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Abstract

We solve a linear robust problem with mixed-integer first-stage variables
and continuous second stage variables. We consider column wise uncer-
tainty. We first focus on a problem with right hand-side uncertainty which
satisfies a "full recourse property" and a specific definition of the uncertainty.
We propose a solution based on a generation constraint algorithm. Then we
give some generalizations of the approach: for left-hand side uncertainty
and for uncertainty sets defined by a polytope. Finally we solve the problem
when the "full recourse property" is not satisfied.

1 Introduction
This paper deals with robust mixed-integer linear programming (MILP) to study
problems with uncertain data. This is a possible alternative to two-stage stochastic
linear programming introduced by Dantzig in [8]. In this framework the uncertain
data of the problem are modeled by random variables, and the decision-maker
looks for an optimal solution with respect to the expected objective value. He
makes decisions in two stages: first before discovering the actual value taken
by the random variables, second once uncertainty has been revealed. However,
this approach requires to know the underlying probability distribution of the data,
which is, in many cases, not available; furthermore the size of the resulting opti-
mization model increases in such a way that the stochastic optimization problem
is often not tractable. Robust optimization is a recent approach that does not rely
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on a prerequisite precise probability model but on mild assumptions on the uncer-
tainties involved in the problem, as bounds or reference values of the uncertain
data. It looks for a solution that remains satisfactory for all realizations of the
data (i.e. for worst scenarios). It was first explored by Soyster [12] who proposed
a linear optimization model for data given in a convex set. However this is an
over conservative approach that leads to optimal solutions too far from the one of
the nominal problem. Robust adjustable optimization models have been proposed
and studied to address this conservatism. More precisely, a lot of recent published
works cover robust linear programming with row-wise uncertainty for continu-
ous variables [3, 4, 6, 7] or discrete variables [1, 10] and, even more recently,
column-wise right-hand side uncertainty [5, 11, 13].

In [9], Gabrel et al. propose a solution based on the approaches given in
these last papers to solve a location transportation problem. We first show that
their solution can be applied to any linear program with mixed-integer first stage
variables and continuous recourse variables. We will also see that problems with
left-hand side uncertainty can be solved in the same way. Then, we show that the
method can also be used for an affine definition of the uncertainty set which is
more general than the one used in [9, 11, 13].

To the extent of our knowledge, in all works published until now, the authors
always assumed that the problem satisfies a "full recourse property" (see Section
2) which cannot be always satisfied for real problems: we show that, when this
property is not verified, we can modify the objective function in order to use the
previous approach to solve the problem. Some tests on a simple production prob-
lem prove the feasibility of our approach.

We focus here on a linear robust problem with right-hand and left hand-side
uncertainty, mixed-integer first-stage variables and continuous second-stage vari-
ables. In Section 2 we present the general problem. For the sake of clarity, we first
study the robust problem with right-hand side uncertainty and full recourse prop-
erty with a specific definition of the uncertainty set. In Section 3 we show how to
modelize and solve the recourse problem. In Section 4 we present the solution for
the robust problem. In Section 5 we show that our results can be applied in case
of left-hand side uncertainty and we extend our results to other definitions of the
uncertainty set. Finally, in Section 6 we study the cases where the full recourse
property is not verified. To facilitate reading the article, we present in Annex 1
and 2 two proofs of results given in Section 6.1 .
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2 A mixed-integer linear robust problem
We consider applications requiring decision-making under uncertainty which can
be modeled as a two-stage mixed-integer linear program with recourse. The set
of variables is partitioned into two distinct sets: the x variables, called decision
variables, concern the decisions to be taken in the first stage, before knowing the
realization of the uncertain events; the second stage variables y, called recourse
variables, will be fixed only after the uncertainty has been revealed.

We focus here on robust mixed-integer linear problems when the constraints
coefficients are uncertain, as well on the right-hand side as on the left-hand side.
In addition, we restrict our study to the case where the recourse variables y are
continuous variables while the decision variables x are mixed-integer variables.

The deterministic problem can be formulated as the following MILP (in this
paper we will omit the transpose sign tr when there is no possible confusion):

P

∣∣∣∣∣∣∣∣∣∣
min
x,y

αx+ βy

Ax+By ≥ d

Cx ≥ b

xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p, y ∈ Rq
+.

(1)
(2)
(3)

where A ∈ QT×p, B ∈ QT×q, d ∈ QT , C ∈ Qn×p, b ∈ Qn, α ∈ Qp
+, β ∈ Qq

+,
and Q is the set of rational numbers.

We assume that there exists (x, y) such that (1)-(3) are satisfied and we say
that a solution x is feasible if x satisfies constraints (2) and (3). The uncertain
coefficients are those of d (right-hand side), A and B (left-hand side).

We assume that the program P satisfies the property P , called "full recourse
property": for any feasible values of the decision variables (here x) and for any
possible value of A,B and d, there exist values of the recourse variables (here y)
such that (1) is satisfied, that is such that there exists a feasible solution of P . Let
us notice that the property P is always satisfied if there is a column of B whose
all terms are positive. The hypothesis that P satisfies the property P cannot be
always satisfied for real problems: we show in Section 6 that we can extend our
results when P is not satisfied.

We suppose that d belongs to a given set D which defines the set of possible
scenarios and for the sake of clarity we assume at first that the uncertainty con-
cerns only the right-hand side d of (1). We show in Section 5.1 that our results
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can be extended when the matrices A and B are also uncertain.

Our robustness objective is to find a feasible solution x, y of P that minimizes
the total cost involved by the worst possible scenario of d in connection with x.
We can state the robust problem as the following mathematical program:

PR

∣∣∣∣∣∣∣∣∣∣∣

min
x

αx + max
d∈D

min
y
βy

By ≥ d− Ax
y ∈ Rq

+

Cx ≥ b
xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p.

