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Diffraction par un obstacle situé dans un réseau de plaques semi-infinies

L'objet de cette Note est de proposer une méthode pour l'étude de la diffraction par un réseau de plaques horizontales semi-infinies localement perturbé par un obstacle. La méthode proposée couple une équation variationnelle posée dans un domaine borné entourant l'obstacle et une équation pseudo-différentielle écrite sur la droite verticale située à l'extrémité des plaques. Après avoir donné une formulation variationnelle du problème, on montre que celui-ci relève de l'alternative de Fredholm, en dehors des fréquences de résonance du réseau.

Diffraction by an obstacle located in a semi-infinite plates grating

Abridged English Version

Let (O, x, y) be an orthonormal system of coordinates of the plane. Consider a grating constituted of semi-infinite and horizontal plates located in the half-plane {x < 0}. We are interested in the diffraction of an incident plane wave by a bounded obstacle located in the grating. Without the obstacle, the geometry is periodic and one can classically look for quasi-periodic solutions (see [START_REF] Abboud | Electromagnetic waves in an inhomogeneous medium[END_REF], [START_REF] Bao | Variational Approximation of Maxwell's equations in biperiodic structures[END_REF], [START_REF] Bonnet-Bendhia | Guided waves by electromagnetic gratings and non uniqueness examples for the diffraction problem[END_REF]), the problem being set in one cell of the grating. In this Note, an original method to determine the perturbation of the diffracted field due to the presence of the obstacle is presented. This method, which has been first introduced in [START_REF] Bonnet-Bendhia | A generalized mode matching method for scattering problems with unbounded obstacles[END_REF] to study the radiation of a semi-infinite guide, is based on the following idea : if the trace u on Σ = {x = 0} (cf. Figure 1) of the diffracted field ϕ is known, then ϕ can be recovered using the Fourier transform in the half-plane Ω + = {x > 0} and using a modal decomposition in the cells Ω - n of the grating that do not contain the obstacle. Matching the normal derivatives of the representation formulas obtained, we show that u solves a one dimensional problem coupled to a classical diffraction problem set in a bounded domain surrounding the obstacle (equation ( 7)). After defining a suitable functional framework to study the variational formulation of the problem, we show that when k = pπ/d, for all p ∈ Z (d being the distance separating two plates), the Fredholm alternative holds. The case k = pπ/d corresponds to the resonances of the grating and will not be considered here.

Le plan étant muni d'un système de coordonnées orthonormé (O, x, y), on considère un réseau de plaques semi-infinies horizontales, situé dans le demi-plan {x < 0}. L'objet de cette Note est de présenter une méthode pour résoudre le problème de la diffraction d'une onde incidente plane par un obstacle borné situé dans l'une des cellules du réseau. Naturellement, la difficulté majeure provient du fait que la présence de l'obstacle détruit le caractère périodique du problème. En effet, en l'absence d'obstacle, on peut classiquement rechercher des solutions quasi-périodiques et se ramener ainsi à un problème posé dans une cellule du réseau (cf. [START_REF] Abboud | Electromagnetic waves in an inhomogeneous medium[END_REF], [START_REF] Bao | Variational Approximation of Maxwell's equations in biperiodic structures[END_REF], [START_REF] Bonnet-Bendhia | Guided waves by electromagnetic gratings and non uniqueness examples for the diffraction problem[END_REF]). On s'intéresse ici à la perturbation du champ diffracté induite par la présence de l'obstacle. La méthode proposée a été introduite pour la première fois dans [START_REF] Bonnet-Bendhia | A generalized mode matching method for scattering problems with unbounded obstacles[END_REF] afin d'étudier le rayonnement d'un guide semiinfini. Elle repose sur l'observation suivante : si l'on connait la trace u du champ diffracté sur la droite Σ = {x = 0} (cf. Figure 1), celui-ci peut aisément être reconstruit par transformée de Fourier dans le demi-plan Ω + = {x > 0} à droite de Σ et par décomposition modale à gauche de Σ dans les cellules ne contenant pas l'obstacle. En écrivant le raccord des dérivées normales des représentations précédentes du champ diffracté, on montre que la trace u résout un problème mono-dimensionnel couplé à un problème de diffraction classique posé dans la cellule contenant l'obstacle. En utilisant une méthode variationnelle, on prouve qu'en dehors des fréquences de résonance du réseau, le problème relève de l'alternative de Fredholm. On note Γ n = {x < 0 , y = nd} les plaques du réseau où d désigne la distance entre deux plaques.
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Pour tout n = 0, la cellule n du réseau est notée Ω - n = {x < 0, nd < y < (n + 1)d}, sa frontière

