Υb) dS. (13)

The Υn, as well as its associated zero �n, are defined in [41].
S⊥ is the domain defined by (r, �) ∈ [0 1] × [0 2�].

The temporal equations (11) describe the dynamics of the
shell. In particular, the trend of non-linearity can be inferred
from these equations. As shown by various authors (see e.g.
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[24,26,28,40]), erroneous results can be produced by truncating
the set (11) to the pth oscillator only, i.e. by letting Xi =
0, ∀i �= p, when studying the pth mode. NNMs offers a clean
framework to derive a single oscillator equation which captures
the correct trend of non-linearity [40]. This is recalled in the
next section, where the analytical expression of the coefficient
which dictates the trend of non-linearity is given.

3. Trend of non-linearity

3.1. NNMs and real normal form theory

NNMs, which are invariant manifolds in phase space [39],
have been defined with the objective of embedding the main
dynamical features of a N -dof system into a single non-linear
equation, hence providing accurate ROMs for non-linear anal-
ysis/synthesis. It has been shown that, thanks to real normal
form theory, NNMs also provide a clean framework to prop-
erly truncate non-linear PDEs [40]. The main results obtained
in [40] are here briefly recalled before applying them to the
shallow shell dynamical equations.

Normal form theory relies on the fundamental theorems
of Poincaré and Poincaré-Dulac [43–45]. The main idea of
Poincaré was to identify and cancel all the non-linear terms, in a
dynamical systems, that do not have a prime importance on the
dynamics itself. To attain this objective, successive non-linear
change of coordinates are analytically computed. The same
method has been applied to vibratory systems in [40], where a
real formulation was kept throughout the calculations, instead
of the usual complex form used by the mathematicians, and, in
the mechanical context, by Jézéquel and Lamarque [46]. Real
normal form here means that, at linear stage, oscillator-block
of the form:(

Ẋp

Ẏp

)
=
(

0 1
−�2

p 0

)(
Xp

Yp

)
, (14)

where Xp is the modal displacement and Yp = Ẋp the asso-
ciated modal velocity, are kept instead of the usual complex
formulation with a diagonal matrix with the two complex con-
jugate eigenvalues ±i�p. The main advantage of doing so is
that it allows one to keep the real oscillator form throughout
the calculations: dynamical equations will always begin with
Ẍ + �2X + · · · , which is more readable for the mechanicians
community.

By application of Poincaré and Poincaré-Dulac’s theorem,
a non-linear change of coordinates is computed, allowing one
to pass from the modal (Xp, Yp) coordinates to new-defined
normal (Rp, Sp) coordinates (where Rp is homogeneous to a
displacement and Sp to a velocity), linked to invariant manifold.
It formally reads:(

Xp

Yp

)
=
(

Rp

Sp

)
+
(

P
(3)
p (Ri, Si)

Q
(3)
p (Ri, Si)

)
, (15)

where P
(3)
p and Q

(3)
p are polynomials of the third order, whose

complete expression is given in [40], which is not recalled here
for the sake of brevity. Substituting for (15) in the original dy-
namical equations (11) leads to express the dynamics into an

invariant-based span of the phase space. After this operation,
proper truncations can be realized, as non-resonant coupling
terms between oscillators have been cancelled. Keeping a sin-
gle non-linear mode (by keeping the couple (Rp, Sp) as master
coordinates and by letting: ∀k �= p : Rk =Sk = 0) predicts the
correct trend of non-linearity, as it has been demonstrated and
numerically verified on continuous beam-like systems [40,47].
Comparisons have also been drawn in [40] with other asymp-
totic methods, such as the center manifold-based computation
of NNMs proposed by Shaw and Pierre or the direct method
(multiple scales directly into the PDE of motion) proposed by
Nayfeh and Lacarbonara [24].