For any feasible x, we define the following linear program R(x) called "Recourse
Program":

R(x)

∣∣∣∣∣∣∣
max
d∈D

min
y

βy

By ≥ d− Ax
y ∈ Rq

+.

Given a mathematical program π, we denote by v(π) the value of an optimal
solution. The robust program can then be rewritten as:

PR

∣∣∣∣∣∣
min
x

αx+ v(R(x))

Cx ≥ b
xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p.

Let us define more precisely the uncertainty. Following the idea proposed
by Bertsimas and Sim [7] and Minoux [11], we suppose that each coefficient
dt, t = 1, ..., T belongs to an interval [d̄t −∆t, d̄t + ∆t] where d̄t is a given value
and where ∆t ≥ 0 is a given bound of the uncertainty of d. The uncertainty set D
is therefore given by:

D = {d : dt ∈ [d̄t −∆t, d̄t + ∆t], ∀t = 1, ..., T}.

For a fixed x, the worst scenario is obtained for dt = d̄t + ∆t, t = 1, ..., T.
Indeed, By ≥ d̄+ ∆−Ax implies By ≥ d−Ax for all d ∈ D. Thus this uncer-
tainty definition brings the robust problem back to a deterministic one. It provides
a high "protection" against uncertainty, but it is very conservative in practice and
leads to very expensive solutions. To avoid overprotecting the system, we impose,
as in [13], the constraint

T∑
t=1

∆t>0

|dt − d̄t
∆t

| ≤ δ̄,
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where δ̄ is a positive integer which bounds the total scaled deviation of d from its
nominal value d̄.Notice that there always exists a worst scenario with dt ≥ d̄t, ∀t,
hence we can redefine the uncertainty set D as

D = {d : dt = d̄t + δt∆t, 0 ≤ δt ≤ 1, ∀t = 1, ..., T,
T∑
t=1

δt ≤ δ̄}.

3 The recourse problem
To solve the recourse "max min" problem for given values of the decision vari-
ables, the minimization linear sub-program is transformed in a maximization pro-
gram by considering its dual. But that leads to a quadratic objective function. We
show that whatever the coefficients in the recourse problem, the quadratic terms
can be written as products of a 0-1 variable and a continuous but bounded variable,
which allows a linearization of these products.

Let x be a feasible solution and let d ∈ D, we define the following linear
program

R(x, d)

∣∣∣∣∣∣∣
min
y

βy

By ≥ d− Ax
y ∈ Rq

+.

We notice that R(x, d) has a finite solution for all feasible x and for all possible
scenario d since P satisfies P , and since βy ≥ 0 for any feasible solution y of
R(x, d). Thus by the strong duality theorem, we have

v(R(x, d)) = v(DR(x, d)),

where DR(x, d) is the dual program of R(x, d):

DR(x, d)

∣∣∣∣∣∣∣∣
max
λ

(d− Ax)λ

λB ≤ β

λ ∈ RT
+.

(4)

(5)

Then, for any feasible x, v(R(x)) = maxd∈D v(DR(x, d)), and we can refor-
mulate DR(x) as

max
δ:
∑T

t=1 δt≤δ̄
0≤δt≤1, t=1,...,T

max
λ: λB≤β
λ∈RT

+.

T∑
t=1

[(d̄t + δt∆t − (Ax)t)λt]

where for a vector (u), we denote by (u)t the t-th coordinate of (u).
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DR(x) can be written as follows:

DR(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
λ,δ

T∑
t=1

[(d̄t − (Ax)t)λt + ∆tδtλt]

λB ≤ β

T∑
t=1

δt ≤ δ̄

0 ≤ δt ≤ 1 t = 1, ..., T

λ ∈ RT
+.

(4)

(6)

(7)

(5)

However, this bilinear program with linear constraints is not concave. Therefore
computing the optimal solution of DR(x) written as above is not an easy task.
We now prove that we can solve DR(x) by solving an equivalent mixed-integer
linear program. To prove this claim, we need the following proposition:

Proposition 1. There is an optimal solution λ∗, δ∗ of DR(x) such that δ∗t ∈
{0, 1}, 1 ≤ t ≤ T.

Proof. For any fixed λ, there is an optimal solution, (λ, δ∗), of DR(x), where δ∗

is an extreme point of the polyhedron defined by (6) and (7), that is to say, a point
such that δ∗t ∈ {0, 1}, 1 ≤ t ≤ T, since δ̄ is an integer.
More precisely δ∗t = 1 for indices corresponding to the δ̄ largest ∆tλt.

Therefore we can assume that there is an optimal solution of DR(x), such
that λtδt belongs to {0, λt}. To linearize λtδt, we now prove that we can restrict
ourselves to the case where λt is bounded by a constant Λ, for all t.

Proposition 2. There exists Λ > 0 which can be calculated from B and β such
that the conditions λt ≤ Λ, t = 1, ..., T, can be added to DR(x) without loss of
generality.

Proof. Let x be feasible. Let us rewrite DR(x) with the slack variables λ′t ≥
0, t = 1, ..., T. The constraints (4) become: Btrλ + λ′ = β. Let (λ∗, λ′∗, δ∗) be
an optimal solution of DR(x), we can assume w.l.o.g. that (λ∗, λ′∗) is an optimal
basic solution of DR(x) when δ is set to δ∗.
Therefore, there exists a basic matrix E = (eij) of (Btr IT ) and basic vectors
λ∗E, λ

′∗
E such that: (λ∗E λ

′∗
E)tr = E−1β. Let ê be an upper bound on the absolute

value of the coefficients of E−1 for all basic matrices E of (Btr IT ), and let β̂ =
max
i=1,...,q

βi, we have λ∗t ≤ êβ̂q, t = 1, ..., T. Therefore there exists an optimal

solution (λ∗, δ∗) of DR(x) such that λ∗t is bounded by Λ = êβ̂q for any t =
1, ..., T.
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We can now linearize DR(x) by substituting the new variables νt to the prod-
ucts λtδt and by adding the constraints: νt ≤ λt, νt ≤ Λδt, νt ≥ λt − Λ(1 − δt),
νt ≥ 0.

