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We present a study of the attenuation length in a one-dimensional array of alternating left- and right-handed

materials in which both the permittivities and the permeabilities are disordered. This type of structure has been

shown to present an anomaly in the attenuation length when only permeabilities are disordered. We derive a simple

analytical expression of the attenuation length, when the disorder in the refraction index is due to perturbations

in both the permeability and the permittivity. Our expression is able to explain the transition to the anomalous

behavior when perturbation only in the permeability or only in the permittivity is considered. Besides, we show

that the anomaly is dramatically affected when considering perturbations in permeability and permittivity. The

coupling effects are able to restore the ordinary localization length.

DOI: 10.1103/PhysRevB.85.205138 PACS number(s): 42.25.Fx, 72.15.Rn

I. INTRODUCTION

In electromagnetism, the design of materials with negative

index has offered new perspectives in nanoscience.1,2 In light

of the properties of these new materials, the propagation and

localization in a periodic one-dimensional (1D) system has

been revisited (e.g., Ref. 3; see also Refs. 4 and 5 for a review

on 1D propagation in disordered media). Recently, periodic bi-

layered structures formed by alternating left-handed and right-

handed materials have been investigated and they revealed the

surprising behavior of the so-called mixed stack.6,7 A mixed

stack is a particular periodic structure with a unit cell formed of

two layers of same length d = d1 = d2 and opposite refractive

indices n1 = −n2. Such unit cell does not accumulate phase

and leads to a transparent structure with perfect transmission.

When perturbation in the permittivity is introduced, leading

to perturbed refractive index and perturbed impedance, an

anomaly in the attenuation length has been exhibited, resulting

in a significant suppression of Anderson localization.6,7 Very

recently, the localization length Lloc has been derived for this

case,8 leading to the prediction Lloc ∝ Q−4(kd)−8 (Q being the

perturbation strength and k = 2π/λ the wave number) which

is valid in the low-frequency regime. In this paper, we revisit

this anomaly. By deriving a simple analytical expression for

the attenuation length in mixed stacks, we can analyze the

conditions leading to the transition to the anomalous behavior.

We show that the transition begins for NQ2(kd)2 = 1 and that

increasing the length N of the structure produces an increase in

the attenuation length until it reaches the localization length as

N → ∞. For λ/d � 10, the localization length is reached after

NQ2(kd)2 > 100 and our analytical expression is accurate to

characterize the transition. For λ/d � 10, at lower frequency,

we may notice in the numerical results of Refs. 7 and 8 that the

localization length is reached after NQ4(kd)8 > 100, that is,

for much larger structure sizes (and this is the regime predicted

in Ref. 8). Of course, this raises the question of whether or

not such regimes can take place in the experiments involving

actual designed structures. Currently, designed metamaterial

layers work at typically λ ∼ d.9,10 This is the case because

such layers are realized by stacking two-dimensional arrays

of resonators of thickness ∼λ/10 (for instance, split ring

resonators combined with continuous wires,9 or fishnets10)

and, to limit the losses, a small number (about 10) of stacks is

used. In optics, the problem of losses in metal is crucial and the

most recent metamaterial layers have micrometer lengths in the

infrared frequency regime.10 For the application to bilayered

structures using left-handed materials, the problem of losses

remains, in addition to compactness constraints, which limits

also the value of N . Under these conditions, it is of importance

to carefully describe the transmission properties of structures

with moderate size and working in the frequency regime

λ ∼ d.

Another important practical aspect is the fact that a

perturbation in the refractive index results in general from

simultaneous perturbations in permittivity ǫ and in permeabil-

ity μ. These perturbations can be evaluated but they cannot

be controlled, in particular at microscales and nanoscales

because of manufacturing inaccuracies. In this paper, we show

that the behaviors of the attenuation and localization lengths

are dramatically different when including a perturbation in

the permeability δμ in addition to the previously considered

perturbation in permittivity δǫ (an effect recently observed in

Ref. 11). Although the resulting perturbation in the refractive

index simply follows from superposition, δn = δμ + δǫ at

dominant order, the obtained attenuation length does not

follow from superposition. Indeed, coupling effects in ǫ and

μ are able to make the anomaly disappear, or in other words,

coupling effects restore the ordinary localization.

