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NUMERICAL SIMULATION OF A GUITAR

ELIANE BÉCACHE∗, ANTOINE CHAIGNE† , GRÉGOIRE DERVEAUX∗ ‡ , AND PATRICK

JOLY∗

Abstract.
The purpose of this study is to present a time-domain numerical modeling of the guitar. The

model involves the transverse displacement of the string excited by a force pulse, the flexural motion
of the soundboard and the sound radiation in the air. We use a specific spectral method for solving
the Kirchhoff-Love’s dynamic plate model for orthotropic material, a fictitious domain method for
solving the fluid-structure interaction and a conservative scheme for the time discretization. One
of the originality of the proposed scheme is a stable coupling method between a continuous time
resolution and a discrete one.

Key words. Kirchhoff-Love’s plate model, fluid-structure interaction, mixed finite elements,
fictitious domain method, spectral method, energy method, stability.

AMS subject classifications. 65M12, 65M60, 65M70.

1. Introduction. The purpose of the presented study is the numerical resolu-
tion of a physical modeling of the acoustic guitar. This work is part of the general
framework time domain modeling of musical instruments initiated about 10 years ago
by A. Chaigne, which purpose is to better understand the vibroacoustical behavior of
instruments by use of an accurate physical modeling and advanced numerical methods.
The interest of the time-domain approach instead of the more usual frequency-domain
approach, is the accuracy in the modeling of the coupling between the different parts
of the instrument. Such a model constitutes a virtual instrument in which it is possible
to change easily the geometrical or physical parameters. It will thus be of great help
to develop tools for instrument making, sound recording or psychoacoustic studies.
Among other works realized in this general framework, we can mention the modeling
of the damping in the guitar top plate made by Chaigne and Lambourg [10] and the
numerical modeling of the timpani [37].

The instrument is considered as a set of simple structures which are coupled
to each other. Since we wish to focus on the modeling of the soundboard and on
the fluid-structure interaction, the model used for the other parts of the instrument is
intentionally kept simple. An idealized plucking force is acting on a 1D damped string
model. The string is coupled to the soundboard via the bridge. The soundboard
is modeled as an orthotropic heterogeneous damped Kirchhoff-Love plate, with a
soundhole, clamped at its boundaries. The other parts of the body (back, neck,
sides...) are assumed to be perfectly rigid. The plate radiates both inside the cavity
and in the external free field. The modeling of the complete 3D sound field is a new
approach comparing to almost all previous works on the guitar, where the cavity is
taken into account as a simple oscillator.

The well posedness of the model is shown with the help of the Hille-Yosida theo-
rem. One of the main difficulty raised by its numerical resolution is that the domain
of computation for the sound radiation is a 3D unbounded domain, which involve the
complex geometry of the guitar. In addition, a guitar sound can last up to 6 seconds,
so that the number of iterations may be great (typically 300,000 time steps for 6s
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of sound). It is thus of great importance to define an efficient resolution scheme. In
order to circumvent these difficulties, the fluid-structure interaction problem is solved
with the help of a fictitious domain method which main interest is to allow the use
of a regular mesh for the approximation of the acoustic field while the geometry of
the instrument is taken into account with an accurate triangular surface mesh. For
the time discretization, conservative centered finite differences are used. To simulate
the free space, the computations are restricted to a box of finite size with the help of
higher oder absorbing boundary conditions.

Another important difficulty to cope with this model is the resolution of the
Kirchhoff-Love’s dynamic plate equation which includes a fourth order space operator
and is intrinsically dispersive, which complicates both space and time discretization.
We have chosen to solve it with a spectral method, which is particularly efficient
in the case of a great number of iterations: the eigenmodes are calculated with a
non standard higher order mixed finite elements method, based on a velocity-moment
formulation and the spatial semi-discretized problem is solved analytically in time.

The string equation is solved using standard mixed finite elements of lower order
on a regular mesh and explicit centered finite differences are used.

The stability of the coupled scheme is ensured through a discrete energy identity.
In this aim, the spatial discretization of the equations of the model is based on a
mixed variational formulation of the complete system. The time stepping is chosen in
such a way that almost all computations, and in particular the 3D computations, are
explicit. The resolution of the scheme involves only the inversion at each time step
of a small sparse symmetric positive matrix which arises from the fictitious domain
resolution of the fluid-structure interaction.

The main originality of the proposed scheme is certainly that it is a stable coupling
method between a continuous time resolution (for the plate) and a discrete one (for
the string and the air). In addition, the two stability conditions of the complete
scheme are exactly the same than the usual CFL conditions obtained for the standard
finite difference discretization of the uncoupled 1D and 3D wave equation. This result
shows the robustness of the coupling scheme.

The paper is organized as follow: section 2 is devoted to the description of the
guitar and the presentation of the model. Section 3 presents the main results of the
mathematical analysis of this model: well-posedness and energy identity of the con-
tinuous problem. Since it is solved with a spectral method whereas all other equations
are solved with finite elements in space and finite differences in time, the numerical
resolution of the plate equation takes a particular place and is thus presented in sec-
tion 4. The numerical scheme of the complete problem is then presented in details in
section 5. The well-posedness of this scheme and the stability analysis are discussed
in section 6 and finally in section 7, numerical results are given.

2. The model.

2.1. Description of the guitar. The body of guitar is made up of the sound-
board, the sides, the back and the neck. The 6 string are attached on one side to
the neck and on the other side to the bridge. The soundboard itself is a thin wooden
layer containing a sound hole and reinforced by struts (pieces of hard wood glued on
its internal face which have a great influence on the shape of the structural modes
of the soundboard and on the radiation efficiency of the guitar [39, 35]). The sound
produced by a string is appreciated since antiquity for its natural harmonic properties.
Unfortunately, this sound is practically inaudible because of its very small diameter.
The vibrations of the string are thus transmitted to the soundboard, which large area
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ensures efficient coupling to the air. In addition, the soundboard is itself coupled to
an acoustic cavity pierced by a hole in order to reinforce the sound power in the low
frequency range, by the help of the Helmholtz resonance frequency [40, 23].

The following assumptions were made in order to propose a physical modeling of
the instrument:

• the amplitudes of vibration are small, which justify a linear model,
• the body has no thickness and the neck is neglected,
• only the soundboard vibrate (the rest of the body is supposed perfectly rigid),
• the soundboard is modeled using a Kirchhoff-Love flexural plate equation

(the motion parallel to the medium plan is neglected). The struts and the
bridge are considered as heterogeneities,

• only the transverse polarization of the string is considered: the in-plane dis-
placement of the string (parallel to the soundboard) is neglected,

• the string is excited with an idealized plucking force,
• the internal phenomena of damping in the plate and in the string are modeled

by dissipative terms of viscoelastic type.
Geometrical description. The body of the guitar is delimited by a surface denoted

Γ which is divided into two parts: Γ = ω∪Σ, where ω is the top plate of the instrument
and Σ is the rest of the surface (ie. sides and back). The boundary of ω itself is
divided into two parts: γ0 is the outer boundary of the top plate and γf is the inner
boundary, along the hole. The surrounding air occupies the domain Ω = R

3
� Γ. The

string of length ls is rigidly fixed to the neck at a point denoted O, chosen as origin
of the coordinate system (see Fig. 2.1).
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Fig. 2.1. Geometrical description of the guitar

Unknowns. This model includes the following unknowns, all time dependent:
• the vertical displacement of the string us(x, t), x ∈]0, ls[;
• the vertical displacement of the soundboard up(x, y, t), (x, y) ∈ ω :
• the acoustic pressure p(x, y, z, t), (x, y, z) ∈ Ω;
• the acoustic velocity field va(x, y, z, t), (x, y, z) ∈ Ω.

Notations. A simple underlined quantity (e.g. θ) denotes a vector in R
2, a

double underlined quantity (e.g. M ) denotes a tensor of second order in R
2 and a

bold simple underlined quantity (e.g. N) denotes a vector in R
3. div denotes the

usual divergence operator for vectors and ∇ denotes the usual gradient operator for
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scalars. Div denotes the divergence operator for tensors defined by:

DivM =

(
∂1M11 + ∂2M12

∂1M21 + ∂2M22

)

ε (θ) denotes the plane linearized strain tensor of the vector field θ, defined by:

εαβ(θ) =
1
2
(∂βθα + ∂αθβ), ∀α, β ∈ {1, 2}.

2.2. Equations. This model of guitar is described by the following set of equa-
tions:

Equations for the string:

(2.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) ρs
∂2us

∂t2
− T (1 + ηs

∂

∂t
)
∂2us

∂x2
= fs(x, t), in ]0, ls[,

(b) us(0, t) = 0, ∀t > 0,

(c) us(ls, t) =
∫

ω

G(x, y)up(x, y, t)dxdy, ∀t > 0.

Equations for the soundboard :

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) aρp
∂2up

∂t2
+ div DivM = −[p]

ω
+ F(x, y, t) in ω,

(b) M = a3C (1 + ηp
∂

∂t
)ε (∇up) in ω,

(c) F(x, y, t) = G(x, y)T (1 + ηs
∂

∂t
)
∂us

∂x
(ls, t) in ω,

(d) up = 0 and ∂nup = 0, on γ0,

(e) (Mn).n = 0 and (DivM ).n + ∂τ [(Mn).τ ] = 0, on γf .