DR(x) is equivalent to the following mixed-integer linear program:

LDR(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
λ,δ,ν

∑T
t=1[(d̄t − (Ax)t)λt + ∆tνt]

λB ≤ β∑T
t=1 δt ≤ δ̄

νt ≤ λt, t = 1, ..., T
νt ≤ Λδt, t = 1, ..., T
λ, ν ∈ RT

+

δt ∈ {0, 1}, t = 1, ..., T.

Notice that the linearization constraints, νt ≥ λt − Λ(1 − δt), t = 1, ..., T , can
be omitted since the coefficients of νt in the objective function to maximize are
positive.

4 Solving the robust problem
In order to solve the robust problem PR, we will first reformulate it as a linear
program and then use a constraint generation algorithm. In the previous section,
we proved that the recourse problem is equivalent to the linear program LDR(x).
Thus the robust problem can be reformulated as:

PR

∣∣∣∣∣∣
min
x

αx+ v(LDR(x))

Cx ≥ b
xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p.

Let PQ be the polyhedron defined by the constraints of LDR(x) where we
replace δt ∈ {0, 1} by 0 ≤ δt ≤ 1, and let (PQ)I = conv(PQ ∩ {δ ∈ Nm}), be
the convex hull of the feasible solution of LDR(x). Notice that this convex hull
does not depend on x. (PQ)I is a polyhedron, thus we have

LDR(x)

∣∣∣∣∣∣∣∣∣
max
λ,δ,ν

∑T
t=1[(d̄t − (Ax)t)λt + ∆tνt]λδ
ν

 ∈ (PQ)I ,

Let S = {(λs, δs, νs)1≤s≤S}, be the set of extreme points of (PQ)I . For any
feasible x, there is s ∈ {1, ..., S} such that (λs, δs, νs) is an optimal solution of
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Algorithm 1 Constraint generation algorithm
1: (λ0, δ0, ν0) = (0, 0, 0). Set L← −∞, U ← +∞, k ← 1.
2: Solve the master problem :

PRk

∣∣∣∣∣∣∣∣∣∣

min
x,z

αx+ z

z ≥
∑T

t=1(d̄t − (Ax)t)λst + ∆tνst , 0 ≤ s ≤ k − 1
Cx ≥ b
xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p
z ∈ R

Let (xk, zk) be the obtained solution.
L← αxk + zk .

3: Solve LDR(xk). Let (λk, δk, νk) be the optimal solution.

U ← min{U,αxk + v(DR(xk))}.

if U = L, then return (xk, zk) else go to 4.
4: Add the constraint

z ≥
T∑

t=1

(d̄t − (Ax)t)λ
k
t + ∆tν

k
t ,

to the master problem PRk , k ← k + 1 and go to 2.

LDR(x).
Thus the robust problem can be reformulated as the linear program:

PR

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,z

αx+ z

z ≥
T∑
t=1

[(d̄t − (Ax)t)λ
s
t + ∆tν

s
t ], 1 ≤ s ≤ S

Cx ≥ b

xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p, z ∈ R

(8)

However, due to the potentially tremendous number of constraints, we solve
PR by a constraint generation algorithm as in [13] or [9]. Initially, we consider a
subset S0 of S; at a step k, we consider a subset Sk of S and we solve a relaxed
program PRk of PR, called master problem, which consists in solving PR with
the subset of constraints (8) corresponding to Sk . The obtained solution in de-
noted by (xk, zk).
Then we solve DR(xk), called slave problem, to check if (xk, zk) is optimal. If
not, then a new constraint is added, i.e. an extreme point is added to Sk (See Al-
gorithm 1).
On the basis that the number of extreme points of (PQ)I is finite, one can prove
that this algorithm converges in a finite number of steps.
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5 Some generalizations

5.1 Left-hand side uncertainty
In the previous sections, we assumed that the uncertainty concerned only the right-
hand side d of constraints (1). We now prove that our approach can be generalized
to the case where the constraint coefficients (A = (Ati)1≤t≤T, 1≤i≤p), are also
likely to be uncertain. As before, we assume that each coefficient Ati belongs to
an interval [Āti−Γti, Āti+Γti], where Āti is a given value and where Γti is a given
bound of the uncertainty of Ati.
Furthermore, in order to avoid overprotecting the system, we assume that the total
scaled deviation of the uncertainty of the i-th column of A, Ai = (Ati, t =
1, ..., T ), is bounded. Similarly to D, the uncertainty set Ai of Ai is defined as :

Ai = {Ai : Ati = Āti − γtiΓti, 0 ≤ γti ≤ 1, t = 1, ..., T,
∑T

t=1 γti ≤ γ̄i},

where γ̄i is a given integer.

The robust problem can thus be formulated as:

PR′

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x

αx+ max
Ai∈Ai,
∀i=1,...,p
d∈D

min
y

βy

By ≥ d− (A1, ..., Ap)x
y ∈ Rq

+

Cx ≥ b
xi ∈ N, i = 1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p.