This formalism is here applied, in the next subsection, to
derive the analytical expression of the coefficient dictating the
trend of non-linearity for thin shallow shells. It is worth men-
tioning that Pellicano et al. also use normal form theory in [29],
probably under its usual complex formulation, to predict the
trend of non-linearity as function of the geometry for circular
cylindrical shells. However, they did not mention the link to the
NNM formulation, although it is formally the same [40,46].

3.2. Hardening/softening behaviour

The dynamics onto the pth NNM is governed, in terms of
the new normal coordinate Rp, by the following equation [40]:

R̈p + �2
pRp + (

A
p
ppp + εc


p
ppp

)
R3

p + B
p
pppRpṘ2

p = 0, (16)

where A
p
ppp and B

p
ppp depends on the quadratic coefficients.

Explicit expressions of A
p
ppp and B

p
ppp are given in [40] in the

most general case of an assembly of N oscillators with non-
linear quadratic and cubic terms. Here is only provided, for
brevity, their complete analytical expressions with respect to
the coefficients {	p

ij , 

p
ijk} computed in the specific case of a

shallow spherical shell, in Eqs. (19)–(20). A first-order pertur-
bative development allows definition of the angular frequency
of free oscillations �NL, connected to the natural frequency �p

by the relation:

�NL = �p

(
1 + Tpa2

)
, (17)

where a is the amplitude of the response of the pth NNM
and Tp the coefficient governing the trend of non-linearity. If
Tp > 0, then hardening behaviour occurs, whereas Tp < 0 im-
plies softening behaviour. The analytical expression for Tp is
now obtained by application of any perturbative method to Eq.
(16). It gives:

Tp = 1

8�2
p

[
3
(
A

p
ppp + εc


p
ppp

)+ �2
pB

p
ppp

]
, (18)

where

A
p
ppp = ε2

q

+∞∑
l=1

2�2
p − �2

l

Dpl

(
	p

pl + 	p
lp

)
	l

pp, (19)

B
p
ppp = ε2

q

+∞∑
l=1

2

Dpl

(
	p

pl + 	p
lp

)
	l

pp, (20)
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and

Dpl = �2
l

(
�l − 2�p

) (
�l + 2�p

)
. (21)

One can see the influence of the quadratic coefficients through
the A

p
ppp and B

p
ppp terms. They are able to substantially modify

the trend of non-linearity predicted by keeping a single linear
mode. The remainder of the study will consist of numerical
computations of Tp, as function of the aspect ratio �, which is
the only free parameter related to geometry.

A numerical study of the effect of the geometry on the non-
linear coefficients {	p

ij } and {
p
ijk} is provided in [41]. It shows

that these coefficients display a very slight dependence on cur-
vature. This is the consequence of the slight dependence of
the mode shapes with the aspect ratio, as the non-linear coef-
ficients are computed from integrals involving the mode shape
functions (Eqs. (12)–(13)). Hence, the main effect of the shell’s
geometry on the trend of non-linearity is described by the rel-
ative variations of the eigenfrequencies, shown on Fig. 2. This
will be discussed in detail in the next sections where the results
are presented for different modes. The next two subsections
are concerned with comments on the analytical formula with
respect to modal truncation and internal resonance.

3.3. Modal truncation

Using a single NNM to predict the trend of non-linearity
gives insight on the choice of the linear modes that have to be
retained to construct the NNM. As shown in Eqs. (19)–(20), all
the linear modes are embedded into a single non-linear mode
through the infinite summations resulting in the A

p
ppp and B

p
ppp

terms. In practice, these summations have to be truncated to
a finite number N of modes. The main advantage of the ana-
lytical formula is that one is able to choose for truncation the
modes which have a real influence on the hardening/softening
behaviour. As it appears in Eqs. (19)–(20), when studying the
trend of non-linearity of the pth mode, one has to keep all the
l modes such that 	l

pp �= 0, and 	p
pl �= 0 or 	p

lp �= 0.