Equations for the surrounding air:

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) ρa
∂va

∂t
+ ∇p = 0, in Ω,

(b) μa
∂p

∂t
+ div va = 0, in Ω,

(c) va(x, y, 0, t).ez = up(x, y, t), ∀(x, y) ∈ ω,

(d) va(x, y, z, t).N = 0, ∀(x, y, z) ∈ Σ.

At the origin, the whole system is at rest. These initial conditions will be systemat-
ically omitted in the following. The previous set of equations ((2.1), (2.2), (2.3)) is
denoted Pg and is described below.

• (2.1a) is the 1D wave equation describing the displacement of the string. T is
the uniform tension, ρs is the uniform lineic density. ηs is an internal dissi-
pative term of viscoelastic type. On the right hand side, the force fs exerted
by the finger is assumed to be an imposed force fs(x, t) = g(x)h(t), where the
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C1 function h(t) represents a simple idealized version of the “stick-slip” mech-
anism that governs the interaction between string and finger (Fig. 2.2a). This
force is distributed over a small segment of the string by means of the smooth
positive function g, normalized so that

∫ ls
0

g(x)dx = 1 (Fig. 2.2b). Despite its
simplicity, this excitation is in fairly good agreement with experiments [9].
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Fig. 2.2. Idealized plucking force. (a) Time dependence. (b) Space dependence

• (2.1b) expresses that the string is fixed at the neck and (2.1c) expresses that
the string and the soundboard are always in contact at the bridge. The
motion of the string at the bridge is thus given by the mean displacement of
a small plate’s area. G is positive and normalized so that

∫
ω G = 1

• (2.2a) is the Kirchhoff-Love equation describing the flexural displacement of
the soundboard [20, 13, 33]. a = a(x, y) is the thickness and ρp = ρp(x, y)
the density. On the right hand side, the force exerted by the surrounding air
is [p]

ω
= pe − pi, the pressure jump across the soundboard, where pe and pi

denotes the external and internal pressure respectively and F is force exerted
by the string (see below).

• (2.2b) is the analogous of Hooke’s law for a Kirchhoff-Love’s plate. M de-
notes the bending moment. It is a symmetric tensor of second order. ηp is
a uniform dissipative term of viscoelastic type. C = C (x, y) is the rigidity
tensor for orthotropic materials. C can be written:

(2.4) C = c11

⎛
⎝ 1 c̃12 0

c̃12 c̃22 0
0 0 c̃33

⎞
⎠ = c11C̃ ,

where c11 is an elastic coefficient in Pa and c̃12, c̃22 and c̃33, are dimensionless
coefficient. C is supposed to satisfy: 0 < c−

∣∣M ∣∣2 ≤ CM : M ≤ c+
∣∣M ∣∣2

• The force F exerted by the string on the plate is assumed to be the normal
component of the tension of the string at this point (this is a common as-
sumption [23]). This force is distributed over the small plate’s area defined by
the spatial window G used above. For a non dissipative string, considering
small displacements, it is given by:

(2.5) F(x, y, t) ≈ −T∂xus(ls, t)G(x, y),

One should modify this last equation in order to take into account the vis-
coelastic dissipation in the string, which leads to (2.2c).

5



• The conditions (2.2d) express that the plate is clamped along its outer bound-
ary γ0, while the conditions (2.2e) express that the plate is free along the
soundhole γf . n denotes the outer normal and τ denotes the tangential
vector along the boundary δω. ∂n and ∂s denote the normal and tangential
derivative operator along the boundary δω respectively.

• (2.3a) and (2.3b) are the linearized Euler’s equations for the acoustic field.
ρa is the density of the air and μa = 1

ρac2
a

is the permitivity of the air where
ca is the speed of sound in the air.

• (2.3c) expresses the continuity of the normal component of the acoustic ve-
locity on ω, which is the standard fluid-structure interaction condition and
(2.3d) expresses that the rest of the body is perfectly rigid. N denotes the
outer normal to the boundary Σ.

3. Mathematical analysis. It is not difficult to show that the problem Pg is
well posed. In fact, the proof of the Hille-Yosida theorem’s hypothesis [42] is long
but straightforward. One should only take care to the treatment of the free boundary
conditions of the soundboard which must be seen in a weak way [17]. One has:

Theorem 3.1 (Well posedness of the problem Pg). The plucking of the string is
supposed to satisfy:

fs ∈ C1(R+, L2(]0, ls[)),

then problem Pg admits a unique strong solution (us, up, p,va) such that:

(3.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

us ∈ C2(R+, L2(]0, ls[)) ∩ C1(R+,Vs),[
(1 + ηs

∂

∂t
)
∂2us

∂x2

]
∈ C0(R+, L2(]0, ls[)),

up ∈ C2(R+, L2(ω)) ∩ C1(R+,Vp),[
(1 + ηp

∂

∂t
) div Div C ε (∇up)

]
∈ C0(R+, L2(ω)),

p ∈ C1(R+, L2(Ω)) ∩ C0(R+, H1(Ω)),

va ∈ C1(R+, (L2(Ω))3) ∩ C0(R+, H(div, Ω)),

with Vs =
{
us ∈ H1(]0, ls[) ; us(0) = 0

}
and Vp =

{
up ∈ H2 ; up = ∂nup = 0 on γ0

}
.

The boundary conditions are verified in the following sense:

(3.2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

us(ls, t) =
∫

ω

G(x, y)up(x, y, t)dxdy, in C1(R+, R),⎧⎪⎪⎨
⎪⎪⎩

∀u∗
p ∈ Vp, (1 + ηp

∂

∂t
)
∫

ω

div Div C ε (∇up)u∗
p

= (1 + ηp
∂

∂t
)
∫

ω

C ε (∇up) : ε (∇u∗
p), in C0(R+, R),

va · N =
∂ũp

∂t
, in C0(R+, H− 1

2 (Γ)),

where the extension of
∂up

∂t
to Γ is defined by: (

∂ũp

∂t
)|ω =

∂up

∂t
, and (

∂ũp

∂t
)|Σ = 0.

This result is based essentially on the following energy identity, which shows that
the energy of the complete system decreases with time, when it is free oscillating. It is
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of particular interest for obtaining a priori estimates of the solution given in Theorem
3.1. Furthermore a similar identity will be exploited for ensuring the stability of the
numerical resolution scheme.

Theorem 3.2 (Energy identity). The unique strong solution (us, up, p,va) of
problem Pg satisfies:

(3.3)
dE

dt
(t) =

∫ ls

0

fs
∂us

∂t
−
∫ ls

0

ηsT

∣∣∣∣∂2us

∂x∂t

∣∣∣∣
2

−
∫

ω

ηpa
3C ε (∇∂tup) : ε (∇∂tup)

where the total energy E(t) is defined by E(t) = Es(t) + Ep(t) + Ea(t) with:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Es(t) =
1
2

∫ ls

0

ρs

∣∣∣∣∂us

∂t

∣∣∣∣
2

+
1
2

∫ ls

0

T

∣∣∣∣∂us

∂x

∣∣∣∣
2

,

Ep(t) =
1
2

∫
ω

ρp

∣∣∣∣∂up

∂t

∣∣∣∣
2

+
1
2

∫
ω

C ε (∇up) : ε (∇up),

Ea(t) =
1
2

∫
Ω

μa |p|2 +
1
2

∫
Ω

ρa |va|2 .

Proof.

1. Equation (2.1a) is multiplied by
∂us

∂t
and integrated on ]0, ls[. Using inte-

gration by parts for the second term and the boundary conditions (2.1b) and (2.1c)
differentiated in time, one obtains:

(3.4)
dEc

dt
(t) +

∫ ls

0

ηsT

∣∣∣∣∂2us

∂x∂t

∣∣∣∣
2

−
[
T (1 + ηs

∂

∂t
)
∂us

∂x
(ls, t)

]∫
ω

G
∂up

∂t
=
∫ ls

0

fs
∂us

∂t

2. We recall the double integration by part formula for a C1 domain ω (see [12]):

(3.5)

∣∣∣∣∣∣∣∣∣∣∣

∀M ∈ (H2(ω))3 and ∀up ∈ H2(ω)∫
ω

(div DivM ) up =
∫

ω

M : ε (∇up) +
∫

δω

[
(Mn).n

]
∂nup

+
∫

δω

[
(DivM ).n + ∂τ [(Mn).τ ]

]
up.

Equation (2.2a) is multiplied by
∂up

∂t
and integrated on ω. Then using (3.5), the

constitutive law (2.2b) and the boundary conditions (2.2d) and (2.2e), one obtains:

(3.6)
dEp

dt
(t) +

∫
ω

ηpa
3C ε (∇∂tup) : ε (∇∂tup) = −

∫
ω

[p]
ω

∂up

∂t

−
[
T (1 + ηs

∂

∂t
)
∂us

∂x
(ls, t)

] ∫
ω

G
∂up

∂t
.

3. Equation (2.3a) is multiplied by va and integrated on Ω. The second term is
integrated by part using the boundary conditions (2.3c) and (2.3d). Equation (2.3b)
is multiplied by p and integrated on Ω. The sum of the two previous results gives:

(3.7)
dEa

dt
(t) −

∫
ω

[p]ω
∂up

∂t
= 0.

4. Finally the identity (3.3) is obtained by adding (3.4), (3.6) and (3.7).
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4. The plate problem. The numerical method presented in this section is a
summary of the results presented in [17]. In this section the forces exerted on the plate
by the air and by the string are supposed to be known and are denoted fp(x, y, t).