And the recourse problem becomes:

DR′(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
λ,δ,γ

∑T
t=1[(d̄t −

∑p
i=1 Ātixi)λt + ∆tδtλt +

∑p
i=1 Γtixiγtiλt]

λB ≤ β∑T
t=1 δt ≤ δ̄

0 ≤ δt ≤ 1, t = 1, .., T
λ ∈ RT

+∑T
t=1 γti ≤ γ̄i, i = 1, ..., p

0 ≤ γti ≤ 1, i = 1, .., p, t = 1, ..., T.

We can then linearize the quadratic terms (δtλt and γtiλt), to obtain a mixed-
integer linear recourse problem and then solve the robust problem as we did in the
previous sections.

Let us now consider that matrix B has uncertain coefficients. As before we
assume that, for t = 1, ..., T and i = 1, ..., q, Bti ∈ [B̄ti − Φti, B̄ti + Φti] and
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that column i of B is in the set {Bi : Bti = b̄ti − φtiΦti, 0 ≤ φti ≤ 1, t =
1, ..., T,

∑T
t=1 φti ≤ φ̄i}.

The dual of the recourse problem is similar to the program DR(x) defined
in Section 3: we add to DR(x) variables φ and constraints

∑T
t=1 φti ≤ φ̄i, i =

1, ..., q and 0 ≤ φti ≤ 1, i = 1, ..., q, t = 1, ..., T , and we replace constraints (4)
by:

T∑
t=1

(B̄ti − φtiΦti)λt ≤ βi, i = 1, ..., q (4′).

Now there are quadratic terms (φtiλt) in the constraints. To linearized these terms,
we must verify that the propositions 1 and 2 can be extended, i.e. there is an
optimal solution such that φ ∈ {0, 1}Tq and λ is bounded. The proofs given in
Section 3 can easily be extended. Let λ be fixed. If constraints (4′) and

∑T
t=1 φti ≤

φ̄i, i = 1, ..., q are verified, a feasible integer solution can be obtained by setting
φti to 1 if i corresponds to one of the φ̄i larger values of Φtiλt and to 0 otherwise.

For Proposition 2, by using the same arguments as in Section 3, for any fixed
φ we can bound λt by Λ(φ). Since φti ∈ {0, 1} and

∑T
t=1 φti ≤ φ̄i, there are 2qT

different values of φ and we can bound λt by maxφ Λ(φ).

5.2 Generalization to other uncertainty sets
In the previous sections, we assumed that uncertain coefficients could be written as
dt = d̄t+δt∆t ∀t,where δt expresses the uncertainty on dt and satisfies

∑T
t=1 δt ≤

δ̄. Now we generalize our results when the vector d can be written as d = d̄ +
Dδ, where the vector d̄ and the matrix D are given and where δ belongs to a
bounded polyhedron D whose extreme points (d1, ..., dS) are known. Notice that
this definition of the uncertainty covers the one given by Babonneau et al. in [2]
Let us rewrite the recourse problem:

DR′(x)

∣∣∣∣∣∣∣∣∣∣∣

max
λ,δ

(d̄+Dδ − Ax)λ

λB ≤ β

δ ∈ D
λ ∈ RT

+.

Let v1, ..., vS ∈ [0, 1] be variables such that δ =
∑S

s=1 d
svs and

∑S
s=1 v

s = 1. We
can rewrite the recourse problem as
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DR′(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
λ,v

(d̄− Ax)λ+
S∑
s=1

(vs(Dds)λ)

λB ≤ β

S∑
s=1

vs = 1

0 ≤ vs ≤ 1, s = 1, ..., S

λ ∈ RT
+.

Using the same argument as in Proposition 1, we can prove that there exists an
optimal solution (λ∗, v∗) of DR′(x) such that either vs∗ = 1 or vs∗ = 0, s =
1, ..., S. Therefore we can linearize the quadratic terms vsλt, for all s and for all
t, as we did in Section 3, to obtain a mixed-integer linear recourse problem, and
finally we can solve the robust problem by using Algorithm 1.

6 The problem without the full recourse property

6.1 Solving the problem
In the previous sections, we assumed that the deterministic problem satisfied the
property P . We now prove that we can extend our results to the case where we
only assume that the robust problem PR has a solution, i.e. there is x such that
for all d in D there is a feasible solution y to R(x, d) and so, there is M such that
v(PR) ≤ M . In addition, the method detects if the problem has no solutions.
For the sake of clarity, we give here the proof for the case where all the decision
variables are integer. The complete proof for mixed integer decision variables is
given in Annex 1. In Annex 2, we propose a general theoretical value of M ; nev-
ertheless, a better specific value of M can be calculated for each problem, as it is
the case for the application presented in Section 6.2.

First we show how to obtain a new MILP, denoted Pε such that the robust
associated problem has the same optimal solution as the initial robust problem
if there is one, and Pε satisfies P . To obtain Pε, we add new recourse variables
wt, t = 1, ..., T. As in Sections 2, 3 and 4, for the sake of clarity and w.l.o.g., we
consider only right-hand side uncertainty.

Let ε be a given strictly positive value, we define the following MILP:
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Pε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,y,w

αx+ βy +
M

ε

T∑
t=1

wt

Ax+By + w ≥ d

Cx ≥ b

xi ∈ N, i = 1, ..., p

y ∈ Rq
+, w ∈ RT

+

(1ε)
(2)
(3)

(4ε)

Since the variables wt, t = 1, ..., T, are not bounded, Pε satisfies property P .

We denote by PRε, the robust problem associated to Pε,

PRε

∣∣∣∣∣∣∣∣∣∣∣

min
x

αx + max
d∈D

min
y,w

βy + M
ε

∑T
t=1 wt

By + w ≥ d− Ax
y ∈ Rq

+, w ∈ RT
+

Cx ≥ b
xi ∈ N, i = 1, ..., p,

and by Rε(x), Rε(x, d) and DRε(x) the associated subproblems as those defined
in Section 3. Notice that since all the inputs, A,B,C, b, d, α, β,∆, of PR have
rational coefficients, we can reduce PRε and all the corresponding subproblems
to programs where all the inputs are integer. Therefore we assume from now that
all the inputs are integer.