II. PERTURBATIVE EXPANSION

We propose a derivation of the attenuation length lN (with

1/lN ≡ −〈ln|TN |〉/N and TN is the transmission coefficient)
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FIG. 1. (Color online) Geometry of the layered structure. The

electric Ej and magnetic Hj fields are parallel to the interfaces.

based on the analysis of the electric and magnetic fields

E,H in a structure of length N (d1 + d2)/2, with N/2 unit

cells (N is an even number) (see Fig. 1). In the unperturbed

structure, the unit cell is formed of two layers of lengths da

(a = 1,2), with refractive indices na = ±√
ǫaμa (the upper

and lower signs, respectively, refer to right-handed and left-

handed materials). The unperturbed structure is transparent

when Z1 = Z2, with Za = Z0

√
μa/ǫa (perfect impedance

matching without reflection). In each layer j , perturbations

in both ǫ and μ are considered, μj = μa(1 + δμj )2 and

ǫj = ǫa(1 + δǫj )2 with uncorrelated δμj and δǫj , distributed

uniformly on [−Qμ,Qμ] and [−Qǫ,Qǫ], respectively. The

resulting perturbation in the refractive index δnj is distributed

on [−Q,Q] with Q =
√

Q2
ǫ + Q2

μ.

We define the electric and magnetic fields Ej and Hj at

the boundary between the layers j and (j + 1), satisfying, for

j = 2, . . . N + 2,

(
Ej−1

Hj−1

)

=
(

cos ϕj iZj sin ϕj

i sin ϕj/Zj cos ϕj

) (
Ej

Hj

)

(1)

with ϕj ≡ kjdj and where the time dependence eiωt has

been considered. For small disorder, the impedances remain

close to each other and we introduce a small parameter

δj ≡ (Zj/Zj−1 − 1)/2. Decomposing Ej into right-going E+
j

and left-going E−
j waves, we get

eiϕj E+
j = E+

j−1 + δj (E+
j−1 − E−

j−1),
(2)

e−iϕj E−
j = E−

j−1 − δj (E+
j−1 − E−

j−1),

with the boundary conditions E+
1 = 1, E+

N+2 = TN , E−
1 = R,

E−
N+2 = 0. Defining a term of phase accumulation φj ≡

∑j

l=2 ϕl , and the quantities Pj ≡ eiφj E+
j and Dj ≡ e−iφj E−

j ,

we obtain

Pj = 1 +
j

∑

l=2

δl[Pl−1 − e2iφl−1Dl−1], 2 � j � N + 2,

(3)

Dj =
N+2
∑

l=j+1

δl[e
−2iφl−1Pl−1 − Dl−1], 1 � j � N + 1,

where we used P1 = 1 and DN+2 = 0. The transmission

coefficient is TN = e−iφN+1PN+2 and the aim is to derive the

attenuation length lN . This is achieved by solving (3) iteratively

owing to the small parameter δj . At the second iteration,

TNeiφN+1 = 1 +
N+2
∑

n=2

δn

︸ ︷︷ ︸

S1

+
N+2
∑

n=2

n−1
∑

m=2

δnδm −
N+2
∑

n=2

N+2
∑

m=n

δnδme2i(φn−1−φm−1)

︸ ︷︷ ︸

S2

+O(Q3), (4)

and δn = 1/2[(δμn − δǫn)(1 − δǫn) − (δμn−1 − δǫn−1)(1 −
δμn−1) − (δμn − δǫn)(δμn−1 − δǫn−1)] + O(Q3). We have

l−1
N = −

1

N
Re(〈S1 + S2〉) + O(Q3), (5)

where we have used 〈|S1|2〉 = O(Q3). Analytical expressions

presented in this paper are obtained at the second iteration,

leading to a prediction accurate up to O(Q3). Note that this

second order in Q is also the approximation used in the

semianalytical WSA used in Refs. 6 and 7—see Eq. (12) in

Ref. 7 where the term R2
n−1t

2
nrn is omitted [in Ref. 7, (rn,tn) are

the reflection and transmission coefficients of a single layer],

and this term is O(Q3) at best. The third-order calculation

is presented in Appendix A. It is found to vanish when the

second-order vanishes (namely, the asymptotic N → ∞ and

the low-frequency regime Qkd ≪ 1), and it is thus unable

to capture the behavior of the localization length when the

anomaly occurs. This is consistent with the prediction in Ref. 8,

where the localization length is found to vary as Q−4 in the

low-frequency regime.