As shown in Ref. [41], a number of coefficients {	p
ij }p,i,j �1

are equal to zero due to the rotational symmetry of the structure.
The conditions for these quadratic coefficients to be non-zero
are expressed in terms of the number of nodal diameters kl and
kp of the l and p modes. They read:

(i) 	l
pp �= 0 if kl ∈ {2kp, 0},

(ii) 	p
pl �= 0 or 	p

lp �= 0 if kp ∈ {kl + kp, |kl − kp|}.

These rules show that two classes of modes have to be retained
when studying the trend of non-linearity of the pth mode: ax-
isymmetric (kl = 0) as well as asymmetric modes having twice
the number of nodal diameters (kl = 2kp). No other mode has
an influence on the trend of non-linearity.

In the remainder of the study, N will refer to the number of
modes retained in this specific subset composed of the pertinent
ones with respect to the trend of non-linearity. When N =1, for-
mula (18) reduces to that obtained when keeping a single-mode
in the truncation, thus recovering earlier results presented with

this assumption [13–16,21]. Modal truncation will be studied
by increasing N until convergence. Thanks to the analytical for-
mula, one is awaiting better convergence results than if a blind
modal truncation had been used, since modes having no influ-
ence on the trend of non-linearity are identified and already
discarded.

The main time-consuming task in the numerical effort, when
N becomes large, is the computation of all the quadratic co-
efficients {	k

ij }k,i,j=1...N , needed to construct the summations.
In order to save time, advantage has been taken of their slight
dependence with respect to the aspect ratio �: quadratic coeffi-
cients are kept constant on small �-intervals, instead of comput-
ing them for each value of the aspect ratio. This approximation
has been verified and is assessed by the continuity of Tp at the
edges of the intervals where the {	k

ij } are computed. If the dis-
continuity is too important, then the interval is taken smaller.

3.4. Internal resonance

An internal resonance leads to a divergence in asymptotic
developments because of small denominators. The calculation
of Tp presented before assumes no internal resonance between
�p and another eigenfrequency �l of the system. Now inter-
nal resonances are likely to appear in the eigenspectrum when
varying the aspect ratio �. If all the calculations needed to com-
pute Tp are not possible when an internal resonance relation-
ship is perfectly fulfilled, it is still possible in the vicinity of it,
and thus will be realized.

Another interesting point arising from the analytical formula
of Tp, Eq. (21), is that there is only one kind of internal reso-
nance, namely 2:1 resonance, which have an influence on the
trend of non-linearity. When studying the pth mode, only the
lth modes, whose eigenfrequencies are such that �l =2�p, are
able to significantly change the value of Tp. Other second-order
internal resonances, e.g. �p = 2�l , or �l + �m = �p, are not
able to produce a small denominator and to change the value of
Tp. Finally, third-order internal resonances have no influence
since only the first-order correction to the backbone curve is
studied (Eq. (17)).

In case of 2:1 internal resonance, the normal form of the
problem, which govern the dynamics onto the corresponding
NNMs, must retain the two p and l oscillator equations, as well
as the resonant coupling quadratic terms (	p

pl and 	l
pp). In this

case, a first-order perturbative study shows that only coupled
solutions are possible (see Appendix A, or [48]). Thus, the trend
of non-linearity, which is a notion associated to the backbone
curve of a single oscillator, does not have anymore meaning. In
the following sections, concerned with the numerical results,
it will be seen that the value of Tp diverges to infinity when
encountering a 2:1 internal resonance. On a physical viewpoint,
these values does not have sense, and the calculation presented
here is not valid in a small interval around the resonance value.
This phenomenon can be compared to the results presented by
Pellicano et al. [29], where boundaries between hardening and
softening regions are due to 2:1 internal resonance, as well as
the results presented by Arafat and Nayfeh for suspended cables
[38] and Rega et al. [37] for buckled beams and cables, where
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the divergence of Tp in the vicinity of 2:1 resonance is also
shown.

