
HAL Id: hal-00975230
https://ensta-paris.hal.science/hal-00975230

Submitted on 8 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Measurement and modeling of damping for time-domain
structural acoustics simulations

Benjamin Cotté, Augustin Parret-Fréaud, Antoine Chaigne

To cite this version:
Benjamin Cotté, Augustin Parret-Fréaud, Antoine Chaigne. Measurement and modeling of damping
for time-domain structural acoustics simulations. Noise-Con 2013, Aug 2013, Denver, CO, United
States. CD-ROM proceedings. �hal-00975230�

https://ensta-paris.hal.science/hal-00975230
https://hal.archives-ouvertes.fr


Denver, ColoradoNOISE-CON 20132013 August 26-28Measurement and Modeling of Damping forTime-Domain Stru
tral A
ousti
s SimulationsBenjamin CottéAugustin Parret-FréaudAntoine ChaigneDepartment of Me
hani
al Engineering (UME)ENSTA ParisTe
h828, boulevard des Maré
haux91762 Palaiseau Cedex FRANCEbenjamin.
otte�ensta-pariste
h.fr ABSTRACT
This work deals with the measurement and time-domain modeling of damping in structural acoustics. An
experimental technique based on the plate impulse responsemeasurement is presented to estimate the damp-
ing factor over a wide frequency band. This technique is succesfully applied to a nylon plate between 100 Hz
and 15 kHz approximately. Then we present an original approach that consists in representing the measured
frequency variations of damping by a digital filter that meets the criteria of causality and stability, and then
in transposing it into the time domain. Time-domain simulations of the longitudinal vibrations of a nylon
bar are performed to show the efficiency of our approach, where the filter parameters are estimated from the
experimental data through an optimization procedure.1 INTRODUCTION
Acoustic radiation of impacted structure strongly dependson its damping properties, and more specifically
on the frequency dependence of damping. This study aims at measuring damping over a wide frequency
range, and to model the vibroacoustic behavior of structures in the time domain. We focus mainly on the
behavior of viscoelastic materials (polymers, composites, wood) that can be found in different applications
such as transportation noise, building acoustics and musical acoustics.

First, an experimental technique aiming at estimating the damping factor over a wide frequency range
is presented and applied to a nylon plate in Section 2. This technique is based on a time-frequency analysis
of the plate impulse response and on the use of energy decay relief. Second, we present in Section 3 a
time-domain model that uses digital filters to accurately represent the material constitutive law. Conditions
are derived to guarantee that this model is causal, stable and dissipative. Finally, time-domain simulations of
the longitudinal vibrations of a nylon bar are performed in Section 4 to show the efficiency of our approach.



Measurement and Modeling of Damping in Structral Acoustics Cotté, Parret-Fréaud & Chaigne2 DAMPING ESTIMATES FROM PLATE IMPULSE RESPONSEMEASUREMENTSA. Plate impulse response measurement
To obtain good estimates of the damping factor, the plate impulse response (IR) needs to be measured with
a high signal to noise ratio (at least 30 dB). That is why we choose to use the method proposed by Farina [1]
to measure room IR, that has also been applied to a reverberant plate by Arcas and Chaigne [2].

The IRh(t) between an excitation signalxe(t) and a vibration signaly(t) is defined asy(t) = h(t)⊗xe(t),
where⊗ is the convolution product. Using a deterministic signalxe(t) whose inverse filterfi is known
enables us to obtain the impulse response throughh(t) = y(t)⊗ fi(t). Moreover, Farina suggests to use a
logarithmic sweep excitation:

xe(t) = sin

[

ω1T
ln(ω2/ω1)

(

e
t
T ln(ω2/ω1)−1

)

]

, (1)

whereω1 andω2 are the minimum and maximum angular frequencies of the excitation, andTs is the signal
duration. Using a logarithmic sweep is particularly interesting since it allows us to separate the linear and
nonlinear parts of the IR to keep only the linear part in the following.

