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ABSTRACT

This work deals with the measurement and time-domain moglelf damping in structural acoustics. An
experimental technique based on the plate impulse respoeasurement is presented to estimate the damp-
ing factor over a wide frequency band. This technique isesfodly applied to a nylon plate between 100 Hz
and 15 kHz approximately. Then we present an original agbrdf@at consists in representing the measured
frequency variations of damping by a digital filter that nsciite criteria of causality and stability, and then
in transposing it into the time domain. Time-domain simolag of the longitudinal vibrations of a nylon
bar are performed to show the efficiency of our approach, evtier filter parameters are estimated from the
experimental data through an optimization procedure.

1 INTRODUCTION

Acoustic radiation of impacted structure strongly depemal#s damping properties, and more specifically
on the frequency dependence of damping. This study aims asuriag damping over a wide frequency
range, and to model the vibroacoustic behavior of strusturghe time domain. We focus mainly on the
behavior of viscoelastic materials (polymers, compositesd) that can be found in different applications
such as transportation noise, building acoustics and miustoustics.

First, an experimental technigue aiming at estimating tiamuing factor over a wide frequency range
is presented and applied to a nylon plate in Section 2. Thimigue is based on a time-frequency analysis
of the plate impulse response and on the use of energy deliely f8econd, we present in Section 3 a
time-domain model that uses digital filters to accuratefyreésent the material constitutive law. Conditions
are derived to guarantee that this model is causal, stalldiasipative. Finally, time-domain simulations of
the longitudinal vibrations of a nylon bar are performed @éti®n 4 to show the efficiency of our approach.



Measurement and Modeling of Damping in Structral Acoustics Cotté, Parret-Fréaud & Chaigne

2 DAMPING ESTIMATES FROM PLATE IMPULSE RESPONSE
MEASUREMENTS

A. Plate impulse response measurement

To obtain good estimates of the damping factor, the platelisgoresponse (IR) needs to be measured with
a high signal to noise ratio (at least 30 dB). That is why weoskedo use the method proposed by Farina [1]
to measure room IR, that has also been applied to a reveth@ad® by Arcas and Chaigne [2].

The IRh(t) between an excitation signal(t) and a vibration signal(t) is defined ag(t) = h(t) @ Xe(t),
where® is the convolution product. Using a deterministic sigrgk) whose inverse filteff; is known
enables us to obtain the impulse response thrdgh= y(t) ® fi(t). Moreover, Farina suggests to use a
logarithmic sweep excitation:

. w T Lin(awp/wr)—1
Xe(t) = sin [m (eT (/en) )] ; (1)
wherew; andw;, are the minimum and maximum angular frequencies of the atiait, andTs is the signal
duration. Using a logarithmic sweep is particularly inghey since it allows us to separate the linear and
nonlinear parts of the IR to keep only the linear part in tHe¥ang.

Farina’'s method is applied on a nylon (PA6) plate of dimemsib2 cmk 30 cm and of thickness 6 mm.
The plate is excited by a Bruel&Kjaer 4810 shaker at the cesftéhe plate and the vibration is measured
close to the edge by a Bruel&Kjaer 4394 accelerometer. Threasurements on overlapping frequency
bands are performed ; the characteristics of the correspgprekcitation signals are given in Table 1. The
impulse response for measurement N1 between 20 Hz and 12i@(pitted in Figure 1(a).

Table 1: Characteristics of the excitation signals for nylon plateasurementsifi, f,] is the frequency band of
interest,Ts is the sweep duration arke the sampling frequency.

Measurement [f1, fo] (Hz) | Ts(s) | Fs (kHz)
N1 [20,1200] 60 22.05
N2 [1000,5000] | 60 22.05
N3 [4000,16000]| 60 44.15
(a) (b)
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Figurel: (a) Impulse response of measurement N1 and (b) associaetiegram wittAf = 86 Hz andAt = 1.2 ms.
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B. Calculation of energy decay relief

A time-frequency analysis is performed on the impulse respdn order to calculate the Energy Decay
Relief (EDR), that is a spectral development of the integtdinergy Decay Curve introduced by Schroeder.
Let Hnk = H(mAt, kA f) be the short-time Fourier transform or spectrogram of the(tR then the EDR at
timet, = nAt on the frequency biry = kAT is defined as:

M
EDR(tn, fi) = 5 [Hmk[* )
m=n

EDR(t,, f) is the total amount of energy at frequenigythat remains in the IR after a given tirhe The up-
per limit M of the sum in Equation (2) corresponds to the tigpe= MAt after which the IR is contaminated
by noise. From a practical point of view, it is taken as the m@&asured noise level plus 8 dB.