4. Asymmetric modes

In this section, results for purely asymmetric modes (i.e.
modes with k nodal diameters and zero nodal circles), are pre-
sented. The first subsection is devoted to the fundamental (2,0)
mode. Then three other asymmetric modes are investigated:
(3,0), (4,0) and (7,0). The Poisson ratio is � = 0.33 for all
the presented results. It is recalled that the peculiarity of these
modes is their slight dependence on curvature (see Fig. 2).

4.1. Fundamental mode

The fundamental mode, with the lowest eigenfrequency, is
the (2,0) mode, for any value of the aspect ratio �. The pertinent
modes, able to influence the trend of non-linearity T(2,0), are ax-
isymmetric modes and asymmetric modes with 4 nodal diame-
ters. Among these, only the first (0,1) axisymmetric mode, may
present a 2:1 resonance with (2,0): this occurs for � = 2.687.

The results are presented on Fig. 3, left. The hardening be-
haviour, typical of flat plates, is found for �=0. Then, in favour
of the 2:1 resonance with (0,1), the behaviour becomes soften-
ing at � = 2.687, and returns to hardening at � = 4.98. A legit-
imate question is to know if this softening behaviour could be
experimentally observed. As stated in Section 3.4, in the vicin-
ity of the 2:1 resonance, only coupled solutions exist and the
quantity Tp loses its meaning. A difficult problem appear with
the fact that the size of the interval where only coupled solu-
tions exist, is not provided by a perturbative solution, since no
method quantify exactly how an  should be small to clearly
state that the relationship: 2�p = �l + , is fulfilled.

Here, we can only conjecture that at �=4.98, 2�(2,0)=10.54,
and �(0,1) = 11.64; which is certainly near enough to say that
energy transfer will occur and thus the softening region will be
difficult to observe.

The dotted line represents the solution given by the single-
mode approximation (N = 1). As it could be expected from
the behaviour of �(2,0) with �, the single-mode approximation
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Fig. 3. Trend of non-linearity for the fundamental mode (2,0). Left: Variation of T(2,0) with the aspect ratio �. Right: Same result on a two-dimensional map.

predicts a hardening behaviour, with a very slight decrease as
� increases. This erroneous result is corrected as soon as the
first axisymmetric mode is added in the truncation. A two-
mode truncation (N = 2, with (2,0) and (0,1)) gives excellent
results, undistinguishable for small values of � from the solution
represented, obtained with N = 12. The 12 modes retained are:
(2,0), (4,0), (4,1), (4,2), (0,1), (0,2), (0,3) and (0,4), with their
companion modes for asymmetric configurations.

Finally, the coefficient T(2,0) crosses the x-axis at � = 1871,
but stays at very small values around 10−3. Although for large
values of �, a softening behaviour is strictly speaking predicted,
it is likely to observe a neutral behaviour, due to the smallness
of T(2,0).

A two-dimensional representation is also proposed (Fig. 3,
right), where the variables x = a/R and y = h/a have been
chosen. The assumptions of shallowness allows limitation of the
x-axis to 0.3, as proposed in [41,49]. On the y-axis, R → +∞,
and thus the hardening behaviour (gray-shaded region) of a
plate is found. These two-dimensional maps will be sometimes
used, although they are not completely representative as only
one geometrical parameter is free.

4.2. Modes (3,0), (4,0) and (7,0)

When increasing the number of nodal diameters kp of the
studied mode, the number of possible 2:1 resonances with other
modes increases (see Fig. 2). This constitutes the main differ-
ence with the precedent case.