In the following, for clarity, we first inspect the case where

only a perturbation in ǫ is considered, and then, we inspect the

case with perturbations both in ǫ and μ for a unit cell with no

phase accumulation.

III. LAYERS WITH PERTURBATIONS ONLY IN ǫ

We first consider the case where Qμ = 0 and Q = Qǫ ,

corresponding to the situation considered in Refs. 6–8. We

can notice that the result is the same if Q = Qμ, Qǫ = 0. The

attenuation length for a structure of size N (d1 + d2)/2 is

1

lN
=

1

l1
−

Q2

12
A(k1d1,k2d2,Q,N ), (6)

1

l1
=

Q2

12

{

1 −
1

2
[f (x1) cos 2k1d1 + f (x2) cos 2k2d2]

}

, (7)

with xa ≡ 2Qkada (a = 1,2) and

f (x) ≡ 3 sincx − 6(sincx − cos x)/x2, (8)

where sincx ≡ sin x/x. The general form of A has no

particular interest and we refer to Appendix A for its expression

and its asymptotic behavior (simplified expressions are given

in the following).

The key point is the following: A depends on N , and it is

responsible for the anomaly that occurs only for k2d2 = −k1d1

(this agrees with the observation of Ref. 12 that a structure,
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FIG. 2. (Color online) A as a function of k2d2/k1d1, curves given

for k1d1 = 2π/4.3: lower red curve Q = 0.025 and upper black

curve Q = 0.25 (plain line N = 100 and dotted line N = 1000).

The inset shows A as a function of N , for kd = k1d1 = −k2d2. N is

normalized to NQ2(kd)2 and A is normalized to A/(kd)2. λ/d = 4

(blue lower curve), and λ/d = 40, 400 (upper red and black curves,

almost undistinguishable) for Q = 0.025 (plain line) and Q = 0.25

(dotted line).

with d1 �= d2 and k2 = −k1, does not present the anomaly).

This is illustrated in Fig. 2: it can be seen that A has amplitude

unity only in the vicinity of k2d2 = −k1d1; otherwise it is at

least one order of magnitude smaller. In this latter case, it

is negligible and the attenuation length takes a simple form,

independent of N , lN = l1 that characterizes the transmission

properties of the structure for any size N . Moreover, we recover

the expected behavior of the localization length in the high-

frequency regime, l1 → 12/Q2 since f → 0, and in the low-

frequency regime, 1/l1 = Q2/12 (sin2 k1d1 + sin2 k2d2) since

f → 1, as obtained in Ref. 12. Of course, taking into account

the exact form of the function f allows us to better describe the

attenuation length for intermediate values of the wavelength

λ.

If the unit cell does not accumulate phase, for al-

ternating right-handed and left-handed materials with

kd = k1d1 = −k2d2, Eq. (6) simplifies to

1

lN
=

Q2

12
[1 − f (x) cos 2kd − h2(x)B(sincx,kd,N )], (9)

with x ≡ 2Qkd,

h(x) ≡
√

3[sincx − cos x]/x (10)

[such that A = h2(x)B] and

B(r,kd,N ) ≡
1 − r cos 2kd

1 − r2

−
1 − rN

N (1 − r2)2
[1 + r2 − 2r cos 2kd], (11)

and here, r is a dummy variable. The main characteristics of A

are illustrated in the inset of Fig. 2. A transition can be observed

for NQ2(kd)2 ∼ 1. For λ/d � 10, A reaches asymptotically

(N → ∞) a value that does not compensate the 1/l1 term in

Eq. (6). Consequently, 1/lN is of the same order as 1/l1 and

there is no anomaly. For λ/d � 10, A reaches asymptotically

a value that compensates the 1/l1 term in Eq. (6), leading to

an increase in lN and thus to the aforementioned anomaly. The

asymptotic of 1/lN for N → ∞ is clearly

1/lN →
Q2

12

[

1 − f (x) cos 2kd − h2(x)
1 − cos 2kd sincx

1 − sinc2x

]

.