Proposition 3. v(PRε) satisfies 0 ≤ v(PRε) ≤ v(PR) ≤M.

Proof. Let (x̂, ŷ) be an optimal solution of PR, By hypothesis, v(PR) ≤M thus
v(R(x̂)) ≤ M. Let d̄ be a scenario in D. Since v(R(x̂)) = max

d∈D
v(R(x̂, d)),

we have v(R(x̂, d̄)) ≤ M. Let ȳ be an optimal solution of R(x̂, d̄), we notice
that (y, w) = (ȳ, 0) is a feasible solution of (Rε(x̂, d̄)) with the same cost. Thus
v(Rε(x̂, d̄)) ≤ v(R(x̂, d̄)), for any d̄ ∈ D, which implies v(Rε(x̂)) ≤ v(R(x̂)),
and 0 ≤ v(PRε) ≤ v(PR) ≤M.

Let (x∗, d∗, y∗, w∗) be an optimal solution of PRε: d∗ is the worst scenario
for x∗. Notice that Proposition 1 is valid for DRε(x

∗). Therefore d∗t = d̄t or
d∗t = d̄t + ∆t, and d∗t is an integer. From Proposition 3, we have

αx∗ + βy∗ +
M

ε

T∑
t=1

w∗t ≤M.
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Since αx∗ + βy∗ ≥ 0, we have
∑T

t=1 w
∗
t ≤ ε, and thus w∗t ≤ ε, ∀t = 1, .., T.

We now prove that if (y∗, w∗) is a basic optimal solution of (Rε(x
∗, d∗)), then for

ε small enough, we have w∗t = 0, ∀t; and then (x∗, y∗) is feasible for PR, and
therefore from Proposition 3, v(PR) = v(PRε).

Let us rewrite PRε with the positive slack variables σ = (σt, t = 1, ..., T ):
the constraint (1ε) becomes Ax+By +w− σ = d. Let (x∗, d∗, y∗, w∗, σ∗) be an
optimal solution where (y∗, w∗, σ∗) is a basic optimal solution of the program

Rε(x
∗, d∗)

∣∣∣∣∣∣∣∣∣∣
min
y,w,σ

βy +
M

ε

T∑
t=1

wt

By + w − σ = d∗ − Ax∗

y ∈ Rq
+, σ, w ∈ RT

+.

which is equivalent to

Rε(x
∗, d∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
y,w,σ

βy +
M

ε

T∑
t=1

wt

(
B IT −IT

)yw
σ

 = d∗ − Ax∗

y ∈ Rq
+, σ, w ∈ RT

+.

Let L =
(
B IT −IT

)
= (lij) ∈ ZT×(q+2T ) and lM = maxi,j |lij|. We notice

that L has rank T .

Proposition 4. Let ε < 1
(lM )TTT/2 . If (x∗, d∗, y∗, w∗) is an optimal solution of PRε

then w∗ = 0 and (x∗, d∗, y∗) is an optimal solution of PR.

Proof. First, assume that (y∗, w∗) is a basic optimal solution of Rε(x
∗, d∗).

There exists a basic matrix E ∈ ZT×T of L and basic vectors y∗E, w
∗
E, σ

∗
E

such that: E (y∗E w
∗
E σ

∗
E)tr = d∗ − Ax∗. The matrix E = (ekj) is invertible,

and E−1 = 1
det(E)

adj(E), where adj(E) is the adjugate matrix of E. Therefore
(y∗E w

∗
E σ

∗
E)tr = 1

det(E)
adj(E)(d∗ − Ax∗), and 0 ≤ w∗t = 1

det(E)
(adj(E)(d∗ −

Ax∗))t′ ≤ ε, where w∗t is a basic variable and where t′ is the associated index in
(y∗E, w

∗
E, σ

∗
E). Thus

|adj(E)(d∗ − Ax∗))t′ | ≤ ε| det(E)|. (9)

Hadamard’s inequality states that | det(E)| ≤
∏rank(E)

j=1

√∑rank(E)
k=1 e2

kj.
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Thus we have | det(E)| ≤ (lM)TT T/2. If ε < 1
(lM )TTT/2 , then according to

(9), |(adj(E)(d∗ − Ax∗))t′ | < 1. Since |(adj(E)(d∗ − Ax∗))t′| ∈ N, we have
|(adj(E)(d∗ − Ax∗))t′ | = 0, therefore wt = 0 for any basic variable wt and thus
wt = 0 for all t = 1, ..., T.

Thus, with ε < 1
(lM )TTT/2 , if (y∗, w∗) is a basic optimal solution of Rε(x

∗, d∗)

then w∗ = 0.
Now, assume that (y∗, w∗) is a non basic optimal solution of Rε(x

∗, d∗). We
can write (y∗, w∗) as the sum of a convex combination of basic optimal solutions
(satisfying ws∗ = 0 for all s) and a positive combination of extreme rays of the
constraints polyhedron ofRε(x

∗, d∗). Since all the optimal solutions ofRε(x
∗, d∗)

satisfy ws∗ ≤ ε for all s = 1, ..., S, no extreme ray in the decomposition can have
wst
∗ 6= 0 for some (s, t) with s ∈ {1, ..., S} and t ∈ {1, ..., T}.

Finally, for any optimal solution (x∗, y∗, w∗, s∗) of PRε we have w∗ = 0, and
then (x∗, d∗, y∗) is a feasible solution of PR. Then from Proposition 3, v(PR) =
v(PRε) and so (x∗, d∗, y∗) is an optimal solution of PR.