For mode (3,0), there is still only one possible 2:1 internal
resonance, with (0,1), which occurs at � = 49.69. This results
in a change of non-linear behaviour, see Fig. 4. Contrary to
the fundamental mode, the behaviour stay softening after this
resonance. Finally, T(3,0) tends to zero as � tends to infinity.
The result shown on Fig. 4 has been obtained with N = 13
modes, namely: (3,0), (6,0)–(6,2), and (0,1)–(0,5). The single-
mode truncation predicts everywhere a hardening behaviour.
This is corrected as soon as the first axisymmetric mode is
included in the truncation, to show that for ��49.69, softening
behaviour occurs. Once again, a two-mode model, with (3,0)
and (0,1) only, gives excellent results.
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Fig. 4. Trend of non-linearity for mode (3,0).
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Fig. 5. Map of non-linear behaviour for mode (4,0).

For mode (4,0), two 2:1 internal resonances are now possible:
with mode (0,2) at �=36.91, and with mode (0,1) at �=174.1.
The results for the trend of non-linearity are shown on a two-
dimensional plot, Fig. 5. The softening region caused by the 2:1
resonance with (0,2) is very narrow and must be unobservable.
The non-linearity settles down in a softening behaviour after
the 2:1 resonance with mode (0,1), i.e. for ��174.1. Finally,
the behaviour tends to be neutral when � tends to infinity.

The effect of the number of modes retained is shown on
Fig. 6. The single-mode approximation gives once again er-
roneous result and predicts hardening behaviour. A two-mode
truncation, including modes (4,0) and (0,1) is shown. The first
2:1 resonance is naturally missed, but the general behaviour is
correctly predicted. At least a three-mode truncation must be
used in this case, in order to detect the two 2:1 resonances.

Finally, mode (7,0) presents three possible 2:1 internal res-
onances:

• with mode (0,3) at � = 868.2,
• with mode (0,2) at � = 1503,
• with mode (0,1) at � = 1644.

The resulting behaviour of T(7,0) is shown on Fig. 7. The gen-
eral behaviour is of the hardening type, except on very lit-
tle parameter intervals, until the last 2:1 resonance, where the
behaviour becomes definitively softening. The asymptotic be-
haviour, for very large values of �, shows that T(7,0) tends to
zero. The computation has been realized with N = 11 modes,
namely: (7,0), (14,0) and (14,1), (0,1)–(0,5).

From these results, some general rules can be deduced
on the behaviour of purely asymmetric modes as a function
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Fig. 7. Trend of non-linearity for mode (7,0). The 2:1 internal resonances with the axisymmetric modes are indicated. N = 11 is used for the computation.

of the geometry:

• The fundamental importance of axisymmetric modes on non-
linear behaviour of asymmetric ones has been underlined.

• Mode (2,0) generally display hardening behaviour, except
on a narrow region after the 2:1 resonance with mode (0,1).
Then the behaviour tends to be neutral.

• For all other purely asymmetric modes, hardening behaviour
is observed until the 2:1 resonance with mode (0,1), where
softening behaviour settles down.

• The trend of non-linearity tends to zero as � tends to infinity.
The decrease of the softening behaviour with curvature has
already been noticed in [16–19], for axisymmetric modes
only.

• The more nodal diameters the mode has, the more 2:1 internal
resonances are possible. However, these resonances induce
softening behaviour on a narrow region which is certainly
unobservable.

5. Axisymmetric modes

This section is devoted to presentation of the results for two
axisymmetric modes: (0,1) and (0,2). The rules (i) and (ii) (Sec-
tion 3.3), precizing the modes to select for computation, indi-
cate that only axisymmetric modes have to be kept.

The main difference with previous section is the behaviour
of the eigenfrequencies with respect to �. As it can be seen on
Fig. 2, axisymmetric eigenfrequencies increase with curvature.
Hence, an infinity of 2:1 internal resonances are now possible,
with all the other axisymmetric modes.