∂Ω - n étant constituée des plaques Γ n et Γ n+1 et de Σ n = Σ ∩ ∂Ω - n .
On suppose que l'obstacle, de frontière Γ, est contenu dans la cellule {x < 0, 0 < y < d}. Enfin, le milieu de propagation Ω est le domaine situé à l'extérieur des plaques et de l'obstacle. On note ϕ inc la solution quasi-périodique de la diffraction d'une onde plane par le réseau sans obstacle. Le champ diffracté par le réseau perturbé ϕ résout alors le problème de diffraction acoustique suivant :

∆ϕ + k 2 ϕ = 0 dans Ω , ∂ ν ϕ = 0 sur n∈Z Γ n , ∂ ν ϕ = g sur Γ , (1) 
où l'on a posé g = -∂ ν ϕ inc . Bien évidemment, pour ne conserver que les solutions sortantes de (1), il faut imposer une condition de rayonnement. Celle-ci sera précisée ultérieurement.

Dans les sections 2 et 3, nous commençons par obtenir (de manière formelle) une formulation variationnelle du problème. Sa justification rigoureuse repose sur une technique d'absorption limite et ne sera pas détaillée ici. Dans la section 4, nous précisons le cadre mathématique adéquat pour l'analyse du problème avant d'en faire une étude rigoureuse.

2 Représentation dans Ω + et dans Ω - n , n = 0

Nous allons voir comment reconstruire la solution ϕ du problème (1) dans Ω + puis dans chaque cellule Ω - n , n = 0, à partir de la seule connaissance de sa trace u = ϕ |Σ sur l'interface fictive Σ. La représentation de la solution dans Ω + s'obtient aisément en appliquant la transformée de Fourier (dans la direction y) au problème [START_REF] Abboud | Electromagnetic waves in an inhomogeneous medium[END_REF]. En effet, ϕ est donné dans Ω + par l'expression:

R + u(x, y) = F -1 {Fu(ξ) e -c √ ξ 2 -k 2 x }, (2) 
où F désigne la transformée de Fourier selon la direction y, et où l'on a posé pour tenir compte du caractère sortant du champ :

c ξ 2 -k 2 = ξ 2 -k 2 , si ξ 2 ≥ k 2 -i k 2 -ξ 2 , si ξ 2 ≤ k 2 .
Soulignons ici que les valeurs de ξ satisfaisant ξ 2 ≥ k 2 correspondent à des ondes évanescentes alors que si ξ 2 < k 2 , il s'agit d'ondes propagatives. Etant donné n = 0, la représentation R - n u de la solution dans chaque cellule Ω - n , est obtenue par une méthode de séparation de variables à partir du développement en série de Fourier de u dans l'intervalle I n =]nd, (n + 1)d[. En effet, le champ diffracté ϕ résout dans chaque cellule Ω - n le problème aux limites: Pour résoudre (3), il suffit donc de résoudre la famille de problèmes aux limites :