To summarize, we solve PR by solving PRε: if the optimal solution (x∗, y∗, w∗)
of PRε verifies w∗ = 0 then (x∗, y∗) is an optimal solution of PR. Otherwise
w∗t > ε for some t, v(PRε) > M and PR has no solution.

6.2 Application to a production problem
In this section, we test our approach on a production problem. A company decides
to install factories to manufacture several products. There are p possible factory
locations and a factory at site i produces a quantity ait of each product t, t =
1, ..., T , for a total production cost equal to αi, i = 1, ..., p. The demand of a
product t is uncertain and is denoted as before by dt = d̄t + δt∆t, t = 1, ..., T .
If the production is not sufficient, the company must buy the missing product at
a high cost to meet the demand but there is a given bound to product t available
on the market: βt is the unit purchasing cost for product t, and Kt the maximal
quantity of twhich can be bought, t = 1, ..., T . The decision variables are denoted
by xi, xi = 1 if a factory is installed at site i, xi = 0 otherwise, i = 1, ..., p. The
recourse variables are denoted by yt, t = 1, ..., T , yt is the (possible) lacking
quantity of product t to purchase. We don’t take into account the selling price of
products and profit in our model. The problem to solve is the following:
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PR

∣∣∣∣∣∣∣∣∣∣∣

min
x

∑p
i=1 αixi + max

d∈D
min
y

∑T
t=1 βtyt

yt ≥ dt −
∑p

i=1 aitxi ∀t = 1, ..., T
yt ≤ Kt ∀t = 1, ..., T
y ∈ RT

+

xi ∈ {0, 1} i = 1, ..., p.

We assume that if there are factories on the p sites then the demand is always
met, i.e.

∑p
i=1 ait + Kt ≥ d̄t + ∆t for all t = 1, ..., T . In that way, the problem

always has a solution. In addition, the data verify ait + Kt < d̄t, for at least one
(i, t) ∈ {1, ..., p}×{1, ..., T}. In this way the full recourse property is not verified
since for some values of the decision variables such that xî = 1 and xi = 0 for all
i 6= î there is no solution to the recourse problem whatever the values of δt.

To ensure that wt = 0 for all t at the end of the algorithm, we set M =∑p
i=1 αi +

∑T
j=1 βjKj and ε = 1 . So M is greater than the worst possible cost

and ε is equal to the absolute value of any determinant of a submatrix of the con-
straint matrix in the recourse problem which is totally unimodular in this case (we
don’t need to use Hadamard’s inequality in inequation (9)).

The data are generated in the following way: For a given p and a given
T , we generate randomly the coefficients α, β, d̄,K, between 0 and 100. Then
for each t = 1, ..., T we generate randomly ∆t between 0 and d̄t. Then, we
compute randomly ait to ensure that ait + Kt < d̄t, for at least one (i, t) ∈
{1, ..., p} × {1, ..., T}. Finally we generate randomly δ̄t between 0 and T.

As might be expected, applying Algorithm 1 without the artificial variables
(i.e. with M = 0) gives no solution: the program returns "Dual infeasible due to
empty colomn". Eight values of (p, T ) are tested. For each value, we generate five
instances and we give average results in Table 1. The column ’CPU time’ gives the
time in seconds to obtain an optimal solution on a Bi-pro Intel Nehalem XEON
5570 at 2.93 GHz with 24 Go of RAM. The next column gives the total number of
iterations in Algorithm 1. The last column precises the number of iterations where
the recourse property is not satisfied, that is the number of iterations where the
solution returned by the recourse problem is not a feasible solution (i.e. w > 0).
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p T CPU time (s) # iterations # "non feasible" iterations
100 100 10 32 18
100 1500 754 95 65
300 500 735 87 44
500 300 317 56 39
500 500 2362 117 67
500 800 3480 114 80
600 700 4989 139 98
800 100 118 46 25
1500 100 714 89 41

Table 1: Average CPU time and number of iterations for p sites and T products

The most difficult instances are those where the number of sites and products
are similar while it is easy to solve instances with up to 1500 sites (resp. products)
and 100 products (resp. sites). The CPU time seems to be unrelated to the ratio
between the number of iterations and the number of unfeasible solutions in the
recourse problem.

Finally, we notice that our method to solve robust problems which does not
satisfy the full recourse property is practicable and allow large scale instances to
be solved.

Annex 1: problem including continuous decision vari-
ables and not verifying the full recourse property
Now we consider the problem with mixed integer decision variables: xi ∈ N, i =
1, ..., p1, xi ∈ R+, i = (p1 + 1), ..., p. We assume that PR has a solution and so
there is M such that v(PR) ≤ M . Following the ideas of Section 6.1 for integer
decision variables, we are going to show that there is ε such that we can solve PR
by solving PRε.

From Proposition 1 the worst scenario for any feasible x is an extreme point of
D. Let {d1, ..., dS}, be the set of extreme points of D; all these points are integers
and S =

(
T
δ̄

)
+ 1. We can rewrite the problem PRε as the following MILP where
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ys and ws correspond to the recourse variables associated to scenario s:

PR′ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,z

y1,...,yS

w1,...,wS

α1x
1 + α2x

2 + z

z ≥ βys +
M

ε

T∑
t=1

wst , s = 1, ..., S

A1x
1 + A2x

2 +Bys + ws ≥ ds, s = 1, ..., S

C1x
1 + C2x

2 ≥ b

x1 ∈ Np1 , x2 ∈ Rp−p1
+

ys ∈ Rq
+, w

s ∈ RT
+, s = 1, ..., S

(10)

(11)

(12)

(13)

where x =

(
x1

x2

)
, A = (A1, A2) andC = (C1, C2). Let (x∗, z∗, y1∗, ..., yS∗, w1∗, ..., wS∗)

be an optimal solution of this program; there is ŝ ∈ {1, ..., S} such that constraint
(10) is saturated: z∗ = βyŝ∗ + M

ε

∑T
t=1 w

ŝ∗
t and ŝ is the worst scenario associated

to x∗.