4.1. A mixed variational formulation. The natural variational formulation
for the undamped plate problem (2.2) is:

(4.1)

⎧⎪⎨
⎪⎩

Find up : [0, T ] → V such that :

d2

dt2

∫
ω

aρpupu
∗
p +
∫

ω

a3C ε(∇up) : ε(∇u∗
p) =

∫
ω

fpu
∗
p, ∀u∗

p ∈ V,

where V =
{
up ∈ H2(ω) ; up = ∂nup = 0 on γ0

}
. Using the Korn inequality and

usual properties of the space H2(ω), it is easy to show that the variational formulation
(4.1) is well posed. A well known difficulty of this approach is that it requires the use
of sophisticated finite elements of class C1 in order to make an internal approximation
of the space H2(ω), like for example Argyris finite element [1]. Many methods have
been proposed to circumvent this problem [29, 5, 19, 8, 11]. In the present study,
following an idea proposed by Glowinsky [26] and then by Ciarlet and Raviart [22]
for the static homogeneous isotropic clamped plate, the velocity vp = ∂tup and the
bending moment M are used. The problem (2.2) is thus written in the following
equivalent form of first order in time and second order in space:

(4.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(a) aρp∂tvp + div DivM = fp, in ω,

(b) ∂tM = a3C (1 + ∂t)ε (∇vp), in ω,

(c) vp = 0 and ∂nvp = 0, on γ0,

(d) (Mn).n = 0 and (DivM ).n + ∂τ [(Mn).τ ] = 0, on γf .

The variational formulation of (4.2) is obtained by multiplying (4.2a) by a test function
v∗p and (4.2b) by a test function M∗. Then using integration by parts over ω and
the boundary conditions (4.2c) and (4.2d) leads to:

(4.3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find vp : [0, T ] → V and M : [0, T ] → X such that :

d

dt

∫
ω

ρpvpv
∗
p − h(M , v∗p) =

∫
ω

fpv
∗
p, ∀v∗p ∈ V ,

d

dt

∫
ω

a−3C−1 M : M∗ + (1 + ηp
d

dt
)h(M , v∗p) = 0, ∀M∗ ∈ X ,

where:

V =
{
vp ∈ H1(ω) ; vp = 0 on γ0

}
X =

{
(H1(ω))3 ; (Mn) . n = 0 on γf

}
.

and where we have set

(4.4) h(M , vp) =
∫

ω

DivM .∇vp + 〈∂τ [(Mn).τ ], vp〉γf
, ∀M ∈ X , ∀vp ∈ V

〈., .〉γf
denotes the duality bracket in H− 1

2 (γf ) × H
1
2 (γf ).

The main interest of this formulation compared to the natural formulation (4.1)
is that it can be discretized with standard Lagrange finite elements for the internal
approximation of H1(ω).
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4.2. Space approximation. Finite dimensional subspaces Vh ⊂ V and Xh ⊂ X
are introduced. More precisely, let ωh be a triangular mesh of the soundboard and
P be a set of polynomial functions to be determined. Then one introduces:

Vh =
{
v∗ph

∈ V , v∗ph |K ∈ P , ∀K ∈ ωh

}
Xh =

{
M∗

h
∈ X , M∗

h|K ∈ P3, ∀K ∈ ωh

}
The semi-discrete in space problem of (4.3) is written:

(4.5)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find vph
: [0, T ] → Vh and M

h
: [0, T ] → Xh such that :

d

dt

∫
ω

aρpvph
v∗ph

− h(M
h
, v∗ph

) =
∫

ω

fpv
∗
ph

, ∀v∗ph
∈ Vh,

d

dt

∫
ω

a−3C−1 M
h

: M∗
h

+ (1 + ηp
d

dt
)h(M∗

h
, vph

) = 0, ∀M∗
h
,∈ Xh,

This problem leads to the following matricial differential system after having expanded
the unknowns vph

and M
h

in a basis of the spaces Vh and Xh respectively. For
the sake of simplicity, the same notations are used for the vectors vph

and M
h

and
their coordinates in those particular basis.

(4.6)

⎧⎪⎪⎨
⎪⎪⎩

M
vp

h

dvph

dt
− H�

h M
h

= fph

MM
h

dM
h

dt
+ (1 + ηp

d

dt
)Hhvp = 0,

where M
vp

h and MM
h are positive definite mass matrices. Hh represents a discrete

Jacobian operator and H�
h its transpose.

Elimination of M
h
. The introduction of the bending moment increases the size

of the plate problem since it is a second order tensor. In addition, as presented
below the plate equation is solved analytically in time, which requires to calculate the
eigenelements of the discretized space-operator. It is of interest to reduce the size of
equation (4.6) by eliminating the additional unknown M

h
. This leads to the following

equation, obtained by differentiating (4.6a) in time and using (4.6b):

(4.7) M
vp

h

d2vph

dt2
+ 2Ah

dvph

dt
+ Khvph

= ḟph
, ∀t ≥ 0,

where Kh = HT
h (MM

h )−1Hh and ḟph
=

dfph

dt
and 2Ah = ηpKh.

Choice of P. First, a numerical dispersion analysis shows that a second order
approximation of H1(ω) reduces significantly the error made on the eigenfrequencies
of the soundboard compared to the choice of usual P1 continuous finite elements (see
section 4.3). Second, the computation of Kh requires to invert the positive definite
mass matrix MM

h . Therefore, MM
h is computed approximately with an appropriate

quadrature formula, so that it reduces to a 3x3 block diagonal matrix without loss of
accuracy This technique called mass lumping [15, 14] permits to invert MM

h easily.
The mass matrix M

vp

h is reduced to a diagonal matrix via the same technique.
It appears that it is not possible to obtain mass lumping with usual P2 contin-

uous finite elements for the approximation of H1(ω) since it leads to an ill posed
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problem. We have chosen the following enriched P2 ⊕ [b] continuous finite elements
space introduced by Tordjmann et al.[15] to circumvent this problem. Thus:

(4.8) P = P2 ⊕ [b],

where b denotes the polynomial bubble function of degree 3 defined as follows: let x
denote a variable in R

2 and S1, S2 and S3 the vertices of a triangle K. The barycentric
coordinates of x with respect to S1, S2 and S3 are denoted λ1(x), λ2(x) and λ3(x) [12].
Then b(x) = λ1(x)λ2(x)λ3(x). The degrees of freedom of Vh and Xh are located at the
vertices (Sl)1≤l≤3, at the gravity center G of each triangle and at the center (Ml)1≤l≤3

of each edge, as represented on Fig. 4.1.

(a) Vh (b) Xh

Fig. 4.1. Degrees of freedom for P2 ⊕ [b] continuous finite element approximation

4.3. Dispersion curves of the semi-discretized plate’s equation. In the
present study, an analysis of the numerical dispersion introduced by Lagrange finite
element space approximation of (4.3) of first and second order has been performed.
This analysis measures the error made by the approximation scheme on the phase
velocity of harmonic plane wave solutions in the homogeneous case for an infinite un-
damped plate, which shows the consistency of the method in this particular case. One
of the interests of this study is that it is a precious indicator which allows to compare
the performance of different order finite element approximations. We consider the
Kirchhoff-Love’s problem for an homogeneous orthotropic undamped plate in R

2:

(4.9) aρp
∂2up

∂t2
+ div Div a3C ε (∇up) = 0, in R

2.

Dispersion relation for the continuous problem. We seek for progressive harmonic
plane wave solutions of (4.9) of the form:

(4.10) u(x, t) = ei(ωt−k·x) = ei(ωt−kxx−kyy),

where k = (kx, ky) = (|k| cosφ, |k| sin φ) is the wave vector with propagation direction
φ and vϕ = w/|k| is the phase velocity. Introducing (4.10) in (4.9) gives the velocity
phase of plane wave solutions of Kirchhoff-Love’s orthotropic plate equation:

(4.11) vϕ =
ω

|k| = |k|a
√

c11

ρp
C(φ),

where

(4.12) C(φ) =
√(

cos4(φ) + c̃22 sin4(φ) + 2(c̃12 + c̃33) cos2(φ) sin2(φ)
)
.

Note that the plate equation is dispersive, since the phase velocity depends on |k|.
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Dispersion relation of the semi-discretized scheme. A regular mesh of R
2 made

of half square triangles with space step hp is introduced. The vertex of this mesh
are indexed by (p, q) ∈ Z

2 . In the following, we consider the standard first order
continuous approximation of H1(R2) based on this mesh, that is P = P1 and the
second order continuous approximation of H1(R2) presented above, that is P = P2⊕[b]
For a given wave vector k, we seek for the phase velocity vϕh

of discrete harmonic
plane wave solutions of these two semi-discretized schemes, of the form:

(4.13) uh(php, qhp, t) = e(iωht−ikxphp−ikyqhp), ∀p, q ∈ Z,

The error made on the phase velocity is measured by the ratio between the continuous
phase velocity and the discrete one:

qh =
vϕh

vϕ
=

ωh

ω
.

It can be shown that qh is a function of the propagation angle φ and of the inverse
of number of points per wave length K = |k|h

2π , that is qh = qh(K, φ) [17, 14].
Dispersion curves. For a fixed propagation angle φ, the curve K �→ qh(K, φ)

shows the accuracy of the scheme versus the refinement of the mesh. The closer to 1
the curve, the more accurate the scheme. These curves are plotted for the approxi-
mations of first and second order on Fig. 4.2. Typical values of wood orthotropy are
taken (see Table. 7.1), but the results are similar with other values of orthotropy.