∆ϕ + k 2 ϕ = 0 dans Ω - n , ∂ ν ϕ = 0 sur Γ n ∪ Γ n+1 , ϕ = u sur Σ n . (3) 
∆ϕ n p + k 2 ϕ n p = 0 dans Ω - n , ∂ ν ϕ n p = 0 sur Γ n ∪ Γ n+1 , ϕ n p = ψ n p sur Σ n , la solution de (3) s'écrivant alors simplement: ϕ = +∞ p=0 (u, ψ n p ) ϕ n p dans Ω - n .
En recherchant des solutions à variables séparées, on obtient que ϕ n p (x, y) = ψ n p (y) e βpx , où l'on a posé :

β p = p 2 π 2 /d 2 -k 2 , si p 2 π 2 /d 2 ≥ k 2 -i k 2 -p 2 π 2 /d 2 , si p 2 π 2 /d 2 ≤ k 2 .
Notons qu'il existe un nombre fini de modes propagatifs (correspondant à β p ∈ iR + ) et un nombre dénombrable de modes évanescents (correspondant à β p ∈ R + ). Ainsi, la solution ϕ de (1) est donnée dans chaque cellule Ω - n par la formule suivante:

R - n u(x, y) = +∞ p=0 (u, ψ n p ) ψ n p (y) e βpx . (4) 
Nous commenons par ramener le problème posé dans la cellule {x < 0, 0 < y < d} à un problème posé en domaine borné. On introduit à cet effet la frontière fictive Σ - 0 (voir la Figure 1), située sur la verticale x = δ < 0 et on note Ω - 0 = {x < δ, 0 < y < d} le sous-domaine situé à gauche de Σ - 0 . Enfin, Ω 0 désignera le sous-domaine entourant l'obstacle limité latéralement par Σ 0 et Σ - 0 . Pour obtenir sur Σ - 0 une condition aux limites transparente, on utilise l'opérateur de Dirichlet-Neumann. Plus précisément, en procédant exactement comme on l'a fait pour les autres cellules, on voit que si ϕ |Σ - 0 est connu, la solution ϕ du problème de diffraction est donnée dans Ω - 0 par la formule: R - 0 (ϕ

|Σ - 0 ) = +∞ p=0 (ϕ |Σ - 0 , ψ n p ) ψ n p (y) e -βp|x-δ| . Si l'on définit maintenant l'opérateur de Dirichlet-Neumann T - 0 par : T - 0 (ϕ |Σ - 0 ) = ∂ x (R - 0 (ϕ |Σ - 0 
)) |Σ0-, on voit que ϕ est solution dans Ω 0 du problème aux limites suivant:

           ∆ϕ + k 2 ϕ = 0 Ω 0 ∂ ν ϕ = 0 ∂Ω 0 ∩ Γ 0 et ∂Ω 0 ∩ Γ 1 ∂ ν ϕ = g Γ ϕ = u Σ 0 ∂ x ϕ = T - 0 (ϕ |Σ - 0 ) Σ 0 - (5) 
Par suite, on a pour tout ψ ∈ H 1 (Ω 0 ):

∂ x ϕ, ψ Σ0 = T - 0 (ϕ |Σ - 0 ) , ψ Σ - 0 + Ω0 ∇ϕ • ∇ψ -k 2 Ω0 ϕψ + Γ gψ. (6) 
Partant des représentations ( 2) et ( 4), on introduit maintenant les opérateurs de Dirichlet-Neumann

T + et T - n (n = 0) tels que : T + (u) = -∂ x (R + u) |Σ et T - n (u) = ∂ x (R - n u) |Σn .
Alors, la fonction définie par :

ϕ =    R + u dans Ω + R - n u dans Ω - n , n = 0 R - 0 u dans Ω - 0
et qui est solution de (5) dans Ω 0 résout le problème de diffraction (1) si et seulement si ses dérivées normales à travers Σ se raccordent, condition qui s'écrit au sens faible: 