The scheme of the proof is the following: first we prove that for ε small enough
we have ws = 0 for all s = 1, ..., S in any optimal solution of PR′ε, then we
deduce that w = 0 in any optimal solution of PRε and finally, from an optimal
solution of PRε we obtain an optimal solution of PR.

Proposition 5. If ε < 1

l
(ST+n)
M (ST+n)(ST+n)/2

then any optimal solution of PR′ε ver-

ifies ws = 0, for all s = 1, ..., S.

Proof. Let (x1∗, x2∗, z∗, y1∗, ..., yS∗, w1∗, ..., wS∗) be an optimal solution of PR′ε.
From constraints (10) and Proposition 3, which is true for mixed integer variables,
we have for all s = 1, ..., S:

α1x
1∗ + α2x

2∗ + βys∗ +
M

ε

T∑
t=1

ws∗t ≤ α1x
1∗ + α2x

2∗ + z∗ ≤M.

Therefore, since α and β are positive, M
ε

∑T
t=1w

s∗
t ≤M and

ws∗t ≤ ε, ∀t, s. (14)

Let us notice that (x2∗, z∗, y1∗, ..., yS∗, w1∗, ..., wS∗) is an optimal solution of
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PR′ε(x
1∗). Dualizing Constraints (10) in PR′ε(x

1∗), we obtain

D′ε(x
1∗)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

max
λ≥0

min
x2,z

y1,...,yS

w1,...,wS

α2x
2 + z +

S∑
s=1

λs

(
βys +

M

ε

T∑
t=1

wst − z

)

A2x
2 +Bys + ws ≥ ds − A1x

1∗, s = 1, ..., S

C2x
2 ≥ b− C1x

1∗

x2 ∈ Rp−p1
+

ys ∈ Rq
+, w

s ∈ RT
+, s = 1, ..., S

which verifies v(D′ε(x
1∗)) = v(PR′ε(x

1∗)) = v(PR′ε) .
Let (λ′, x2′ , z′, y1′ , ..., yS

′
, w1′ , ..., wS

′
) be an optimal solution ofD′ε(x

1∗), then
(x2′ , z′, y1′ , ..., yS

′
, w1′ , ..., wS

′
) is an optimal solution of D′ε(x

1∗, λ′) which is the
minimization part of D′ε(x

1∗) obtained by fixing λ to λ′.
Considering the slack variable es, s = 1, ..., S and f , we can rewriteD′ε(x

1∗, λ′)
as

D′ε(x
1∗, λ′)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x2,z

y1,...,yS

w1,...,wS

e1,...,eS ,f

α2x
2 + z +

S∑
s=1

λ′s

(
βys +

M

ε

T∑
t=1

wst − z

)

A2x
2 +Bys + ws − es = ds − A1x

1∗, s = 1, ..., S

C2x
2 − f = b− C1x

1∗

x2 ∈ Rp−p1
+

ys ∈ Rq
+, w

s, es ∈ RT
+, s = 1, ..., S.

Now we are going to prove that if ε < 1

l
(ST+n)
M (ST+n)(ST+n)/2

, every optimal so-

lution u′ = (x2′ , z′, y1′ , ..., yS
′
, w1′ , ..., wS

′
, e1′ , ...., eS

′
, f), of D′ε(x

1∗, λ′) satisfies
ws′ = 0, s = 1, ..., S. Then we shall be able to conclude the proof for PR′ε.

We can rewrite the constraint of D′ε(x
1∗, λ′) as Lu = v, where L is the follow-

ing integer matrix of rank ST + n,

L =


A2 B IT −IT 0 0 0 · · · 0 0 0 0
A2 0 0 0 B IT −IT · · · 0 0 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
A2 0 0 0 0 0 0 · · · B IT −IT 0
C2 0 0 0 0 0 0 · · · 0 0 0 −In

 ,
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utr = (x2, y1, w1, e1, ..., y
S, wS, eS, f)

and
vtr = (d1 − A1x

1∗, ..., dS − A1x
1∗, b− C1x

1∗).

First, assume that u′ is a basic optimal solution of D′ε(x
1∗, λ′). There is a

(ST + n)× (ST + n)-basic matrix E = (eij) such that

u′ =
1

det(E)
adj(E)v.

Then, for any (t, s), t ∈ {1, ..., T} and s ∈ {1, ..., S}, there is τ such that
wst
′ = 1

det(E)
(adj(E)v)τ . If (x2′ , z′, y1′ , ..., yS

′
, w1′ , ..., wS

′
) is an optimal solution

of D′ε(x
1∗, λ′), then (x1∗, x2′ , z′, y1′ , ..., yS

′
, w1′ , ..., wS

′
) is an optimal solution of

PR′ε and, from (14) we have wst
′ ≤ ε, and so |(adj(E) v)τ | ≤ ε| det(E)|.

As in Section 6.1, let lM = maxi,j |lij|. According to Hadamard’s inequality,
we have

|(adj(E) v)τ | ≤ εl
(ST+n)
M (ST + n)(ST+n)/2.

If we fix ε < 1

l
(ST+n)
M (ST+n)(ST+n)/2

, then |(adj(E) v)τ | < 1. Since all the coeffi-

cients of E and v are integers, |(adj(E)v)τ | ∈ N, therefore |(adj(E)v)τ | = 0 and
wst
′ = 0,∀t = 1, ..., T.