Farina’s method is applied on a nylon (PA6) plate of dimensions 52 cm×30 cm and of thickness 6 mm.
The plate is excited by a Bruel&Kjaer 4810 shaker at the center of the plate and the vibration is measured
close to the edge by a Bruel&Kjaer 4394 accelerometer. Threemeasurements on overlapping frequency
bands are performed ; the characteristics of the corresponding excitation signals are given in Table 1. The
impulse response for measurement N1 between 20 Hz and 1200 Hzis plotted in Figure 1(a).

Table 1: Characteristics of the excitation signals for nylon plate measurements:[ f1, f2] is the frequency band of
interest,Ts is the sweep duration andFs the sampling frequency.

Measurement [ f1, f2] (Hz) Ts (s) Fs (kHz)
N1 [20,1200] 60 22.05
N2 [1000,5000] 60 22.05
N3 [4000,16000] 60 44.15
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Figure 1: (a) Impulse response of measurement N1 and (b) associated spectrogram with∆ f = 86 Hz and∆t = 1.2 ms.
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ulation of energy de
ay relief
A time-frequency analysis is performed on the impulse response in order to calculate the Energy Decay
Relief (EDR), that is a spectral development of the integrated Energy Decay Curve introduced by Schroeder.
Let Hm,k = H(m∆t,k∆ f ) be the short-time Fourier transform or spectrogram of the IRh(t), then the EDR at
time tn = n∆t on the frequency binfk = k∆ f is defined as:

EDR(tn, fk) =
M

∑
m=n

|Hm,k|2. (2)

EDR(tn, fk) is the total amount of energy at frequencyfk that remains in the IR after a given timetn. The up-
per limit M of the sum in Equation (2) corresponds to the timetM = M∆t after which the IR is contaminated
by noise. From a practical point of view, it is taken as the mean measured noise level plus 8 dB.

The spectrogram is calculated using a Hanning window, an overlap rater andNFFT points in the Fast
Fourier Transform calculation. The associated frequency and time resolutions are∆ f = Fs/NFFT and∆t =
NFFT(1− r)/Fs. The spectrogram of measurement N1 is plotted in Figure 1(b)using NFFT = 256 and
r = 90%, which yields∆ f = 86 Hz and∆t = 1.2 ms. The EDR of measurement N3 on the frequency bands
fk = 5509Hzand fk = 13797Hzare plotted in Figure 2. These curves are monotonously decreasing and the
damping factor will be estimated from the slope of the linearpart of these curves.
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Figure 2: Energy decay reliefsEDR(tn, fk) for frequency bands centered at (a) 5509 Hz, and (b) 13 797 Hz obtained
from measurement N3 with a frequency resolution of 690 Hz anda time resolution of 0.14 ms. The dashed vertical
lines correspond to timetM/2.C. Frequen
y dependen
e of damping from energy de
ay reliefs
The damping factorα ( fk) is given by:

α ( fk) =−KdB( fK) ln10/20, (3)

whereKdB( fK) is the linear part of the EDR slope at frequencyfk (in dB/s) that is obtained by fitting its
Ns first time samples. Since it is not obvious to knowNs a priori, Ns is increased fromNs1 to Ns2, where
Ns1 is the sample corresponding to a 10 dB decrease of the EDR, andNs2 = M/2. Thus(Ns2 −Ns1 + 1)
estimates are obtained with their associated linear correlation coefficientR2. The estimate with the largest
linear correlation coefficient is finally kept, except ifR2 is lower than a threshold value that we arbitrarily set
at 99%. In Figure 2, the fit atfk = 5519 Hz is accepted (R2 = 99.7%), however the fit atfk = 13107 Hz is
rejected (R2 = 96.3%) and we observe that the EDR at this frequency does not showa clear linear decrease.
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Figure 3: Frequency dependence of the damping factorα for measurements N1, N2 and N3 (symbols) and for Colletet
al. [3] model (solid line).