(12)

When x ≡ 2Qkd is small, h(x) ∼ x/
√

3 [Eq. (10)], leading

to h2(x)(1 − cos 2kd sincx)/(1 − sinc2x) = (1 − cos 2kd) +
O(Q2) [and f (x) → 1, Eq. (8)]. This means that the asymp-

totic N → ∞ makes the leading order of 1/lN [Eq. (12)]

to vanish at small enough frequency (kd ≪ 1/Q; see also

Appendix A). We show in Appendix B that the contribution

to 1/lN at third order in Q also vanishes in the same limits,

kd ≪ 1/Q, N → ∞. This means that the fourth order has

to be determined, and this is consistent with the result of

Ref. 8 where it is shown that the localization length varies

as 1/Q4 for large λ. Finally, note that the wavelengths smaller

than the unit-cell length (λ/d < 1) are not concerned by the

anomaly because the term [1 − f (2Qkd) cos 2kd] → 1 while

A remains smaller than 0.1 (the behavior of A for small

wavelengths is not reported here).

IV. MIXED STACK WITH DISORDER IN ǫ AND μ

To assess the robustness of the anomaly, we consider now

perturbations both in ǫ and μ but still under the condition of

no phase accumulation in the unit cell, kd = k1d1 = −k2d2.

Using the same perturbation technique, we find a generalized

expression of Eq. (9):

1

lN
=

Q2
ǫ

12
[1 − f (xǫ) sincxμ cos 2kd]

+
Q2

μ

12
[1 − f (xμ) sincxǫ cos 2kd]

−
QǫQμ

6
cos 2kd h(xǫ)h(xμ)

−
1

12
[Qǫh(xǫ) sincxμ − Qμh(xμ) sincxǫ]2

×B(R,kd,N ), (13)

with R ≡ sincxǫ sincxμ. Here, the first three terms are

independent of N and they essentially follow from the super-

position of l1 values [Q = Qǫ and Qμ in Eq. (7)]. The fourth

term is dependent on N . This term was responsible for the

anomaly when Qμ = 0, as seen previously, since the asympto-

tic N → ∞, Qkd ≪ 1 makes 1/lN vanish. Here, the

asymptotic leads to

1

lN
→

Q2

3
(1 − cos 2kd) α(1 − α), (14)

with Q2 ≡ Q2
ǫ + Q2

μ the amplitude of the disorder in the

refractive index and α ≡ Q2
ǫ/Q

2. The leading order in 1/lN
vanishes for disorder only in ǫ (α = 1) or for disorder only in

μ (α = 0), which produces the anomaly. When perturbations

both in ǫ and μ are considered, the term does not vanish and
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FIG. 3. (Color online) Attenuation length lN of a mixed stack

for lengths N = 30 and N = 103 as a function of λ/d . Dots show

the numerical results and plain lines correspond to our prediction

in Eq. (13). Different curves correspond to Qμ = 0 (black dots),

Qμ = 0.1 (magenta dots), and Qμ = Qǫ = Q/
√

2 (red dots) for

constant Q =
√

Q2
μ + Q2

ǫ = 0.25 (constant perturbation strength

in the refractive index). Result for the homogeneous stack (usual

Anderson localization) are not represented and would be superposed

on the Qǫ = Qμ case (red dots).

the leading order remains dominant, which restores the usual

Anderson localization.

Our results are exemplified in Figs. 3 and 4 and compared

with direct numerical calculations (numerics have been done

with 103–104 averages). We considered two different sizes of

mixed stacks N = 30 and N = 103 for a constant refractive

index perturbation Q = 0.25, resulting from Qμ = 0, 0.1 and

Q/
√

2 (and Qǫ =
√

Q2 − Q2
μ). Our conclusions are twofold:

(1) When the perturbation in the refractive indices result

from perturbations both in ǫ and μ, a significant decrease

in the attenuation length is visible at low frequency (Fig. 3).