The error made on the phase velocity is far greater with the first order scheme.
For example, for the first order scheme, the error made on the phase velocity is
less than 10% with nearly 7 points per wave length (K ≈ 0.15). For the second
order approximation, this correspond to K ≈ 0.30, since the number of degrees of
freedom is approximately twice greater for the same value of K. But only 2 points
per wave length are enough (K = 0.5) with the second order scheme to obtain the
same accuracy. This analysis justifies thus the choice of a second order scheme.
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(a) First order

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

q
h

inverse of the number of points per wave length

0
30
60
90

(b) Second order

Fig. 4.2. Error made on the phase velocity with the semi-discrete approximation, K �→ qh(K, φ)
for the angles of propagation φ = 0, 30, 60 and 90 degrees.

4.4. Time discretization. In this section, three different strategies for the time
discretization of the spatial semi-discretized scheme (4.7) are investigated: explicit
finite differences, implicit finite differences and analytical resolution in time. A stan-
dard approach for the time resolution of (4.7) is the use of finite differences, in order
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to minimize the computation cost at each time step. As explained below, it appears
that for both precision and efficiency reasons, the use of a finite differences scheme
is not well suited for the plate equation, neither explicit, nor implicit. Therefore, the
spatial semi-discretized problem is solved exactly in time.

Explicit scheme. Given a time step Δt and for an undamped plate, the simplest
time resolution of (4.7) consists of using the standard leapfrog scheme. The stability
of this scheme is guaranteed under a so called CFL condition. In order to quantify
this condition, a Fourier analysis in the homogeneous case for an infinite plate of
space step hp is realized. In this case, it can be shown that for a second order scheme
(P = P2⊕ [b]) and for typical values of wood orthotropy (see Table. 7.1), the stability
condition of a standard explicit centered finite difference scheme of second order in
time of (4.7) is (see [17]):

(4.14) α = a

√
c11

ρp

Δt

h2
p

≤ 0.084880 = α0.

In practice, with parameters values used in the numerical experiments, this condition
would impose to choose Δt ≈ 8.4 10−7s. Consequently, the number of iterations is very
high, even for very short duration experiment. For this reason, the explicit scheme
cannot be used, in particular in view of the coupling of the plate to the 3D acoustic
equation. In addition, when the dissipative term of viscoelastic type is not zero, it is
not possible to write a stable centered finite difference scheme any more. In this case
the scheme becomes necessary implicit, which arises the cost of this method.
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Fig. 4.3. Error made on the phase velocity with the second order approximation in space and
an implicit scheme in time. φ = 0 and α = Cα0 with C = 1, 10, 25, 50, 100

Implicit scheme. A first idea to circumvent this problem would be to use an
implicit unconditionally stable scheme, as it is usually done for the heat equation,
allowing greater time steps, and also allowing the introduction of dissipative terms
without additional cost. However, since the solution has to be computed for long
times, and consequently for a great number of iterations, the inversion of a matrix at
each time step is in itself very costly. Furthermore, a numerical dispersion analysis
similar to the one presented in section (4.3) has been realized to give indications in
the choice of the time step Δt. This analysis shows that the time step must be chosen
sufficiently small for efficiency considerations. More precisely, we consider a standard
implicit centered finite difference scheme of second order in time of (4.7). Given a
wave vector k, we seek for the phase velocity vI

ϕh
of discrete harmonic plane wave

solutions of this implicit scheme, of the form:

(4.15) uh(php, qhp, nΔt) = e(iωI
hnΔt−ikxphp−ikyqhp), p, q ∈ Z,

12



It can be shown that the error made on the phase velocity, denoted qI
h, verifies qI

h =
qI
h(K, φ, α), where K and φ are defined in section (4.3) and α is defined in (4.14) [17].

Figure 4.3 shows the error made on the phase velocity by the implicit scheme for the
P2 ⊕ [b] finite element approximation, for a fixed angle of propagation φ = 0◦ and for
various values of α such that α = Cα0 with C ∈ {1, 10, 25, 50, 100} (α0 is defined in
(4.14)). The curve obtained for α = α0 and the dispersion curve of the semi-discrete
problem are the same.

These curves show that the error made on the phase velocity decreases rapidly
for increasing values of α, which means that the effienciency of the implicit scheme
degrades significantly for large α. Consequently, in order to keep the accuracy of the
space approximation, it appears that Δt has to be proportional to h2

p, as for the
explicit scheme. Even if this solution allows greater values of Δt, this condition is
still too restrictive, and for this reason, the implicit scheme cannot be used.

Analytical resolution. The idea retained in this study to cope with this problem is
to solve (4.7) analytically in time, which allows to choose any Δt without degrading
the accuracy of the spatial semi-discretized scheme. In practice, it is necessary to
sample the solution in time in order to compute it. Thus, given a time step Δt,

vph
and v̇ph

=
dvph

dt
are computed at times tn+ 1

2 = (n + 1
2 )Δt and (4.7) is solved on

each interval [tn−
1
2 , tn+ 1

2 ]. In the guitar problem, fph
represent the effort exerted by

the string and the air in the complete guitar problem. Since the string and acoustic
equations are solved by finite differences with time step Δt, the right hand side is
supposed to be constant on the interval [tn− 1

2 , tn+ 1
2 ], and it is given by ḟn

ph
= fph

(tn).
The following equation is thus solved at each time step:

(4.16)

⎧⎪⎨
⎪⎩

M
vp

h

d2vph

dt2
+ 2Ah

dvph

dt
+ Khvph

= ḟn
ph

, ∀t ∈]tn−
1
2 , tn+ 1

2 [,

vph
(tn−

1
2 ) = v

n− 1
2

ph and v̇ph
(tn−

1
2 ) = v̇

n− 1
2

ph ,

The resolution of this equation is based on the computation of the eigenmodes of the
positive matrix Kh. It is given by:

(4.17)

⎧⎨
⎩

v
n+ 1

2
ph = SΔt(v

n− 1
2

ph , v̇
n− 1

2
ph ) + RΔt(ḟn

ph
)

v̇
n+ 1

2
ph = ṠΔt(v

n− 1
2

ph , v̇
n− 1

2
ph ) + ṘΔt(ḟn

ph
),

where one has formally, for v0, v1, f ∈ V and t > 0:

(4.18)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

St(v0, v1) = exp (−Aht)

[
cos(K̃ht)v0 +

sin(K̃ht)
K̃h

(v1 + Ahv0)

]

Rt(f) =
1

2K2
hK̃h

[
K̃h

(
I − exp (−Aht) cos(K̃ht)

)− Ah sin(K̃ht)
]

where K̃h =
√

Kh − A2
h

1, Ṡt(v0, v1) =
dSt

dt
(v0, v1) and Ṙt(f) =

dRt

dt
(f). In the

following, for the sake of simplicity, the operators SΔt and RΔt will be denoted S and
R respectively

1the square root is chosen with positive imaginary part for negative arguments

13



The cost of this analytical scheme is obviously related to the computation of the
eigenvalues and eigenvectors of Kh, which is made with the help of a QMR algorithm.
But at each time step, the computations are costless so that this scheme is efficient for
long duration numerical experiments, as it is the case in sound synthesis problems. In
addition, because the frequency spectrum of the excitation fph

is band-limited, it is
not necessary to keep all eigenmodes of Kh, but only the first ones. As an example, in
the case of the guitar problem, 50 modes of the plate were used, which correspond to a
cut-off frequency nearly equal to 3kHz. Thus, this method is in fact a spectral method
for which the modes of the plate are computed using an adapted mixed finite element
method. The efficiency of the analytical resolution in time of (4.7) compared to the
explicit and implicit finite differences schemes is illustrated by numerical experiments
in [17].

5. Numerical resolution of the guitar problem. The space discretization
of Pg is based on a mixed variational formulation of the coupled problem. One
has to propose a variational formulation which is adapted to the one chosen for the
resolution of the plate equation described in the previous section. A fictitious domain
method for the fluid-structure interaction problem is presented (section (5.1)) and a
dual mixed velocity-stress mixed formulation for the string is proposed (section (5.2)).

5.1. The fluid-structure interaction: fictitious domain formulation. The
fluid-structure interaction problem is obviously the limiting part of the simulation
since it is a 3D problem posed in a domain of complex geometry. The finite element
method is a usual way to approximate the shape of the instrument with good accuracy.
But it leads to a very expensive scheme, both in memory and time, because it is based
on a tetrahedral mesh of the domain Ω = R

3
� Γ. On the other hand, the finite

difference method, based on a regular mesh, is certainly more efficient, but it leads to
a lower order staircase approximation of the instrument.

The interest of the fictitious domain method is that the geometry of the instru-
ment is ’ignored’ in some sense. As a consequence, the acoustic pressure and acoustic
velocity can be extended in all R

3, and are not only defined in R
3
�Γ. Therefore, this

method allows to use a regular mesh, made of small cubes, for solving the acoustic
equation, which leads in practice to an efficient centered second order finite difference
approximation. The condition on the boundary of the guitar is then taken into ac-
count in a weak way via the introduction of a Lagrange multiplier λ which appears
to be the pressure jump across the surface of the instrument. The discretization of
λ relies on a triangular mesh of the surface Γ of the instrument, which leads thus
to a good approximation of the geometry. This method has been introduced for the
resolution of elliptic problems about thirty years ago [3, 2, 36]. It has been developed
more recently by R. Glowinski, Y. Kuznetsov [28, 32] and generalized to evolution
problems [27, 34, 7]. In the present study, it is adapted from works on the numerical
simulation of the kettledrum by Rhaouti et al.[37].