The damping factor is estimated using different frequency and time resolution for measurements N1,
N2 and N3:∆ f = 86Hz and∆t = 1.2 ms for N1,∆ f = 172Hz and∆t = 0.59 ms for N2,∆ f = 690Hz and
∆t = 0.14 ms for N3. A better time resolution is needed at high frequency because damping is higher and
the EDR decreases very fast at these frequencies. The damping factor is plotted with respect to frequency in
Figure 3. A total of 40 frequency estimates are displayed between 86 Hz and 14487 Hz showing the increase
of α from 10 rad/s to more than 1000 rad/s. A model proposed by Collet et al. [3] for nylon is also plotted
in Figure 3 and is in good agreement with our measurements.3 TIME-DOMAIN SIMULATIONS OF DAMPED STRUCTURES USINGDIGITAL FILTERSA. Problem studied
We consider the one-dimensional problem of the longitudinal vibrations of a cantilever beam of lengthL and
densityρ. Let u(x, t), ε(x, t) andσ(x, t) be the displacement, strain and stress of the beam. The equations
of the problem in the small perturbation approximation are:

σ(x, t) = E (ε(x, t)) = E

(

∂ u(x, t)
∂x

)

, (4a)

ρ
∂ 2u(x, t)

∂ t2 =
∂ σ(x, t)

∂x
+ f (x, t), (4b)

with E the material constitutive law that is assumed to be linear,f (x, t) an external force distribution, and
with boundary conditionsu(0, t) = 0 andσ(L, t) = 0.B. Modeling the material law using a digital �lter
Up to now, no material constitutive lawE has been chosen. Instead of discretizing a continous time-domain
model, we decide to represent it directly in discrete time bya digital filter. We introduce the time step∆t
(sampling rateFs = 1/∆t), and we noteσn(x) = σ(x, tn) andεn(x) = ε(x, tn) the values ofσ andε at time
tn = n∆t. Generally speaking, any linear time-invariant digital filter can be defined as:

σn+1(x) = H0

(

εn+1(x)+
Nb

∑
l=1

bl εn+1−l (x)

)

−
Na

∑
m=1

amσn+1−m(x). (5)
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The properties of such filter are classically studied from its transfer functionH(z) in the frequency domain
using the Z-transform:

H(z) = H0

[

1+∑Nb
l=1 bl z−l

1+∑Na
m=1amz−m

]

= H0

[

∏Nb
l=1

(

1−ql z−l
)

∏Na
m=1(1− pmz−l )

]

, (6)

where(pm)1≤m≤Na are the poles, and(ql )1≤l≤Nb are the zeros of the filter. To guarantee the causality and
stability of the filter, the poles must verify [4]:

|pm| ≤ 1, ∀1≤ m≤ Na. (7)

In the following, we will consider a constitutive law made ofa series ofNf first order filters (Na = Nb =
1) in parallel:

σn+1(x) =
Nf

∑
k=1

σn+1
k (x), (8a)

σn+1
k (x) = H0k

[

εn+1(x)+bkεn(x)
]

−akσn
k (x), (8b)

whose corresponding transfer function is given by:

H(z) =
σ(z)
ε(z)

=
Nf

∑
k=1

H0k
1+bkz−1

1+akz−1 . (9)

The procedure to obtain the filter parameters from experimental data will be explained in Section 4.A.C. Dis
retization s
hemes
In order to solve Equations (4), we now propose a finite difference (FD) scheme, choosing the same time step
∆t as the one associated to the digital filter and discretizing the interval[0,L] with Nx points, withx j = j∆x
and∆x= L/Nx. We introduce a staggered grid and defineun

j and f n
j on the nodes defined byx j , 0≤ j ≤ Nx,

andσn
j+1/2 on the nodes defined byx j+1/2 = x j +∆x/2, 0≤ j ≤ Nx−1. Considering a leap frog scheme in

time and second-order centered schemes in space, the equations of the FD scheme are:

σn+1
j+1/2 =

Nf

∑
k=1

σn+1
k, j+1/2, (10a)