∂ x ϕ, v Σ0 = -T + u, v Σ - n =0 T - n u, v Σn , ∀v ∈ D(Σ). (7 
T + u, v Σ + n =0 T - n u, v Σn + T - 0 (ϕ |Σ - 0 ) , ψ Σ - 0 + Ω0 ∇ϕ • ∇ψ -k 2 Ω0 ϕψ = - Γ gψ. Posons a + (u, v) = T + u, v Σ = R c ξ 2 -k 2 Fu(ξ) Fv(ξ) dξ a - n (u, v) = T - n u, v Σn = +∞ p=0 β p (u, ψ n p ) (v, ψ n p ) a - 0 (ϕ, ψ) = T - 0 (ϕ), ψ Σ - 0 = +∞ p=0 β p (ϕ, ψ 0 p ) (ψ, ψ 0 p ) ((v, ψ)) = - Γ gψ il vient alors que : a ((u, ϕ) , (v, ψ)) = ((v, ψ)), avec : a ((u, ϕ) , (v, ψ)) = a + (u, v) + n =0 a - n (u, v) + a - 0 (ϕ |Σ - 0 , ψ |Σ - 0 ) + Ω0 ∇ϕ • ∇ψ -k 2 Ω0
ϕψ.

Nous allons maintenant définir de manière rigoureuse le cadre mathématique adéquat pour étudier ce problème variationnel.

4 Cadre fonctionnel et alternative de Fredholm L'espace variationnel naturel pour la recherche de ϕ est H 1 (Ω 0 ). En ce qui concerne u, la question du cadre fonctionnel est plus délicate. Soit

V + = {v ∈ S (R), R |ξ 2 -k 2 | |Fv(ξ)| 2 dξ < +∞} l'espace naturel de définition de a + (•, •).
Cet espace a fait l'objet d'une étude détaillée dans [START_REF] Bonnet-Bendhia | A generalized mode matching method for scattering problems with unbounded obstacles[END_REF]. En particulier, il y est établi que V + est un espace de Hilbert lorsqu'il est muni de la norme :

v V + = R |ξ 2 -k 2 | |Fv(ξ)| 2 dξ 1/2
, et que l'on a les injections (strictes) :

H 1/2 (R) ⊂ V + ⊂ H 1/2 loc (R).
Dans toute la suite, on supposera que k = pπ/d pour tout p ∈ Z. Sous cette hypothèse, on a β p = 0 pour tout p ∈ Z. De plus, comme |β p | ∼ p 2 π 2 /d 2 + 1 quand p tend vers +∞, l'espace naturel de définition pour a - n (•, •) n'est autre que H 1/2 (I n ). On est donc amené à définir l'espace fonctionnel

V -= {v ∈ L 2 (R), v |In ∈ H 1/2 (I n ), n∈Z v 2 1/2,In < +∞}, où : v 2 1/2,In = +∞ p=0 p 2 π 2 /d 2 + 1 (v, ψ n p ) 2 . Muni de la norme : v V -= n∈Z v 2 1/2,In 1/2
, V -est un espace de Hilbert et on a l'injection H 1/2 (R) ⊂ V -. L'espace variationnel où l'on est donc amené à rechercher u est donc V = V + ∩ V -, muni de la norme :

v V = v 2 V -+ v 2 V +
1/2 . Il est clair que H 1/2 (R) s'injecte de manière continue dans V . Par ailleurs, les éléments de V + sont localement dans H 1/2 (R), alors que ceux de V -ne diffèrent de ceux H 1/2 (R) que par leurs -éventuelles-discontinuités aux points y n = nd, n ∈ Z. On en déduit donc que V = H 1/2 (R) et que la norme • V est équivalente à la norme usuelle • 1/2,R (ce dernier résultat découlant du théorème de l'application ouverte). La formulation variationnelle du problème est donc la suivante:

Trouver (u, ϕ) ∈ W = {(v, ψ) ∈ V × H 1 (Ω 0 ); v |Σ0 = ψ |Σ0 } tel que : a ((u, ϕ) , (v, ψ)) = (v, ψ) , ∀(v, ψ) ∈ W
On peut maintenant énoncer le résultat principal de cette Note, à savoir que le problème de diffraction (1) relève de l'alternative de Fredholm: 