In order to define an extension of the acoustic pressure and velocity to R
3, p and

va are sought in functional spaces to be determined and denoted P and W respec-
tively. The fictitious domain formulation requires that the continuity of the normal
component of the velocity involved in the fluid-structure interaction problem is in-
cluded as an essential condition in W, ie.:

(5.1) ∀v∗
a ∈ W, [v∗

a]|Γ = 0.

The spaces P and W will be determined from the following variational formulation of
(2.3). Equation (2.3a) is multiplied by a test function v∗

a ∈ W and (2.3b) is multiplied
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by a test function p∗ ∈ P and integrated on Ω using the Green formula and (5.1):

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

d

dt

∫
R3�Γ

va · v∗
a −
∫

R3�Γ

p div v∗
a −
∫

Γ

[p]Γ(v∗
a · N) = 0, ∀v∗

a ∈ W,

d

dt

∫
R3�Γ

pp∗ +
∫

R3�Γ

p∗ div va = 0, ∀p∗ ∈ P ,

In order to avoid the construction of a tetrahedral mesh of R
3

� Γ needed for the
computation of the pressure jump, the new unknown λ = [p]Γ is introduced. Also, for
the same reasons, the boundary conditions on Γ (2.3c-d) are written in a weak way.
Multiplying (2.3c) and (2.3d) by a test function λ∗ ∈ L, and integrating on ω and on
Σ respectively yields:

(5.3)
∫

ω

vpλ
∗
|ω −

∫
Γ

λ∗(va · N) = 0, ∀λ∗ ∈ L.

The variational formulation (5.2, 5.3) imposes to p and p∗ to be in L2(R3
� Γ) which

can be naturally extended to L2(R3), since Γ is a surface. On the other hand this
formulation imposes to va and v∗

a to be in H(div, R3
�Γ) which is naturally extended

to H(div, R3) by continuity of the normal component on Γ (5.1), introduced in the
space W. In addition, λ and λ∗ are chosen in H

1/2
00 (Γ) in order to give sense to the

weak formulation (5.3). Finally, the fictitious formulation of (2.3) is given by:

(5.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find p : [0, T ] → P , va : [0, T ] → W, et λ : [0, T ] → L, such that:

d

dt

∫
R3

ρava · v∗
a −
∫

R3
p div v∗

a − 〈v∗
a ·N, λ〉Γ = 0, ∀v∗

a ∈ W,

d

dt

∫
R3

μapp∗ +
∫

R3
p∗ div va = 0, ∀p∗ ∈ P ,∫

ω

vpλ
∗ − 〈va · N, λ∗〉Γ = 0, ∀λ∗ ∈ L.

where 〈., .〉Γ denotes the duality bracket defined on H− 1
2 (Γ) × H

1
2 (Γ) and:

(5.5) P = L2(R3), W = H(div, R3), L = H
1
2
00(Γ).

5.2. String equation. In order to simplify the presentation, the dissipative
viscoelastic term ηs is supposed to be zero. It does not add formal difficulty to take
into account this damping term in the numerical resolution proposed here [17]. The
coupling terms at the bridge involve a Dirichlet condition (2.1c) and a Neumann one
(2.5). A dual mixed formulation of the string equation has been chosen, using the
velocity vs = ∂tus and the stress q = T∂xus. Equation (2.1) is thus rewritten in the
following equivalent form of first order in time and first order in space:

(5.6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) ρs∂tvs − ∂xq = fs, in ]0, ls[,

(b) ∂tq − T∂xvs = 0, in ∈]0, ls[,

(c) vs(0, t) = 0, ∀t > 0,

(d) vs(ls, t) =
∫

ω

Gvp, ∀t > 0,
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The variational formulation of (5.6) is obtained by multiplying equation (5.6a) by a
test function v∗

s and integrating on ]0, ls[. Then (5.6b) is multiplied by a test function
q∗ and integrated by part on ]0, ls[, which yields, using the conditions (5.6c-d):

(5.7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Find vs : [0, T ] → U , and q : [0, T ] → Q,

d

dt

∫ ls

0

ρsvsv
∗
s −
∫ ls

0

v∗s∂xq =
∫ ls

0

fsv
∗
s , ∀v∗s ∈ U ,

d

dt

∫ ls

0

1
T

qq∗ +
∫ ls

0

vs∂xq∗ − q∗(ls, t)
∫

ω

Gvp = 0, ∀q∗ ∈ Q,

where U = L2(]0, ls[) and Q = H1(]0, ls[). In this way, the boundary condition
(2.1c) becomes natural and does not couple the functional spaces related to the plate
and the functional spaces related to the string, which simplifies the spatial approxi-
mation of the coupled problem.

5.3. Variational formulation of the complete problem. The force fp ex-
erted on the plate by the surrounding air and by the string is rewritten with the new
variables λ and q introduced above:

(5.8) fp(x, y, t) = −q(ls, t)G(x, y) − λ|ω ,

The results of section 4 are transposed without difficulty. The complete variational
formulation of problem Pg is finally given by the set of equations (4.3, 5.4, 5.7, 5.8).

5.4. Space approximation. In order to write a conforming approximation of
the variational formulation (4.3, 5.4, 5.7, 5.8), the following finite dimensional spaces
are introduced:

Uh ⊂ U , Qh ⊂ Q, Vh ⊂ V , Xh ⊂ X , Wh ⊂ W, Ph ⊂ P , Lh ⊂ L.

The semi-discretized in space problem is written:
(5.9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find vsh
: [0, T ] → Uh, qh : [0, T ] → Qh, vph

: [0, T ] → Vh, M
h

: [0, T ] → Xh,

ph : [0, T ] → Ph, vah
: [0, T ] → Wh, and λ : [0, T ] → Lh, such that :

d

dt

∫ ls

0

ρsvsh
v∗sh

−
∫ ls

0

∂xqhv∗sh
=
∫ ls

0

fsv
∗
sh

, ∀v∗sh
∈ Uh,

d

dt

∫ ls

0

1
T

qhq∗h +
∫ ls

0

∂xq∗hvsh
− q∗h(ls, t)

∫
ω

Gvph
= 0 ∀q∗h ∈ Qh,

d

dt

∫
ω

ρpvph
v∗ph

− h(v∗ph
,M

h
) = −qh(ls, t)

∫
ω

Gv∗ph
−
∫

ω

v∗ph
λh, ∀v∗ph

∈ V ,

d

dt

∫
ω

a−3C−1 M
h

: M∗
h

+ (1 + ηp
d

dt
)h(M∗

h
, vph

) = 0, ∀M∗
h
,∈ Xh,

d

dt

∫
R3

ρavah
· v∗

ah
−
∫

R3
ph div v∗

ah
− 〈v∗

ah
· N, λh〉Γ = 0, ∀v∗

ah
∈ Wh,

d

dt

∫
R3

μaphp∗h +
∫

R3
p∗h div vah

= 0, ∀p∗h ∈ Ph,∫
ω

vph
λ∗

h − 〈vah
·N, λ∗

h〉Γ = 0.∀λ∗
h ∈ Lh.
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A basis of each of the finite dimensional spaces defined above is introduced. This
problem leads to the following matricial differential system after having eliminated
the bending moment M

h
as described in section (4.2). For the sake of simplicity, the

same notations are used: (vsh
, qh,vah

, ph, λh) denote now the vectors of coordinates
of the unknowns in the standard finite element bases and vph

denote the vector of
modal components of the spatial approximation of the plate velocity.

(5.10)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Mvs

h

dvsh

dt
− Dhqh = fsh

,

(b) M q
h

dqh

dt
+ D�

h vsh
− J�

h vph
= 0,

(c) M
vp

h

d2vph

dt2
+ 2Ah

dvph

dt
+ Khvph

= −Jh
dq

dt h
− B�

ωh

dλh

dt
,

(d) Mva

h

dvah

dt
− Ghph − B�

Γh
λh = 0,

(e) Mp
h

dph

dt
+ G�

h vah
= 0,

(f) Bωh
vph

− BΓh
vah

= 0,

where A� denotes the transpose of a matrix A. M vs

h , M q
h, M

vp

h , MM
h , Mva

h and
Mp

h are positive definite mass matrices. The matrix Dh represents a discrete 1D
divergence, its transpose a discrete 1D gradient. The matrix Kh represents the
Kirchhoff-Love plate operator and is defined by (4.7). The matrix Ah represents
the damping effects in the plate and is defined by 2Ah = ηpKh. The matrix Gh is a
discrete 3D gradient operator and its transpose a discrete 3D divergence. The matri-
ces Jh, Bωh

and BΓh
represent discrete trace operators which couple the unknowns

plate to the string and to the air. Finally fsh
represents a space approximation of

the string excitation fs.
Discrete energy identity. It is easy to show the following energy identity of the

semi-discretized in space problem. This identity is a semi-discrete version of the
continuous one given in (3.3) after having differentiated in time all the unknowns.
This is a consequence of the particular resolution of the plate-string coupling, which
imposes to work with the variables vs, q and vp.