σn+1
k, j+1/2 =

Nf

∑
k=1

H0k

[

un+1
j+1 −un+1

j

∆x
+bk

un
j+1−un

j

∆x

]

−akσn
k, j+1/2, (10b)

ρ
un+1

j −2un
j +un−1

j

∆t2 =
σn

j+1/2−σn
j−1/2

∆x
+ f n

j . (10c)

Let us note that this scheme is explicit and second order accurate in space and time.
Following the work of Bécacheet al. [5], we perform a stability analysis of the FD scheme using

energetic methods, which yields the following conditions on the filter parameters:

|ak| ≤ 1, |bk| ≤ 1, ak ≥ bk, 0≤ k≤ Nf , (11)

and on the simulation parameters∆x and∆t (or Fs):

∆t ≤ ∆tlim = h
√

ρ

[

Nf

∑
k=1

H0k
1−bk

1−ak

]−1/2

or Fs ≥ Fs,lim =
1

h
√ρ

[

Nf

∑
k=1

H0k
1−bk

1−ak

]1/2

. (12)
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The conditions on the filter parameters mean that causality and stability are ensured (|ak| ≤ 1), that it is
a minimum phase filter (|bk| ≤ 1) and that the filter response corresponds to a dissipative damping model
(ak ≥ bk) [4]. The condition (12) is a classical CFL condition. As explained by Bilbao [6], it is desirable to
choose the sampling rateFs close toFs,lim in order to minimize numerical dispersion and dissipation due to
FD schemes.4 APPLICATION TO THE LONGITUDINAL VIBRATIONS OF A NYLONCANTILEVER BEAM
We present in this final Section a numerical example where thedigital filter introduced in Section 3 is
designed using the measurements of Section 2.A. Digital �lter design
The parametersH0k, ak andbk of theNf first order filters considered in Equation (8) are found from experi-
mental data by minimizing the following cost function in thefrequency domain:

L

(

{ak,bk,H0k}k=1..Nf

)

=
Np

∑
k=1

(

Re[Ec(ωk)]−Re[H(eiωk∆t)]

Re[Ec(ωk)]

)2

+

(

Im[Ec(ωk)]− Im[H(eiωk∆t)]

Im[Ec(ωk)]

)2

, (13)

whereEc(ωk) = E(ωk)(1+ iη (ωk)) is the complex Young modulus at a set ofNp angular frequenciesωk,
η (ωk) is the corresponding loss factor andH(eiωk∆t) is the filter response given by Equation (9) at frequency
ωk. The nonlinear optimization problem to be solved is then:

min
{ak,bk,H0k}

L

(

{ak,bk,H0k}k=1..Nf

)

, (14)

under the constraints:

|ak| ≤ 1, |bk| ≤ 1, ak ≥ bk, 0≤ k≤ Nf . (15)

This problem is solved using the interior-point algorithm implemented in thefminconMATLAB function.

Table 2: Filter parameters consideringNf first-order filters in parallel with a sampling rateFs = 86 kHz.

Nf H0i ai bi Fs,lim (kHz) err(Re) (%) err(Im) %
1 3.20×109 -0.7931 -0.8047 83.71 3.6 45.0
2 1.60×109 -0.9888 -0.9905 83.88 3.9 19.1

1.60×109 -0.6316 -0.6643
3 1.07×109 -0.8031 -0.8215 85.20 4.8 14.2

1.07×109 -0.9913 -0.9933
1.07×109 0.1730 -0.0766

To identify the filter parameters corresponding to the experimental data presented in Section 2, the real
partE of Ec is set at 3.2×109 GPa and its imaginary part is given byEη (ωk) for theNp = 40 data points
of Figure 3, withη (ωk) = 2α/ωk. The optimization procedure is performed considering 1, 2 or 3 filters
in parallel. The filter parameters are given in Table 2 and theassociated frequency-dependent loss factor is
plotted in Figure 4. To assess the quality of the optimization, we define the following errors on the real and
imaginary parts of the difference between filter output and experimental data:

err(X)=

[

∑Np

k=1

(

X[Ec(ωk)]−X[H(eiωk∆t)]
)2

∑Np

k=1 (X[Ec(ωk)])
2

]1/2

, (16)
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Figure 4: Frequency-dependent loss factor corresponding to the association ofNf filters in parallel.