The result of computation is shown on Fig. 8 for mode (0,1).
It can be seen that the effect of the geometry—the increase of
�—is much more pronounced than for the asymmetric modes:
the initial hardening behaviour (� = 0) becomes softening at
� = 1.93, and not because of a 2:1 internal resonance. Two
resonances, leading to a change in behaviour, are then shown:
at � = 35.97, where the following relationship is fulfilled:
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2�(0,1)=�(0,2)=43.21. Then at �=230.1, where 2:1 resonance
occurs with mode (0,3). These 2:1 resonances lead to a return to
hardening behaviour. However, it occurs on a very little interval,
which is already negligible for the resonance with (0,2), and
completely negligible for (0,3). The next 2:1 resonances (with
(0,4) at �=756.9, with (0,5) at �=1871.5 . . .) occur on intervals
which are always smaller and thus are not shown.

Single-mode prediction is also shown on Fig. 8. Although the
2:1 resonances are missed, the general behaviour is correctly
predicted: change from hardening to softening due to curvature
is found at � = 1.95 instead of � = 1.93, and the asymptotic
behaviour, which becomes neutral when � tends to infinity, is
recovered. These results show that for the specific case of the
fundamental axisymmetric mode, the single-mode approxima-
tion, used in the precedent studies [13,14,16,17], predicts the
essential features, in spite of a too severe truncation.

The result obtained with N = 7 for mode (0,2) is shown on
Fig. 9. The effect of the geometry leads to a change from hard-
ening to softening behaviour at �=13.73. Then the occurrence
of 2:1 internal resonances lead to slight returns to hardening
behaviour on small � intervals. The change of behaviour due
to the 2:1 resonance with the third axisymmetric modes leads
to a hardening behaviour which occurs on a non-negligible in-
terval: [55.4, 109.9]. The others can be neglected and thus a
softening behaviour is generally predicted. Once again, when
� tends to infinity, T(0,2) tends to zero.

The effect of the number of modes retained is shown on
Fig. 10. The single-mode truncation predicts a hardening be-
haviour for every �, which was the results found by Yasuda
and Kushida [14]. This prediction is corrected as soon as the
(0,1) mode is kept for computation, but 2:1 resonances are
missed. The result with N = 4 is acceptable since the essential
features are predicted.

From these results, some general rules can be deduced on
the behaviour of axisymmetric modes:

• The effect of geometry is much more pronounced and leads
to a softening behaviour which occurs rapidly, for small
values of �.
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Fig. 11. Trend of non-linearity for mode (1,1). Single-mode approximation (N = 1, dashed line) and converged result (N = 17, solid line), are represented.
The occurrence of 2:1 internal resonances with modes (2,2) (� = 169.4), (0,3) (� = 187.9), (2,3) (� = 680.4) and (0,4) (� = 714.7) are also shown.

• 2:1 internal resonances with all other axisymmetric modes
are possible. However, only the internal resonance with
the next axisymmetric mode leads to a significant change
of behaviour. The other implies a return to the hardening
behaviour which occurs on a negligible interval.

• Except for the first (0,1) mode, where the single-mode
approximation captures the essential features, numerous
axisymmetric modes have to be kept in the computation.

• The trend of non-linearity tends to zero as � tends to infinity.

6. Mixed modes

In this section, the first three mixed modes will be studied, i.e.
modes (1,1), (2,1) and (3,1). Mixed modes are asymmetric and
have at least one nodal circle. They differ from the purely asym-
metric modes by the behaviour of their eigenfrequencies with
respect to � (see Fig. 2). Hence, as it was the case for the ax-
isymmetric modes, they are likely to present a 2:1 internal res-
onance with all possible modes satisfying the rules (i) and (ii).

The result for mode (1,1) is presented on Fig. 11. As for the
axisymmetric modes, the effect of geometry is important and
leads to a change of behaviour for a very small value of the
aspect ratio: �=5.3. Then 2:1 internal resonances occurs, with
modes (2,2), (0,3), (2,3), (0, 4), . . . . Their number is unlimited,
as for the axisymmetric case. The change of behaviour occurs
on very small intervals. The first one, due to 2:1 resonance
with mode (2,2), is hardly negligible, and the others have no
chance to be experimentally measurable. It can be thus conclude
that except on a very small interval (� ∈ [0, 5.3]), mode (1,1)
behaves in a softening way.