The spectrogram is calculated using a Hanning window, anayweater andNggt points in the Fast
Fourier Transform calculation. The associated frequemcytene resolutions arAf = Fs/Nggpr andAt =
NreT(1—r)/Fs. The spectrogram of measurement N1 is plotted in Figure d$b)g N1t = 256 and
r = 90%, which yieldsAf = 86 Hz andAt = 1.2 ms. The EDR of measurement N3 on the frequency bands
fx =5509Hzand fy = 13797 zare plotted in Figure 2. These curves are monotonously deicrg and the
damping factor will be estimated from the slope of the lingant of these curves.
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Figure 2: Energy decay reliefEDR(ty, fx) for frequency bands centered at (a) 5509 Hz, and (b) 13 79bithred
from measurement N3 with a frequency resolution of 690 Hz atiche resolution of 0.14ms. The dashed vertical
lines correspond to timig /2.

C. Frequency dependence of damping from energy decay reliefs
The damping factow ( fy) is given by:
a(fx) = —Kgs(fk)In10/20, (3)

whereKgg(fk) is the linear part of the EDR slope at frequenigy(in dB/s) that is obtained by fitting its
Ns first time samples. Since it is not obvious to knbdlya priori, Ng is increased froniNg to Ng, where
Ng is the sample corresponding to a 10dB decrease of the EDRINand M /2. Thus(Ng — Ng + 1)
estimates are obtained with their associated linear ativel coefficientR?. The estimate with the largest
linear correlation coefficient is finally kept, excepRf is lower than a threshold value that we arbitrarily set
at 99%. In Figure 2, the fit afi, = 5519 Hz is accepted?? = 99.7%), however the fit afy = 13107 Hz is
rejected R? = 96.3%) and we observe that the EDR at this frequency does not atubear linear decrease.
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Figure3: Frequency dependence of the damping faatéor measurements N1, N2 and N3 (symbols) and for Celiet
al. [3] model (solid line).

The damping factor is estimated using different frequenuy #me resolution for measurements N1,
N2 and N3:Af =86HzandAt = 1.2 ms for N1,Af = 172Hz andAt = 0.59 ms for N2, Af = 690Hz and
At = 0.14 ms for N3. A better time resolution is needed at high fregydbecause damping is higher and
the EDR decreases very fast at these frequencies. The dafaptor is plotted with respect to frequency in
Figure 3. Atotal of 40 frequency estimates are displayedi@en 86 Hz and 14487 Hz showing the increase
of a from 10rad/s to more than 1000 rad/s. A model proposed bye@Gatllal. [3] for nylon is also plotted
in Figure 3 and is in good agreement with our measurements.

3 TIME-DOMAIN SIMULATIONS OF DAMPED STRUCTURES USING
DIGITAL FILTERS

A. Problem studied

We consider the one-dimensional problem of the longitudiitations of a cantilever beam of lengtrand
densityp. Letu(x,t), €(x,t) ando(x,t) be the displacement, strain and stress of the beam. Thel@upat
of the problem in the small perturbation approximation are:

a(xt) = & (e(x 1)) = & <5”a(’)‘(’t)> , (4a)

%u(xt)  da(xt)
otz 9x

+ f(xt), (4b)

with & the material constitutive law that is assumed to be linégt,t) an external force distribution, and
with boundary conditionsi(0,t) = 0 ando(L,t) = 0.
B. Modeling the material law using a digital filter

Up to now, no material constitutive las has been chosen. Instead of discretizing a continous tomneaoh
model, we decide to represent it directly in discrete timealdigital filter. We introduce the time steyi
(sampling ratd~s = 1/At), and we noteo"(x) = o (x,t") ande"(x) = £(x,t") the values oo and¢ at time
t" = nAt. Generally speaking, any linear time-invariant digitakfilcan be defined as:

O.nJrl(X) = Hp <£n+1(x) + % b £n+1fl (X)) o % am0”+1’m(x). (5)
=1 m=1
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The properties of such filter are classically studied frasrtriansfer functiorH (z) in the frequency domain
using the Z-transform:

H(Z) =Hp

Lo ] G-az)
— N ———=|=Ho (6)
1+Znhlamfm 1 (L= pmz 1) |

where(pm)1<m<n, are the poles, anft)i1<i<n, are the zeros of the filter. To guarantee the causality and
stability of the filter, the poles must verify [4]:

Ipm| <1, V1 <M< N, @)
In the following, we will consider a constitutive law madea$eries oNs first order filters Ny = Ny =

1) in parallel:

n+1 Z O—I’H—l 7 (83.)

ok”“< x) = Hox [ (x) + bie"(x)| — akog (), (8b)

whose corresponding transfer function is given by:

)
The procedure to obtain the filter parameters from experiahelata will be explained in Section 4.A.

C. Discretization schemes

In order to solve Equations (4), we now propose a finite défiee (FD) scheme, choosing the same time step
At as the one associated to the digital filter and discretiziegriterval[O, L] with Ny points, withx; = jAx
andAx = L/Nx. We introduce a staggered grid and deﬁﬁand fn on the nodes defined by, 0 < j <Ny,
anda” 1/2 On the nodes defined by, /> = Xj +Ax/2, 0 g j< NX— 1. Considering a leap frog scheme in
time anc{second-order centered schemes in space, theagpuatithe FD scheme are:

+1 +1
Jn+1/2 |? j+1/20 (10a)
utl unJrl un 0
+1 J+1 +1 Y
n+1 2Un + un 1 r _ '
Uj _ J+1/2 1—1/2 £n 10c
p At2 AX - (100)

Let us note that this scheme is explicit and second orderratecin space and time.
Following the work of Bécachet al. [5], we perform a stability analysis of the FD scheme using
energetic methods, which yields the following conditiomstloe filter parameters:

lag| <1, lbe| <1, a > by, 0 <k <N, (11)

and on the simulation parametéxs andAt (or F):

N 1—b -1/2 1 N 1-Db Y2
. — — k —_— k
At < At = hy/p [kZlHOK:L_ ak] or  Fs>Fsjim = h/p [z HOk ak] : (12)
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The conditions on the filter parameters mean that causaiitlystability are ensuredg| < 1), that it is
a minimum phase filter|lfx| < 1) and that the filter response corresponds to a dissipatinghg model
(ax > by) [4]. The condition (12) is a classical CFL condition. As &iped by Bilbao [6], it is desirable to
choose the sampling rakg close toFs)im in order to minimize numerical dispersion and dissipatiae tb
FD schemes.

4 APPLICATION TO THE LONGITUDINAL VIBRATIONS OF A NYLON
CANTILEVER BEAM

We present in this final Section a numerical example wheredipigal filter introduced in Section 3 is
designed using the measurements of Section 2.

A. Digital filter design

The parameterblq, ax andby of the Ns first order filters considered in Equation (8) are found frotpesi-
mental data by minimizing the following cost function in tliequency domain:

Ny B AT 2 _ jaAt) ] 2
g({a,k7bk7Hok}k:1“Nf> _ z <Re[EC(QEE[EC|(:3;[(;(e'wK )]) +<|m[EC((’-I4<n)1][ECI(r;E|)';(e"*’K )]) . (13)

K=1
whereEg(awx) = E(wx) (1+in(ax)) is the complex Young modulus at a setif angular frequencieax,
n(wx) is the corresponding loss factor aHde' ™) is the filter response given by Equation (9) at frequency
wx. The nonlinear optimization problem to be solved is then:

min ¥ , b, Hok He— , 14
(b P ({ak k ok}kfl__Nf) (14)
under the constraints:

la| <1, b <1, ak>hb,, O0<Kk<Ng (15)

This problem is solved using the interior-point algorithmmpiemented in théminconMATLAB function.

Table 2: Filter parameters considerim first-order filters in parallel with a sampling raffe= 86 kHz.