For Qμ ∼ Qǫ , the usual localization is restored, similar to

the localization observed in the so-called homogeneous stack

[corresponding to a unit cell with kd = k1d1 = k2d2 (Refs. 6
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FIG. 4. (Color online) Attenuation length lN of a mixed stack

as a function of N for λ/d = 3 and λ/d = 10. Same convention as

in Fig. 3 is used. The transition starts for N = 1/Q2(kd)2 (N ∼ 4

for λ/d = 3 and N ∼ 40 for λ/d = 10). For λ/d = 10, Qμ = 0, the

asymptotic lN = Lloc ∼ 107 is found from Refs. 6 and 7 for N > 107.

and 7)]. In this case, the validity of our expression in Eq. (13)

is satisfactory in the whole range of frequencies.

(2) It is confirmed that, when perturbation only in ǫ is

considered, the anomaly starts for NQ2(kd)2 = 1 (Fig. 4). For

λ/d � 10, the saturation at the localization length occurs for

NQ2(kd)2 > 100 and our calculation at second order, Eq. (9),

is accurate to describe the whole transition (in this regime, the

prediction of Ref. 8 does not apply). We derived the attenuation

length at third order and it appears to be more accurate although

still unsatisfactory for low frequencies (Fig. 4). Indeed, for

λ/d � 10, in light of the calculations in Ref. 8, the next order

in Q4 is necessary to entirely capture the transition in the

low-frequency regime and, by analyzing the numerical results

in Refs. 7 and 8, it appears that the attenuation length reaches

the localization length for typically NQ4(kd)8 > 100.

V. CONCLUSIONS

Our results concern the attenuation length lN in bilayered

structures with a unit cell composed of left-handed and right-

handed materials. When perturbation only in the permittivity

or in the permeability is considered, our analytical expression

is accurate for the structure of moderate size and for high

frequencies (wavelengths of order or smaller than the unit-cell

size). It must be stressed that the real left-handed layer as

can be designed nowadays precisely works in this range of

wavelengths and structure sizes. More importantly, our result

applies for perturbation in the refractive indices resulting

from perturbations in the permeability and in the permittivity,

which is the case when designing left-handed material. This

is of particular practical interest since we have shown that

the combined effects of perturbations in permeability and

permittivity strongly affect the behavior of the attenuation

length and they are able to restore the ordinary Anderson

localization.
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APPENDIX A: EXPRESSION AND ASYMPTOTICS

OF THE TERM A

The term A in the expression of the attenuation length

1

lN
=

1

l1
−

Q2

12
A(k1d1,k2d2,Q,N ) + O(Q3),

(A1)
1

l1
=

Q2

12

{

1 −
1

2
[f (x1) cos 2k1d1 + f (x2) cos 2k2d2]

}

,

is given by

A(ϕ1,ϕ2,Q,N ) = −Re{[e−2iϕ1X2h
2(x1) + e−2iϕ2X1h

2(x2)]σ

+h(x1)h(x2)[2σ + σ0]} (A2)

with Xa ≡ sincxa (xa ≡ 2Qϕa), ϕa ≡ kada (a = 1,2),

X2 ≡ X1X2, ϕ ≡ ϕ1 + ϕ2, and σ0 ≡ [1 − (Xe−iϕ)N ]/[1 −
(Xe−iϕ)2] e−2iϕ/N , σ ≡ [e−2iϕ/2 − σ0]/[1 − (Xe−iϕ)2].

If A is O(Q) or of higher order, its contribution to 1/lN
is negligible (and not pertinent) and we get 1/lN ∼ 1/l1 for

all N and kd values. On the contrary, if A is of order unity,

its contribution has to be accounted for. We show below that

the asymptotic N → ∞, in the low-frequency regime, leads to

A = O(Q2) for ϕ1 + ϕ2 �= 0. When ϕ1 + ϕ2 = 0,A is of order

unity, and besides, it compensates the 1/l1 → Q2/6 sin2 kd,

which means that 1/lN is at least O(Q3) [Appendix B shows

that this third order also vanishes for N → ∞ in the low-

frequency regime, in agreement with the O(Q4) prediction

given in Ref. 8].