The single-mode approximation is also shown on Fig. 11. It
predicts a hardening behaviour which becomes neutral when �
tends to infinity. The converged result is obtained for N = 17
modes, namely: (1,1), (2,0)–(2,4), (0,1)–(0,5), and shows that,
contrary to the precedent cases, coefficient T(1,1) tends to a finite
value when � tends to infinity. Hence, the behaviour remains
softening and does not becomes neutral for large values of the
aspect ratio.
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Fig. 12. Trend of non-linearity for mode (2,1), obtained with N = 18 modes: (2,1), (4,0)–(4,4); and (0,1)–(0,6). 2:1 internal resonances with modes (4,1)
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Fig. 13. Map of non-linearity for mode (3,1). N = 16 modes have been retained for computation: (3,1), (6,0)–(6,3) and (0,1)–(0,6). Other 2:1 resonance occurs
after (0,6), but are negligible and thus not represented.

The result for mode (2,1) is shown on Fig. 12. The general
behaviour is comparable to mode (1,1): the effect of geometry
is pronounced and leads to a change from hardening to soft-
ening behaviour at � = 5. The first two 2:1 resonances implies
a return to the hardening behaviour which is substantial, con-
trary to the precedent case. But from the resonance with mode
(0,4), the interval is small and the change of behaviour can be
neglected. When � tends to infinity, T(2,1) tends to a finite neg-
ative value. Single-mode approximation predicts a hardening
behaviour. This result was found for every mixed mode and is
not reported on the figures anymore.

The result for mode (3,1) is shown on a two-dimensional
plot, Fig. 13. The transition from hardening to softening be-
haviour due to curvature occurs at � = 26.5. The first 2:1

internal resonance is at � = 116.5, with mode (6,1). It gives a
return to hardening behaviour on a non-negligible interval: � ∈
[116.5, 177.4]. At �= 177.4, �(6,1) = 129.7 and 2�(6,1) = 137:
the gap between the two seems enough for allowing measure-
ment. The next 2:1 resonance occurs with mode (0,4), and
gives rise to hardening behaviour for � ∈ [418, 466]. The other
internal resonances are hardly negligible. The asymptotic be-
haviour shows that T(3,1) tends to a finite negative value for � to
infinity.

From these results, some general rules can be deduced on
the behaviour of mixed modes:

• The effect of geometry is important and leads to a softening
behaviour which occurs rapidly, for small values of �.
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• 2:1 internal resonances are numerous, but only the first ones,
occurring for small � values are important. The others give
rise to a change of behaviour on a negligible interval.

• The trend of non-linearity tends to a finite value as � tends
to infinity.

7. Conclusion

Prediction of the correct trend of non-linearity for continuous
structures with a curvature has been a controversial subject,
mainly because erroneous results were derived on the basis
of too severe truncations. The literature on circular cylindrical
shell is typical of the difficulties encountered, which seems
now to be definitively clarified thanks to intensive numerical
computations or efficient ROMs. For shallow spherical shells,
sparse results for axisymmetric modes only were available.

In this study, the trend of non-linearity for free-edge shallow
spherical shells has been studied thanks to NNMs, expressed
through real normal form theory. The method shows its effi-
ciency especially in the derivation of the analytical formula of
coefficient Tp, dictating the trend of non-linearity for the pth
mode, hence shedding light on the relevant modes to be re-
tained for truncation, as well as on the importance of 2:1 inter-
nal resonances.