Theorem 5.1 (Energy identity of the semi discretized problem). The solution
of (5.10) satisfies:

(5.11)
dEh

dt
(t) = (

dfsh

dt
,
dvsh

dt
) − ‖dvph

dt
‖2

Ah

where Eh is defined by:
(5.12)

Eh(t) =
1
2
‖dvsh

dt
‖2

Mvs
h

+
1
2
‖dqh

dt
‖2

Mq
h
+

1
2
‖dvph

dt
‖2+

1
2
‖vph

‖2
Kh

+
1
2
‖dvah

dt
‖2

Mva
h

+
1
2
‖dp

dt
‖2

Mp
h
.

and where for any positive definite matrix M, ‖.‖M denotes the norm associated to
the scalar product on Rn defined by (U, V )M = (U, MV ), ∀U, V ∈ R

n.
Approximation spaces for the string equation. A standard approximation of lower

order is used. A regular mesh of the string with segments of size hs is given. Then:
• L2(]0, ls[) is approximated with P0 discontinuous finite elements. The degrees

of freedom (dof) are located at the middle of each segment.
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• H1(]0, ls[) is approximated with P1 continuous finite elements. The degrees
of freedom are located at the vertex of each segment.

The mass matrices M vs

h is diagonal in the standard finite element basis of Uh. M q
h is

reduced to diagonal using standard mass lumping technique. With this choice, the
obtained scheme can be interpreted as a standard lower order centered finite difference
approximation of the 1D divergence operator. By definition of Lagrange P1 continuous
functions, all basis function of Qh are zero at the bridge, that is at the point x = ls,
except the one associated to the last node. Thus only the last column of Jh is not
zero. This last property will be helpful for the resolution algorithm of the discretized
scheme of the complete problem (see section (5.5.2)).

Approximation spaces for the plate equation. P2 ⊕ [b] continuous finite element
associated with a triangular mesh of ω, described in section (4.2), are used for the
approximation of H1(ω) and (H1(ω))3.

Approximation spaces for the fluid-structure interaction equations. It is not possi-
ble to approximate the spaces L2(R3) and H(div, R3), since R

3 is unbounded. There-
fore, the computation domain is artificially bounded by the use of Absorbing Boundary
Conditions introduced by Engquist et al.[21]. In the present study, higher order ABC
proposed by Collino [16] were used, essentially for their implementation simplicity.
The computations are thus restricted to a box of finite size denoted C.

The basic principle of this method consists of adding artificial absorbing condi-
tions on the boundaries of the computational domain. More precisely, it is possible to
define exactly transparency conditions in the frequency domain. These conditions are
approximated with higher order Padé approximation, in order to obtain local bound-
ary conditions both in space and time. For the sake of simplicity, these boundary
conditions are not presented in this paper. For more details, see [16, 37].

A regular mesh of C made with cubes of size ha and a triangular mesh Γh of the
guitar of step size hλ are introduced. Then:

• H(div, C) is approximated with standard lower order mixed finite elements of
Raviart-Thomas, associated to the regular mesh of C,

• L2(C) is approximated with Q0 discontinuous finite elements, associated to
the regular mesh of C,

• H
1
2
00(Γ) is approximated with P1 continuous finite elements, associated to the

mesh Γh.
The degrees of freedom for vah

, ph and λh are represented on Fig. 5.1

(a) (b) (c)

Fig. 5.1. Degrees of freedom for the approximation of L2(C) (a) and H(div, C) (b) on a regular

cubic mesh of C and for the approximation of H
1
2
00(Γ) on a triangular mesh of Γ.

The mass matrices Mp
h is diagonal in the standard finite element basis of Ph.

18



Mva

h is reduced to diagonal using standard mass lumping technique. With this
choice, the obtained scheme can be interpreted as a standard lower order centered
finite difference approximation of the 3D gradient operator.

5.5. Time discretization.

5.5.1. The numerical scheme. For the time discretization, a constant time
step Δt is chosen. A centered finite difference scheme is used for the string and for
the air while the plate equation is solved exactly in continuous time as described in
section (4.4). This scheme is written in such a way that almost all computations are
explicit, in particular for the 3D part. Therefore, the unknowns vph

, v̇ph
, vsh

and ph

are computed at instants tn+ 1
2 while qh and vah

are computed at instant tn. In
addition, this scheme is chosen is order to be able to derive a fully discrete energy
identity. In this aim a conservative time approximation of the coupling terms leads

to choose two different centered schemes for the approximation of
dqh

dt
and

dλh

dt
in

(5.10c). The following scheme for the time resolution of (5.10c) is proposed:
(5.13)⎧⎪⎨
⎪⎩

v̈ph
+ 2Ahv̇ph

+ Khvph
= −Jh

qn+1
h − qn−1

h

2Δt
− B�

ωh

λ
n+ 1

2
h − λ

n− 1
2

h

Δt
, ∀t ∈]tn−

1
2 , tn+ 1

2 [,

vph
(tn−

1
2 ) = v

n− 1
2

ph and v̇ph
(tn−

1
2 ) = v̇

n− 1
2

ph ,

This constraint leads also to discretize (5.10f) differentiated in time as it will be
shown in the proof of theorem 6.1. Finally, using (4.17) for the resolution of (5.13)
the following scheme is obtained:
(5.14)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Mvs

h

v
n+ 1

2
sh − v

n− 1
2

sh

Δt
− Dhqn

h = fn
sh

,

(b) M q
h

qn+1
h − qn

h

Δt
+ D�

h v
n+ 1

2
sh − J�

h v
n+ 1

2
ph = 0,

(c) v
n+ 1

2
ph = S(vn− 1

2
ph , v̇

n− 1
2

ph ) −RB�
ωh

(
λ

n+ 1
2

h − λ
n− 1

2
h

Δt
) −RJh(

qn+1
h − qn−1

h

2Δt
)

(d) v̇
n+ 1

2
ph = Ṡ(vn− 1

2
ph , v̇

n− 1
2

ph ) − ṘB�
ωh

(
λ

n+ 1
2

h − λ
n− 1

2
h

Δt
) − ṘJh(

qn+1
h − qn−1

h

2Δt
),

(e) Mva

h

vn+1
ah

− vn
ah

Δt
− Ghp

n+ 1
2

h − B�
Γh

λ
n+ 1

2
h = 0,

(f) Mp
h

p
n+ 1

2
h − p

n− 1
2

h

Δt
+ Ghvn

ah
= 0,

(g) Bωh

v
n+ 1

2
ph − v

n− 1
2

ph

Δt
− BΓh

vn+1
ah

− vn−1
ah

2Δt
= 0.

5.5.2. Resolution algorithm of the scheme. The practical resolution of the
scheme (5.14) has to be explained. We seek for (vn+ 1

2
sh , qn+1

h , v
n+ 1

2
ph , v̇

n+ 1
2

ph , vn+1
ah

, p
n+ 1

2
h ,

λ
n+ 1

2
h ), all other terms being known at this step of the computations. In this system,

notice that (5.14d) is simply (5.14c) differentiated in time, so that these 2 equations
are redundant. In fact, v̇

n+ 1
2

ph should only be computed in order to know the initial
conditions at the next step.
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Since the mass matrices M vs

h and Mp
h are diagonal, (5.14a) and (5.14f) give

explicitly v
n+ 1

2
sh and p

n+ 1
2

h . Then, since only the last column of the matrix Jh is not
zero (see section (5.4)), it is possible to uncouple the last component of the vector
qn+1
h , which corresponds to the dof associated to the bridge. Therefore, we denote:

(5.15) qn+1
h = (q̄n+1

h , Qn+1
h ) ∈ R

nq−1 × R,

and similar notations for M q
h and Dh. Equation (5.14b) can be rewritten:

(5.16)

⎧⎪⎪⎨
⎪⎪⎩

(a) M̄ q
h

q̄n+1
h − q̄n

h

Δt
+ D̄�

h v
n+ 1

2
sh = 0,

(b)
hs

2T

Qn+1
h − Qn

h

Δt
+ (Dhv

n+ 1
2

sh )nq − j�h v
n+ 1

2
ph = 0,

where jh denotes the last column vector of the matrix Jh and nq is the size of qh.
Since M̄ q

h is diagonal, (5.16a) gives q̄n+1
h explicitly. It remains to solve:

(5.17)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

hs

T
−2Δtj�h 0 0

Rjh

2Δt
I 0

RB�
ωh

Δt

0 0 Mva

h −ΔtB�
Γh

0 2Bωh
−BΓh

vn+1
ah

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Qn+1
h

v
n+ 1

2
ph

vn+1
ah

λ
n+ 1

2
h

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

Q̃h

ṽph

ṽah

λ̃h

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where Q̃h, ṽph
, ṽah

and λ̃h are known at this step of computations After eliminating

v
n+ 1

2
ph and vn+1

ah
, one obtains:

(5.18)

⎛
⎜⎝

hs

T
+ j�h Rjh 2j�h RB�

ωh

Bωh
Rjh

Δt

2
Δt

Bωh
RB�

ωh
+ ΔtBΓh

(Mva

h )−1B�
Γh

⎞
⎟⎠
⎛
⎝Qn+1

h

λ
n+ 1

2
h

⎞
⎠ =

⎛
⎝Q̃′

h

λ̃′
h.