Obviously, the asymptotic N → ∞ gives

A(ϕ1,ϕ2,Q,N → ∞)

= −Re{[e−2iϕ1X2h
2(x1) + e−2iϕ2X1h

2(x2)

+ 2h(x1)h(x2)]}σ. (A3)

In the low-frequency regime or small enough Q value, namely

Qϕ1,Qϕ2 ≪ 1, one gets

A(ϕ1,ϕ2,Q,N → ∞) = −
2Q2

3
Re

{
ϕ2

1e
−2iϕ1 + ϕ2

2e
−2iϕ2 + 2ϕ1ϕ2 + O[(Qϕ)4]

1 − e−2iϕ + 2Q2/3
(

ϕ2
1 + ϕ2

2

)

e−2iϕ + O[(Qϕ)4]

}

. (A4)

In general, this term is O(Q2). However, if ϕ = 0, with

ϕ2 = −ϕ1, we find

A(ϕ1, − ϕ1,Q,N → ∞) = 2 sin2 kd + O[(Qϕ)2], (A5)

which leads to 1/lN = o(Q2) in (A1).

APPENDIX B: THIRD-ORDER CALCULATION

The third iteration consists in calculating the average of S3,

corresponding to an extra term O(Q3) in (4):

TNeiφN+1 = 1 + S1 + S2 + S3 + O(Q4), (B1)

and we have

S3 ≡ −
N+2
∑

n=2

n−1
∑

j=2

N+2
∑

m=j

δnδmδmei(φj−1−φm−1)

−
N+2
∑

n=2

N+2
∑

j=n

j−1
∑

m=2

δnδmδmei(φn−1−φj−1) −

−
N+2
∑

n=2

N+2
∑

j=n

N+2
∑

m=j

δnδmδmei(φn−1−φm−1). (B2)

This has been done for the mixed stack, with kd = k1d1 =
−k2d2 and Q = Qǫ , where the anomaly occurs (otherwise,

the second-order calculation is sufficient to describe the

localization length for any frequency and N value). Note

also that fortunately, δn is used at first order in this case and

takes the simple form δn = 1/2[δμn − δμn−1] + O(Q). The

attenuation length 1/lN is

l−1
N = −

1

N
Re

(〈

S
(2)
1 + S

(2)
2

〉)

+
1

l
(3)
N

+ O(Q4), (B3)

where S
(2)
1 means the expansion of S1 at second order in

(δμn,δμn−1) and with

1

l
(3)
N

= −
1

N
Re

(〈

S
(3)
2 + S1S2 + S3

〉)

+ O(Q4). (B4)

We find

1

lN
=

1

l1
−

Q2

12
A(kd, − kd,Q,N ) +

1

l
(3)
N

, (B5)

1

l
(3)
N

=
Q3

12
√

3
sin 2kd

[

F (X,x)
1 − XN

N (1 − X2)2
+

G(X,x)

(1 − X2)

]

,

(B6)

with x ≡ 2Qkd, X ≡ sincx, and

F (X,x) ≡ −h(x)[(1 + X2) − h2(x)(1 − X2) − 2Xf (x)],

G(X,x) ≡ −Xh(x)f (x) + h(x) + l(x)(1 − X2), (B7)

where f (x) and h(x) have been defined previously and l(x) ≡
−9

√
3[x2sincx − 2(sincx − cos x)]/x3 + 3

√
3 cos x/x.

In general, the term is O(Q3) and its contribution to 1/lN
is negligible compared to the second order in O(Q2). When

the anomaly occurs (large N and low-frequency regime), we

have seen that the second-order contribution vanishes, so we

205138-5



MAUREL, OURIR, MERCIER, AND PAGNEUX PHYSICAL REVIEW B 85, 205138 (2012)

could expect the third order to become dominant. However,

it is easy to see that the third order also vanishes in these

limits and the fourth order should be inspected: Indeed, in

the asymptotic N → ∞, the first term of 1/lN in Eq. (B6)

vanishes. Also, in the low-frequency regime (x = 2Qkd ≪ 1),

we have f (x) = 1 + O(x2), h(x) ∼ x/
√

3 + O(x3), and

l(x) ∼ O(x) [with X ∼ 1 + O(x2)]. Obviously, this makes the

term G(X,x)/(1 − X2) = O(Qkd) vanish at order O(1). This

is in agreement with the prediction done by Ref. 8 that the

localization length is O(Q4).
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