Assume now that u′ is a non basic optimal solution of D′ε(x
1∗, λ′). By using

the same arguments as at the end of proof of Proposition 4 we can prove that
no extreme ray in the u′ decomposition can have wst

′ 6= 0 for some (s, t) with
s ∈ {1, ..., S} and t ∈ {1, ..., T}.

Therefore, in any optimal solution of D′ε(x
1∗, λ′) we have:

ws′ = 0, ∀s = 1, ..., S.

Finally, consider an optimal solution (x1∗, x2∗, z∗, y1∗, ..., yS∗, w1∗, ..., wS∗) of
PR′ε. There is λ∗ such that (λ∗, x2∗, z∗, y1∗, ..., yS∗, w1∗, ..., wS∗) is an optimal
solution of D′ε(x

1∗) and thus (x2∗, z∗, y1∗, ..., yS∗, w1∗, ..., wS∗) is an optimal so-
lution of D′ε(x

1∗, λ∗), and thus ws∗ = 0 for all s = 1, ..., S and the proof is
completed.

Proposition 6. Let ε < 1

l
(ST+n)
M (ST+n)(ST+n)/2

. If (x∗, d∗, y∗, w∗) is an optimal

solution of PRε then w∗ = 0 and (x∗, d∗, y∗) is an optimal solution of PR.
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Proof. Assume that ε < 1

l
(ST+n)
M (ST+n)(ST+n)/2

. From Proposition 5, ws = 0 for all

s = 1, ..., S in any optimal solution of PR′ε. Then w = 0 in any optimal solution
of PRε. Indeed, assume there is an optimal solution (x∗, d∗, y∗, w∗) of PRε such
that w∗ > 0; then there is an optimal solution of PR′ε with x = x∗ and ws > 0 for
s corresponding to the worst scenario associated to x∗: a contradiction.

Now, let (x∗, d∗, y∗, w∗) be an optimal solution of PRε. Since w∗ = 0,
(x∗, d∗, y∗) is a solution of PR with value v(PRε). Since, from Proposition 3,
v(PRε) ≤ v(PR), (x∗, d∗, y∗) is an optimal solution of PR.

Annex 2: a general bound M of PR
We give here a general bound for PR, i.e. a value M which is greater than an op-
timal value of the robust problem if this problem has a solution. This theoretical
bound can be easily improved according to each specific problem.

Assume that PR has at least one feasible x. We show how to compute M
such that v(PR) ≤M . As in Annex 1, we can rewrite PR as the following linear
program :

PR

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x,z

y1,...,yS

α.x+ z

z ≥ β.ys, s = 1, ..., S

Ax+Bys ≥ ds, s = 1, ..., S

Cx ≥ b

xi ∈ N, i = 1, ..., p1, xj ∈ R+, j = p1 + 1, ..., p

ys ∈ Rq
+, s = 1, ..., S

(15)
(16)

Adding the slack variables, es, f s, s = 1, ...S and g, we can rewrite the con-
straints of the program above as Lu = v with
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L =



0 1 −β −1 0 0 0 0 · · · 0 0 0 0
0 1 0 0 0 −β −1 0 · · · 0 0 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
0 1 0 0 0 0 0 0 · · · −β −1 0 0
A 0 B 0 −IT 0 0 0 · · · 0 0 0 0
A 0 0 0 0 B 0 −IT · · · 0 0 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
A 0 0 0 0 0 0 0 · · · B 0 −IT 0
C 0 0 0 0 0 0 0 · · · 0 0 0 −In


,

where we assume w.l.o.g. that all the coefficients are integer (see Section 6.1),

utr = (x, z, y1, e1, f 1, ..., yS, eS, fS, g)

and
vtr = (0, ..., 0, d1, ..., dS, b).

Consider the relaxed problem (P̄R) where the variables, denoted by ū, are in
R+. Let ū∗ be an extreme point of (P̄R). Then there exists a basic (S + ST +
n)× (S + ST + n)-matrix LB of L and a basic vector ū∗B such that

ū∗B =
1

det(LB)
adj(LB)v.

Since all the coefficients of L are integers, | det(LB)| ≥ 1, therefore

‖ū∗B‖∞ ≤ (S + ST + n)‖adj(LB)‖∞‖v‖∞.
Furthermore, since all the coefficients of adj(LB) are determinants of (S + ST +
n−1)×(S+ST +n−1)-matrices, we have, according to Hadamard’s inequality:

‖adj(LB)‖∞ ≤ ‖M‖S+ST+n−1
∞ (S + ST + n− 1)

S+ST+n−1
2 .

Knowing that S ≤
(
T
δ̄

)
+ 1, ‖M‖∞ = max(‖A‖∞, ‖B‖∞, ‖C‖∞, ‖β‖∞) and

that ‖v‖∞ = max(‖d̄‖∞ + ‖∆‖∞, ‖b‖∞), we have

αx̄∗ + z̄∗ ≤ p‖α‖∞‖ū∗‖∞ + ‖ū∗‖∞,

and therefore

αx̄∗+z̄∗ ≤ (p‖α‖∞+1)(S+ST+n)‖M‖S+ST+n−1
∞ (S+ST+n−1)

S+ST+n−1
2 ‖v‖∞.

However according to theorem 5.6 from [?, chap. 5.1], we can choose a feasi-
ble u for the robust problem such that ‖u − ū∗‖∞ ≤ (S + ST + n)Ξ(L), where
Ξ(L) is the maximum over all the sub-determinants of L, and which can be bound
according to Hadamard ’s inequality.
Then v(PR) ≤M = (p‖α‖∞ + 1)‖u‖∞ ≤ (p‖α‖∞ + 1)(‖ū∗‖∞ + ‖u− ū∗‖∞) .
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