⎞
⎠

It remains to eliminate Qn+1
h in this last equation, which leads to:

(5.19) Cλλ
n+ 1

2
h =

Bωh
jh

Δt(hs

T + ‖jh‖2
R)

Q̃′
h + λ̃′

h.

where the matrix Cλ is defined by:

(5.20) Cλ =
2Bωh

R
Δt

(
I − jhj�h R

hs

T + ‖jh‖2
R

)
B�

ωh
+ ΔtBΓh

(Mva

h )−1B�
Γh

It will be shown in section (6.1) that Cλ is positive definite under a compatibility
condition on the space steps ha and hλ. Note that Cλ is small (its dimension is the

number of degrees of freedom of λh). Once λ
n+ 1

2
h is known, Qn+1

h , v
n+ 1

2
ph , v̇

n+ 1
2

ph and
vn+1

ah
are computed explicitly. Finally, the structure of the global algorithm for the

resolution of the scheme (5.14) is the following:

Preliminary computations:
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a. Computation of the matrix Kh (Eq.4.7) and of its eigenelements,
b. Computation of the matrix Cλ (Eq. 5.20) and its Cholesky factorization,

At each time step, compute successively:
1. v

n+ 1
2

sh , p
n+ 1

2
h , q̄n+1

h with (5.14a), (5.14f) and (5.16a) respectively,

2. λ
n+ 1

2
h by solving the system (5.19),

3. Qn+1
h with the first equation of (5.18),

4. v
n+ 1

2
ph with the second equation of (5.17),

5. vn+1
ah

with the third equation of (5.17),

6. v̇
n+ 1

2
ph with (5.14d)

6. Theoretical issues.

6.1. Existence of the solution. In the algorithm described in the previous
section, the existence and uniqueness of the solution is related to the invertibility of
the matrix Cλ. In order to show that this matrix is symmetric and positive, it is
rewritten in the following form. Since the matrix R is symmetric and positive (see
[17]), one can write R =

√R�√R so that:

(6.1) Cλ =
2Bωh

√R�

Δt

(
I − (

√R�
jh)(j�h

√R)
hs

T + ‖jh‖2
R

)√
RB�

ωh
+ ΔtBΓh

(Mva

h )−1B�
Γh

which shows that Cλ is symmetric. In addition, it is easy to verify that:

(6.2)

(
I − (

√R�
jh)(j�h

√R)
hs

T + ‖jh‖2
R

)
=
(

I +
T

hs
(
√
R�

jh)(j�h
√
R)
)−1

and thus Cλ is positive. The fact that it is definite is based on the discrete inf-sup
condition of the mixed problem associated to the fictitious domain method. One has
to verify:

(6.3) ∃k0 > 0, inf
λh∈Lh

sup
vah

∈Wh

〈va ·N, λ∗〉Γ
‖vah

‖H(div) ‖λ‖H
1
2

≥ k0.

If (6.3) is verified, then BΓh
is injective so that BΓh

(Mva

h )−1B�
Γh

is positive definite
and consequently Cλ is also positive definite. Notice that the matrix Bωh

is not
injective because any line associated to a degree of freedom of λh which is not on
the soundboard is zero. The condition (6.3) imposes some compatibility between the
mesh Ch of the acoustic domain and the mesh Γh of the surface of the guitar. More
precisely, it is shown in [31, 25] that assuming that the mesh Γh is uniformly regular,
then there exists a constant α > 0 such that the uniform inf-sup condition (6.3) holds
if:

(6.4) hλ ≥ αha.

This result does not give any numerical value for the constant α but it depends a
priori on the domains C and Γ. However, in practice, it is verified that the discrete
inf-sup condition holds with α ≈ 1.1.

6.2. Stability analysis.
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6.2.1. Discrete energy identity. The stability of the numerical scheme (5.14)
is ensured through a fully-discrete energy identity. One has:

Theorem 6.1 (Energy identity for the numerical scheme ). The solution of
(5.14) satisfies:

(6.5)
E

n+ 1
2

h − E
n− 1

2
h

Δt
= (

fn+1
sh

− fn−1
sh

2Δt
,
�
v

n

sh
) − 1

Δt

∫ tn+1
2

tn− 1
2

‖v̇ph
‖2

Ah

where the total energy E
n+ 1

2
h is defined by E

n+ 1
2

h = E
n+ 1

2
ch + E

n+ 1
2

ph + E
n+ 1

2
ah , with:

(6.6)

∣∣∣∣∣∣∣∣∣∣∣∣

(a) E
n+ 1

2
ch =

1
2
(
�
v

n+1

sh
,
�
v

n

sh
)Mvs

h
+

1
2
‖�
q

n+ 1
2

h ‖2
Mq

h
,

(b) E
n+ 1

2
ph =

1
2
‖v̇n+ 1

2
ph ‖2 +

1
2
‖vn+ 1

2
ph ‖2

Ah
,

(c) E
n+ 1

2
ah =

1
2
‖�
v

n+ 1
2

ah
‖2

Mva
h

+
1
2
(
�
p

n+1

h ,
�
p

n

h)Mp
h
.

and with the following notations:

(6.7)

�
v

n

sh
=

v
n+ 1

2
sh − v

n− 1
2

sh

Δt
,

�
q

n+ 1
2

h =
qn+1
h − qn

h

Δt

�
p

n

h =
p

n+ 1
2

h − p
n− 1

2
h

Δt
,

�
v

n+ 1
2

ah
=

vn+1
ah

− vn
ah

Δt

Proof. First, (5.13) is multiplied by v̇ph
, integrated in time on [tn−

1
2 , tn+ 1

2 ] and

the result is divided by Δt. Since
λ

n+ 1
2

h − λ
n− 1

2
h

Δt
and

qn+1
h − qn−1

h

2Δt
are constant on

the integration interval, this leads to:

(6.8)
E

n+ 1
2

ph − E
n− 1

2
ph

Δt
= − 1

Δt

∫ tn+1
2

tn− 1
2

‖v̇ph
‖2

Ah
− (Jh

qn+1
h − qn−1

h

2Δt
,
v

n+ 1
2

ph − v
n− 1

2
ph

Δt
)

− (B�
ωh

λ
n+ 1

2
h − λ

n− 1
2

h

Δt
,
v

n+ 1
2

ph − v
n− 1

2
ph

Δt
),

Then (5.14a), (5.14b), (5.14e) and (5.14f) are differentiated in discrete time:

(6.9)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Mvs

h

�
v

n+1

sh
− �

v
n

sh

Δt
− Dh

�
q

n+ 1
2

h =
fn+1

sh
− fn

sh

Δt
,

(b) M q
h

�
q

n+ 1
2

h − �
q

n− 1
2

h

Δt
+ D�

h

�
v

n

sh
− J�

h

v
n+ 1

2
ph − v

n− 1
2

ph

Δt
= 0,

(c) Mva

h

�
v

n+ 1
2

ah
− �

v
n− 1

2

ah

Δt
− Gh

�
p

n

h − (BΓh
)�

λ
n+ 1

2
h − λ

n− 1
2

h

Δt
= 0,

(d) Mp
h

�
p

n+1

h − �
p

n

h

Δt
+ G�

h

�
v

n+ 1
2

ah
= 0,
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Equation (6.9b) is multiplied by
�
q

n+ 1
2

h +
�
q

n− 1
2

h

2
=

qn+1
h − qn−1

h

2Δt
, which leads to:

(6.10)
1
2‖

�
q

n+ 1
2

h ‖2
Mq

h
− 1

2‖
�
q

n− 1
2

h ‖2
Mq

h

Δt
+ (D�

h

�
v

n

sh
,

�
q

n+ 1
2

h +
�
q

n− 1
2

h

2
)

− (J�
h

v
n+ 1

2
ph − v

n− 1
2

ph

Δt
,
qn+1
h − qn−1

h

2Δt
) = 0.

The equation (6.9c) is multiplied by
�
v

n+ 1
2

ah
+

�
v

n− 1
2

ah

2
=

vn+1
ah

− vn−1
ah

2Δt
:

(6.11)
1
2‖

�
v

n+ 1
2

ah
‖2

Mva
h

− 1
2‖

�
v

n+ 1
2

ah
‖2

Mva
h

Δt
− (Gh

�
p

n

h,

�
v

n+ 1
2

ah
+

�
v

n− 1
2

ah

2
)

− (B�
Γh

λ
n+ 1

2
h − λ

n− 1
2

h

Δt
,
vn+1

ah
− vn−1

ah

2Δt
) = 0.

The mean value of (6.9a) written at times tn− 1
2 and tn+ 1

2 is multiplied by
�
v

n

sh
:

(6.12)
1
2 (

�
v

n+1

sh
,
�
v

n

sh
)Mvs

h
− 1

2 (
�
v

n

sh
,
�
v

n−1

sh
)Mvs

h

Δt
− (Dh

�
q

n+ 1
2

h +
�
q

n− 1
2

h

2
,
�
v

n

sh
) = (

fn+1
sh

− fn−1
sh

2Δt
,
�
v

n

sh
)

and the mean value of (6.9d) written at times tn− 1
2 and tn+ 1

2 is multiplied by
�
p

n

h

(6.13)
1
2 (

�
p

n+1

h ,
�
p

n

h)Mp
h
− 1

2 (
�
p

n

h,
�
p

n−1

h )Mp
h

Δt
+ (G�

h

�
v

n+ 1
2

ah
+

�
v

n− 1
2

ah

2
,
�
p

n

h) = 0.

Finally, the sum of equations (6.8), (6.10), (6.11), (6.12) and (6.13) gives:

(6.14)
E

n+ 1
2

h − E
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2Δt
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2
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n− 1
2
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Δt
)

and the time discretization of (5.10f) has been determined so that the last term of
this equation is zero.

6.2.2. Stability conditions for the numerical scheme. The identity (6.5)

shows that the discrete energy E
n+ 1

2
h is decaying as soon as the force exerted by the

finger on the string is zero. It is thus possible to derive conditions which ensure that
the discrete energy is positive and consequently the stability of the scheme [4]. One
has the following result:

Theorem 6.2 (Stability of the discrete scheme (5.14)). Assuming that the dis-
crete inf-sup condition (6.3) is verified, one has:
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• the discrete energy of the string E
n+ 1

2
ch , defined in (6.6a) is positive if:

(6.15)
csΔt

hs
< 1,

• the discrete energy of the plate E
n+ 1

2
ph , defined in (6.6b) is always positive;

• the discrete energy of the air E
n+ 1

2
ah , defined in (6.6c) is positive if:

(6.16)
caΔt

ha
<

1√
3
.