The results have been categorized into three families, as a
function of the behaviour of the eigenfrequency with respect
to the aspect ratio � of the shell. For asymmetric modes, the
crucial importance of axisymmetric modes in the study of
asymmetric vibrations, has been underlined. This feature is
common to circular cylindrical shell, see e.g. [28]. For purely
asymmetric modes, it has been shown that the behaviour was
generally of the hardening type until the last 2:1 resonance,
which necessarily occurs with mode (0,1). After this reso-
nance, the behaviour settles down to the softening type, except
for the fundamental (2,0) mode.

For axisymmetric modes, the importance of keeping numer-
ous other axisymmetric modes in the truncation has been un-
derlined, as compared to the precedent available studies on the
subject. The huge dependence of their eigenfrequencies on cur-
vature leads to a change from hardening to softening behaviour
occurring for very small values of �. This feature has also been
found for mixed modes. These latter show the specificity of
reaching a finite negative value for Tp as � tends to infinity (soft-
ening behaviour), contrary to the two others families, which
display a neutral behaviour for large values of the aspect ratio.

The efficiency of the method opens the way to similar stud-
ies aimed at definitively clarifying the trend of non-linearity of
continuous structure with quadratic and cubic non-linearities.
The formalism could easily be used to handle different bound-
ary conditions for shallow spherical shells, as well as other
curved structures such as arches.
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Appendix A. Coupled solutions in case of 2:1 internal reso-
nance

The case of a 2:1 internal resonance between modes p and l

is considered, i.e. the eigenfrequencies fulfil the relation: �l 	
2�p. A detuning parameter � is introduced by: �l =2�p + ε�.
Only the first-order perturbative solution will be expressed here,
and thus cubic coefficients are omitted. The normal form of
the system, which dictates the dynamics of the two resonant
NNMS, writes, up to order two:

R̈p + �2
pRp = ε	p

plRlRp, (A.1a)

R̈l + �2
l Rl = ε	l

ppR2
p, (A.1b)

where ε is used as a book-keeping device. The method of mul-
tiple scales can be used for producing the first-order solution:
Rp and Rl are expanded as: Rk=Rk0+εRk1, with k=l, p. Then
Rk0 is written in polar form: Rk0 = ak expi�k expi�kT0 + c.c.,
where c.c. refers to the complex conjugate. The dynamical sys-
tem governing, at the slow time scale T1, the evolution of am-
plitudes (ap, al) and phases (�p, �l ) writes:

a′
p = 	p

pl

2�p

apal sin(�T1 − 2�p + �l ), (A.2a)

�′
p = − 	p

pl

2�p

al cos(�T1 − 2�p + �l ), (A.2b)

a′
l = −	l

pp

2�l

a2
p sin(�T1 − 2�p + �l ), (A.2c)

�′
l = −	l

pp

2�l

a2
p

al

cos(�T1 − 2�p + �l ), (A.2d)

where ()′ refers to differentiation with respect to the slow time
scale T1. These equations are transformed into an autonomous
system by defining

� = �T1 − 2�p + �l . (A.3)

Finally, the fixed points are solutions of:

	p
pl

2�p

apal sin � = 0, (A.4a)

	l
pp

2�l

a2
p sin � = 0, (A.4b)

� +
(

	p
pl

�p

al − 	l
pp

2�l

a2
p

al

)
cos � = 0. (A.4c)

If sin � �= 0, then ap=al=0. Thus, sin �=0, and cos �=±1. The
amplitudes of the solutions are then governed by the following
relationship:

�al ± 	p
pl

�p

a2
l ∓ 	l

pp

2�l

a2
p = 0. (A.5)
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As the pth mode is investigated, the question is to know if
sdof solutions, such that al = 0 and ap �= 0 are possible. Now
letting al = 0 in Eq. (A.5) shows that, necessarily, ap = 0.
Thus, single-mode solutions do not exist anymore. Although
the definition of the trend of non-linearity needs keeping the
cubic-order terms, the information of the loss of existence of
the sdof solution is enough to ensure that the notion of the trend
of non-linearity (intrinsically connected to a sdof solution) does
not have anymore meaning.
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