with X stands for Re or Im. Table 2 shows that err(Im) decreases quickly from 45% to 14% whenNf

increases from 1 to 3, while err(Re) remains below 5%. It is also clear in Figure 3 that the use of 3 filters
in parallel allows us to better follow the experimental frequency fluctuations. We noticed that increasing
further the number of filters (Nf ≥ 4) does not improve the fit, which can be explained by the inherent
frequency fluctuations in the experimental data. Finally wecan check thatFs,lim remains below the chosen
sampling rate of 86 kHz, which will guarantee the stability of the numerical simulations presented hereafter.B. Beam vibration simulations
We consider a nylon beam of lengthL = 1 m, cross-sectionS= 4cm2 and of densityρ = 1149 kg.m−3.
This beam is excited at the right end by an impact of durationtimp = 0.3 ms and of maximum intensity
Fimp = 1 kN, modeled by:

f (x, t) =

{

−Fimp

2S

[

1+cos
(

π(2t−timp)
timp

)]

δ(x−L) t < timp;

0 t ≥ timp.
(17)

To obtain a good accuracy of the simulation, a minimum of 10 points per wavelength is required. Choosing
a spatial step∆x= 2 cm, the minimum wavelength that the calculation can represent isλmin = 20 cm. For
a Young modulus ofE = 3.2 GPa for nylon, or a longitudinal phase velocityc =

√

E/ρ = 1669 m/s, the
maximum frequency of the calculation is thusfmax= c/λmin = 8.3 kHz.

We now present the results of the time-domain simulations using the filter parameters of Table 2 and the
excitation of Equation (17). The simulations are performedover a duration of 1 s and the beam displacement
atx= L/2 is plotted in Figure 5(a) over the first 30 ms. The differencebetween the three simulations is seen
very rapidly. The corresponding power spectral densities displayed in Figure 5(b) are calculated over a
1 s duration using a frequency resolution of 1 Hz. The theoretical frequencies for the first 12 modes of the
cantilever beam calculated withE= 3.2×109 GPa are also plotted as references. At the first mode frequency
of 417 Hz, the simulation with 1 filter has an amplitude 10 dB higher than the two other simulations, which
can be attributed to low loss factor of the filter response at this frequency (see Figure 4). From modes 2 and
8, between 1252 Hz and 6258 Hz, the three spectra overlap relatively well, the filter responses being close
over this frequency range. At higher frequencies, some discrepancies exist between the three simulations.5 CONCLUSIONS
We have presented in this paper an experimental technique based on a time-frequency analysis of the plate
impulse response and on the use of energy decay relief to estimate the damping factor over a wide frequency
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Figure 5: (a) Displacementu(L/2, t) and (b) its power spectral density using 1, 2 or 3 filters. The dashed vertical lines
correspond to the theoretical frequencies calculated withE = 3.2×109 GPa.

range. We applied it succesfully to a nylon plate between 100Hz and 15 kHz approximately. Then we pro-
posed a time-domain model of an impacted structure where thematerial constitutive law is represented by a
digital filter. The filter parameters are estimated from the experimental data through an optimization proce-
dure that guarantees the causality and stability of the model. Time-domain simulations of the longitudinal
vibrations of a nylon bar are finally presented, showing thatthree first-order filters in parallel are sufficient
to accurately describe the frequency-dependent damping over the frequency band of interest. In the future,
the optimization procedure used to obtain the filter parameters will be studied in more details, the approach
will be extended to the flexural vibrations of beams and plates, and computation of acoustic quantities of
interest (radiated power, directivity) will be considered.ACKNOWLEDGEMENTS
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