When both conditions (6.15) and (6.16) are satisfied, the scheme (5.14) is stable.
Proof.
1. One has:

(6.17)
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thus, using (5.14a) one obtains:

(6.18) 2E
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2
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where:

(6.19) αh = sup
qh∈Qh

(
Dhqh, (Mvs

h )−1Dhqh

)
‖qh‖2

Mq
h

.

The energy of the string is then positive as soon as:

(6.20)
αhΔt2

4
< 1.

Using the uniformity of the string mesh, a standard Fourier analysis technique leads
to the usual estimation [14]:

αh ≤ 4c2
s

h2
s

+ O(1),

from which the condition (6.15) is deduced.
2. Using the same technique, one shows, with the help (5.14f), that:

(6.21) 2E
n+ 1

2
ah ≥

(
1 − αhΔt2
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where:

(6.22) αh = sup
vah

∈Wh
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h vah
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h vah
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‖2
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h

.

Using the uniformity of the mesh of the acoustic domain, a standard Fourier analysis
technique leads to the usual estimation:

αh ≤ 12c2
a

h2
a

+ O(1),

from which the condition (6.16) is deduced.
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7. Numerical simulations.

7.1. Choice of the discretization parameters. For the numerical experi-
ments, the values of the various physical and geometrical parameters used correspond
to standard values found in the existing literature (in particular in [38] for the wood
parameters of the soundboard). They are given in table Table. 7.1.

Table 7.1

Values of geometrical and physical parameters used for the simulations

String: ρs = 0.00525 kg.m−1, T = 60N, ls = 65cm, ηs = 9.10−8s.

Soundboard:
c11 c11c̃22 c11c̃12 c11c̃33 ρp a ηp

(MPa) (MPa) (MPa) (MPa) (kg.m−1) (mm) (s)

plate 850 50 75 200 350 2.9 0.005

bridge 80 50 900 270 400 6 0.005

struts 100 60 1250 300 400 14 0.005

Air: ca = 344m.s−1, ρa = 1.21kgm−3,

Force at the bridge: G(x, y) = δ(x0,y0) (x0, y0) = (65cm, 4cm).

Plucking force: fs(x, t) = g(x)h(t).

g(x) =
exp(−(x − xf/δf )2)
ls
0

exp(−(x − xf/δf )2)
h(t) =

���
� ���

(1 − cos(πt/t1)), 0 ≤ t ≤ t1,

(1 + cos(π(t − t1)/t2)), t1 ≤ t ≤ t2,

0, t > t2.

xf = 55cm, δf = 6mm, t1 = 15ms t2 = 0.4ms.

The discretization parameters are chosen in order to verify the different con-
straints given by the stability conditions and the inf-sup criterion.

1. A mesh of the soundboard ωh including 3 struts and a bridge is constructed
with space step hp = 1.2cm (Fig. 7.1a). The number of vertices of this
mesh is 571 and the number of degrees of freedom is 3230. The number of
modes of the soundboard plate operator used is 50, which correspond to a
cut frequency of nearly 3000 Hz.

2. In order to simplify the computation of the coupling matrix Bωh
, the mesh

Γh of the surface of the guitar is an extension of the soundboard’s mesh ( Fig.
7.1b).. Since the rigid part of the body does not present small parts, one has:
hλ = hp. The number of degrees of freedom of this mesh is 1260.

3. The space step in the air ha is then chosen according the heuristic criterion
hλ > 1.1ha, imposed by the uniform inf-sup discrete condition (6.3): ha =
1.1cm. The computational domain is a box with side length 90 cms. This
lead to a mesh containing approximately 440,000 cubes.

4. The time step must verify the CFL condition (6.16), which lead to Δt =
1.85 10−5s. The sampling frequency is thus 50962Hz, which lead for a 6s
duration computation to nearly 300,000 time steps.

5. Finally, the space step in the string is chosen in adequation with the CFL
condition (6.15). For the lowest E6 string (fundamental 82.6 Hz), one has
thus hs = 2.1mm which corresponds to 308 nodes.
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(a) (b)

Fig. 7.1. (a) Mesh of the soundboard ω with 3 cross struts and the bridge (b) Mesh of the
surface of the guitar Γ

7.2. Results. We present here a couple of numerical results: eigenmodes of
the soundboard in vacuo, energy curves and visualization of the unknowns just after
the plucking. We refer the reader to a previous paper [18] in which a frequency
analysis of the simulation results is performed in order to evaluate the transfer of
energy through the various components of the coupled system and the effect of some
structural changes is presented which allows to analyze the vibroacoustical behavior
of the guitar in terms of structural, acoustic and structural-acoustic modes.

7.2.1. First eigenmodes of the soundboard in vacuo . The measurement
of the eigenfrequencies and eigenmodes of the soundboard of a guitar has been the
subject of an important number of experiments [30, 41, 35]. In the present study, the
purpose was not to simulate a particular instrument. Nevertheless it is possible to
compare at least qualitatively the shape and frequencies of the simulated soundboard
to existing results. Figure 7.2 shows the first 5 modes of a classical guitar soundboard
clamped on its outer boundary and without cavity, observed by Jansson and Fig. 7.3
shows the first six modes computed using the second order space approximation.
One can see that the computed modes are in good agreement with the experiments,
both for the shape and the frequencies estimations. The addition of an extra mode
comparing to the real guitar is certainly due to a rather simple strutting modeling of
the simulated soundboard.

185 Hz 287 Hz 460 Hz 508 Hz 645 Hz
(1,1) (2,1) (1,2) (1,3) (2,2)

Fig. 7.2. Vibration modes of a classical guitar top plate glued to fixed ribs and without back
(Jansson, 1971 [30])

7.2.2. Energy. Figure Fig. 7.4 shows the evolution of the energy during 100 ms
when plucking the lowest string of the guitar. The energy of the complete system
and the energy of the substructures of the instrument (string, plate and air) are
represented. Since the string remains the essential part of the total energy, the plate
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181 Hz
(1,1)

289 Hz
(2,1)

309 Hz
(1,2)

448 Hz
(1,3)

532 Hz
(3,1)

586 Hz
(2,2)

Fig. 7.3. Computed vibration modes of the soundboard in vacuo

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0  0.02  0.04  0.06  0.08  0.1

en
er

gi
e 

(J
)

time  (s)

total
string
plate

air

(a)

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 0  0.02  0.04  0.06  0.08  0.1

en
er

gi
e 

(J
)

time  (s)

plate
air

(b)

Fig. 7.4. (a) Evolution of the energy of string, plate, air and total energy vs time for the
plucked open string E2 (fundamental 82.6 Hz) during the first 100ms of the tone.(b) Plate and air
energy represented with appropriate scale.

and air energy are scaled by a factor 70. During the plucking, the string receives
mechanical energy from the finger. One can see that only a small part of this energy
in then transmitted to the plate and to the air. These curves show the energy exchange
between string plate and air.
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Fig. 7.5. String displacement, plate displacement, pressure jump and pressure in 3 orthogonal
planes immediately after the plucking of the open lowest string (E6, fundamental 82.5 Hz).

7.2.3. Visualization of the unknowns. Figure 7.5 shows the evolution of the
solution immediately after the plucking of the string, that is at the very beginning of
the free vibrations. The following quantities are represented:

• the string displacement,
• the plate displacement,
• the pressure jump λh at the surface of the guitar,
• the pressure p in 3 orthogonal planes simultaneously, which intersect in the

middle of the cavity, under the hole.
The time duration between two pictures is 0.36ms. The time evolution of the quan-
tities is obviously better seen with animated pictures [6]. The pictures of plate dis-
placement and of the pressure jump have been realized with the software Medit [24].
Note that the pressure in the cavity is largely greater than the pressure outside. The
pressure across the surface presents thus important variations near the hole, since
the pressure is obviously continuous across the hole. The amplitude of the string is
approximately 2mm and the amplitude of the soundboard is only of the order of 20
μm.

8. Conclusion. We have presented a relatively exhaustive numerical modeling of
the acoustic guitar. Up to our knowledge, this is the first modeling of this instrument
which involves the whole vibroacoustical behavior from the initial pluck to the 3D
acoustic radiation. Among other things, this numerical method can be used as a
tool for the estimation of quantities that are hard to measure experimentally as for
example the estimation of the relative structural losses and radiation losses in the
sounds generated by the guitar [18]. It can also be seen from Fig. 7.5 that the
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simulation results can be used for the analysis of the directivity properties of the
instrument.

This work has been made possible with the help of recent research developed
in numerical methods. It must be pointed out that the complex geometry of the
instrument for the fluid-structure interaction part of the problem is taken into account
in a very efficient way via the fictitious domain method. Also, the problem is limited to
a bounded cube with the help of high order absorbing boundary conditions. The most
interesting aspect of this study is certainly the stability analysis which is based on
energy estimation derived from the numerical scheme. This efficient technique permits
to show the stability in the rather complicated case where different time-discretization
are used, namely an analytical one and a finite differences one. Furthermore, for the
particular scheme presented here, the stability conditions are optimal in the sense
that they are the same than the ones obtained for uncoupled schemes.
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