Nt Hoji EE b Fsiim (kHz) err(Re) (%) err(Im) %
1 320x10° -0.7931 -0.8047 83.71 3.6 45.0
2 160x10° -0.9888 -0.9905 83.88 3.9 191

160x10° -0.6316 -0.6643
3 107x10° -0.8031 -0.8215 85.20 4.8 14.2

1.07x10° -0.9913 -0.9933
1.07x10° 0.1730 -0.0766

To identify the filter parameters corresponding to the expental data presented in Section 2, the real
partE of E is set at 2 x 10° GPa and its imaginary part is given Bn (cw) for the N, = 40 data points
of Figure 3, withn () = 2a/wx. The optimization procedure is performed considering 1r 3 filters
in parallel. The filter parameters are given in Table 2 andasociated frequency-dependent loss factor is
plotted in Figure 4. To assess the quality of the optimizatiwe define the following errors on the real and
imaginary parts of the difference between filter output axpeemental data:

ZE21 (X[EC(OQ()] —X[H (ei&kAt)])Z 1/2

)
o 5T (X [Eo(ca)])2

; (16)
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Figure 4: Frequency-dependentloss factor corresponding to theiasism of N; filters in parallel.

with X stands for Re or Im. Table 2 shows that err(Im) decreaggckly from 45% to 14% wheiN¢
increases from 1 to 3, while err(Re) remains below 5%. Itse alear in Figure 3 that the use of 3 filters
in parallel allows us to better follow the experimental freqcy fluctuations. We noticed that increasing
further the number of filtersN; > 4) does not improve the fit, which can be explained by the erher
frequency fluctuations in the experimental data. Finallycae check thaFsim remains below the chosen
sampling rate of 86 kHz, which will guarantee the stabilityh®e numerical simulations presented hereafter.

B. Beam vibration simulations

We consider a nylon beam of length= 1 m, cross-sectiofs = 4cn¥ and of densityp = 1149 kg.nt3.
This beam is excited at the right end by an impact of duratigh= 0.3 ms and of maximum intensity
Fimp = 1 KN, modeled by:

_ Fimp M2 —timp) _ .
f(xyt):{ 2 oo o )] 80=1) t<timp; (17)

To obtain a good accuracy of the simulation, a minimum of lidtsger wavelength is required. Choosing
a spatial steg\x = 2 cm, the minimum wavelength that the calculation can repres Ay, = 20 cm. For

a Young modulus o = 3.2 GPa for nylon, or a longitudinal phase veloctty- \/E/p = 1669 m/s, the
maximum frequency of the calculation is thiigax= ¢/Amin = 8.3 kHz.

We now present the results of the time-domain simulatiomgube filter parameters of Table 2 and the
excitation of Equation (17). The simulations are perforraeer a duration of 1 s and the beam displacement
atx=L/2 is plotted in Figure 5(a) over the first 30 ms. The differebeaveen the three simulations is seen
very rapidly. The corresponding power spectral densitisplayed in Figure 5(b) are calculated over a
1s duration using a frequency resolution of 1 Hz. The themaketrequencies for the first 12 modes of the
cantilever beam calculated with= 3.2 x 10° GPa are also plotted as references. At the first mode freguenc
of 417 Hz, the simulation with 1 filter has an amplitude 10 dghar than the two other simulations, which
can be attributed to low loss factor of the filter responséiatftequency (see Figure 4). From modes 2 and
8, between 1252 Hz and 6258 Hz, the three spectra overldapedyawell, the filter responses being close
over this frequency range. At higher frequencies, someejisncies exist between the three simulations.

5 CONCLUSIONS

We have presented in this paper an experimental technicgexllmn a time-frequency analysis of the plate
impulse response and on the use of energy decay relief toastthe damping factor over a wide frequency
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Figure5: (a) Displacement(L/2,t) and (b) its power spectral density using 1, 2 or 3 filters. Téehed vertical lines
correspond to the theoretical frequencies calculated ®ith3.2 x 10° GPa.

range. We applied it succesfully to a nylon plate betweenH0@nd 15 kHz approximately. Then we pro-
posed a time-domain model of an impacted structure whenm#terial constitutive law is represented by a
digital filter. The filter parameters are estimated from thgegimental data through an optimization proce-
dure that guarantees the causality and stability of the inddee-domain simulations of the longitudinal
vibrations of a nylon bar are finally presented, showing thege first-order filters in parallel are sufficient
to accurately describe the frequency-dependent dampiagtbe frequency band of interest. In the future,
the optimization procedure used to obtain the filter paramsewill be studied in more details, the approach
will be extended to the flexural vibrations of beams and plaéed computation of acoustic quantities of
interest (radiated power, directivity) will be considered
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