((u, ϕ) , (v, ψ)) = a + (u, v) + n =0 a - n (u, v) + a - 0 (ϕ |Σ - 0 , ψ |Σ - 0 ) + Ω0 ∇ϕ • ∇ψ + Ω0 ϕψ c ((u, ϕ) , (v, ψ)) = -(k 2 + 1) Ω0 ϕψ.
Alors, par compacité de l'injection de ). Remarque 1. i) La méthode dévelopée dans cette Note peut être étendue au cas où la condition aux limites imposée sur la frontière Γ de l'obstacle est de type Dirichlet. Cette fois, comme u |Σn ∈ H 1/2 00 (Σ n ), on a V -⊂ V + , de sorte que V = V -∩ V + = V -. On peut alors montrer que le Théorème 1 est encore valable. ii) Du point de vue numérique, l'approche proposée fournit par ailleurs une méthode peu coûteuse pour l'approximation numérique du champ diffracté par éléments finis.

H 1 (Ω 0 ) dans L 2 (Ω 0 ), c ( 

Figure 1 :

 1 Figure 1 : Le réseau de plaques.

  Posons alors pour tout p ∈ N * : ψ n p (y) = 2/d cos(pπ (y -nd)/d) et ψ n 0 (y) = 1/ √ d. La famille (ψ n p ) p∈N constitue une base orthonormale de L 2 (I n ), et u admet sur chaque intervalle I n la décomposition : u = +∞ p=0 (u, ψ n p ) ψ n p , où (•, •) désigne le produit scalaire usuel dans L 2 (I n ).

)

  Les inconnues à déterminer dans (7) sont les deux fonctions u et ϕ, respectivement définies sur Σ et Ω 0 et vérifiant u |Σ0 = ϕ |Σ0 . Pour tout couple de fonctions régulières v, ψ respectivement définies sur Σ et Ω 0 et vérifiant v |Σ0 = ψ |Σ0 , il vient en comparant (6) et (7):

Théorème 1 .

 1 On suppose que k = pπ/d pour tout p ∈ N. Alors, l'opérateur associé à la forme bilinéaire a est un opérateur de Fredholm de seconde espèce. Il s'agit de montrer que la forme bilinaire a peut s'écrire a = b + c où b(•, •) est une forme bilinéaire coercive sur W × W et c(•, •) une forme bilinéaire associée à un opérateur compact sur W . Soit : b

= ϕ 2 1 / 2 , 2

 122 •, •) est associée à un opérateur compact. La coercivité de b(•, •) repose d'une part sur le découplage entre modes évanescents et propagatifs dans les expressions des parties réelle et imaginaire de b((u, ϕ) , (u, ϕ)), et d'autre part sur le signe adéquat de ces dernières (lequel est directement lié au choix de solutions sortantes). Plus précisément, on a :|Re b ((u, ϕ) , (u, ϕ))| = |ξ|≥k |ξ 2 -k 2 | |Fu(ξ)| 2 dξ + n =0 p>kd/π |β p | (u, ψ n p ) Σ0 ≤ C ϕ 2 1,Ω0 , on a donc : |Re b ((u, ϕ), (u, ϕ))| ≥ |ξ|≥k |ξ 2 -k 2 | |Fu(ξ)| 2 dξ+ n =0 p>kd/π |β p | (u, ψ n p ) part : |Im b ((u, ϕ) , (u, ϕ))| = |ξ|≤k |ξ 2 -k 2 | |Fu(ξ)| 2 dξ + n =0 p<kd/π |β p | (u, ψ n p )Par suite, comme β p = 0, on a :n =0 a - n (u, u) + u 2 1/2,Σ0 ∼ u 2 V -, d'où: √2|b ((u, ϕ) , (u, ϕ))| ≥ |Re b ((u, ϕ) , (u, ϕ))| + |Im b ((u, ϕ) , (u, ϕ))| ≥ C( u 2 V + ϕ 2 1,Ω0