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Abstract. This paper is concerned with a mathematical study of guided propagation in the
microstrip transmission lines used in microelectronics.

In the first part, the case of a zero-thickness perfectly conducting strip is considered. Using a
regularized formulation of Maxwell’s equations, it is shown that finding guided modes amounts to
the spectral analysis of a noncompact family of self-adjoint operators. The existence of guided modes
is then proved thanks to the min-max principle.

In the second part, we deal with the case of a zero-thickness superconducting strip. An asymptotic
model derived from London’s equation is studied and the existence of guided modes is deduced from
the case of the perfectly conducting strip.
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1. Introduction. The wide use of planar transmission lines in microwave in-
tegrated circuits has induced the development of various methods to compute their
propagation characteristics (cf. [6]). The most common structure is the so-called mi-
crostrip line which consists of a thin conducting strip placed on a dielectric substrate
located on a conducting ground plane. Electromagnetically guided modes are con-
fined between the ground plane and the strip. Recently, new lines have been realized
using superconducting materials instead of conducting ones and providing very low
thermic losses.

We are interested here in the theoretical study of guided modes in conducting and
superconducting microstrip lines. Throughout the paper, thermic losses are neglected
and the conducting strip is considered to be of zero thickness. Moreover, since the
modes we are interested in are confined near the strip, the metallic box surrounding
the line is omitted. Therefore, the cross section of the line in an unbounded domain.
Consequently, as generally in the open waveguides theory (cf. [1, 2, 3, 5, 9]), the
determination of the guided modes amounts to solving a noncompact self-adjoint
eigenvalue problem.

The first part of the paper is devoted to the case where the strip is supposed to
be perfectly conducting. Using a regularized variational formulation for Maxwell’s
equations, it is proved that the guided modes are related to the eigenvalues of a self-
adjoint operator. Since the waveguide is open, this operator has a nonempty essential
spectrum. Its determination, which is not so obvious, constitutes the main topic of
this part. Then existence results for guided waves are established thanks to the min-

∗Received by the editors February 16, 1999; accepted for publication (in revised form) July 23,
1999; published electronically June 15, 2000. A portion of this paper appeared in the Proceedings of
the Fourth International Conference on Mathematical and Numerical Aspects of Wave Propagation,
Golden, CO, 1998, John A. DeSanto, ed., SIAM, Philadelphia, pp. 12–21.

http://www.siam.org/journals/siap/60-6/35242.html
†Laboratoire de Simulation et Modélisation des Phénomènes de Propagation (associé au

Centre National de la Recherche Scientifique), Ecole Nationale Supérieure de Techniques
Avancées: ENSTA/SMP, 32 Boulevard Victor, 75739 Paris cédex 15, France (bonnet@ensta.fr,
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max principle. In particular, the existence of the fundamental mode at low frequency
is established.

In the second part, the case of a superconducting strip is considered. Since the
strip is very thin in practice, its superconducting properties can be modeled thanks
to an asymptotic model based on London’s equation. This leads us to an impedance
boundary condition on the strip. Using the results obtained in the first part, existence
results for the guided modes are derived. We conclude the paper by proving that the
case of the perfectly conducting strip is the limit, as the impedance parameter goes
to infinity, of the case of the superconducting strip.

2. The perfectly conducting microstrip line.

2.1. Description of the microstrip line. Let (O, x1, x2, x3) be an orthonor-
mal system of coordinates. The structure we consider is invariant in the x3-direction.
It is located in the half-space x2 > 0 and limited in x2 = 0 by a perfectly conducting
ground plane. Let

Ω∞ = {(x1, x2) ;x2 > 0}

be the cross section of the line. Throughout this paper, we will assume that the
strip is of zero thickness, and its cross section ΓS will be considered as a crack. The
propagation domain is

Ω =Ω ∞ \ ΓS .

Its boundary is ∂Ω =Γ S ∪ ΓG, where ΓG denotes the cross section of the ground
plane.

The thickness of the dielectric substrate is noted h and the width of the strip w
(cf. Figure 1). Furthermore, we suppose that

ΓS = {(x1, h) , |x1| < w/2} .

The cross section of the dielectric substrate is then ΩD = R×]0, h[, and the air’s
cross section is ΩA = Ω∞ \ ΩD = R×]h,+∞[.

In practice, the line is surrounded by a metallic box. Physicists distinguish two
kinds of propagating modes in this line: the so-called box modes and the guided
modes. The first modes are not well confined near the strip and can interact with the
metallic box surrounding the line. On the contrary, the second modes (which are the
interesting ones for applications) are perfectly confined and do not “see” the metallic
box. The method we propose here to distinguish the guided modes from the others
in the mathematical analysis is to consider that the waveguide is an open one and
thus to neglect the box. As a consequence, the section of the propagation domain
Ω is supposed to be unbounded. The box modes are no longer guided: they become
radiating modes and form the continuous spectrum that will be studied in section 2.4.

2.2. Equations of the guided modes. Guided modes are particular solutions
(E,H) of Maxwell’s equations such that






E (x1, x2, x3, t) = E (x1, x2) ei(ωt−βx3),
H (x1, x2, x3, t) = H (x1, x2) ei(ωt−βx3),
E,H ∈ L2(Ω), ω,β ∈ R.

(1)

Such solutions describe electromagnetic waves propagating in the x3-direction, with-
out attenuation or deformation. ω is the pulsation, β is the propagation constant,
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Fig. 1. Cross section of the microstrip transmission line.

and ω/β the phase velocity. The fact that E and H are square integrable means that
the transverse energy is finite: this condition is responsible for the confinement of the
mode near the strip.

Let Curlβ and Divβ denote the operators obtained from the classical Curl and
Div operators after replacing the derivation, with respect to x3, with multiplication
by (−iβ).

Then, from (1) and Maxwell’s equations, we deduce the following two-dimensional
problem for {E,H}:






Curlβ E = −iωµ0H (Ω),
Curlβ H = iωεε0E (Ω),
Divβ(εE) = 0 (Ω),
Divβ H = 0 (Ω),
E × n = 0 (∂Ω),

(2)

where
• ε0 and µ0 are the values of the dielectric permittivity and the magnetic per-

meability in the vacuum and ε is the relative dielectric permittivity defined
by

ε =

{
1 in ΩA,
εD in ΩD,

where εD is a positive constant such that εD > 1.
• n is the unit normal to (ΓS ∪ ΓG) × R.

Classically, we deduce from (2) the following problem for the electric field:





Curlβ(Curlβ E) = ω2εE (Ω),
Divβ(εE) = 0 (Ω),
E × n = 0 (∂Ω),

(3)

where we have supposed, without loss of generality, that c20 = 1/ (ε0µ0) = 1.

2.3. A variational formulation. There are two ways to further expand these
ideas. The first consists of introducing a space of fields E such that Divβ(εE) = 0 (see,
for example, [12]). The numerical counterpart of this choice is the use of edge finite
elements. We present here an alternative approach which allows the use of nodal
elements (see [8, 4]). In this approach, the divergence-free condition is no longer
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imposed in the variational space, but is taken into account through a penalization
term in the variational formulation. Such a formulation is called regularized.

Let us set

V =
{
E ∈ L2(Ω)3; Curlβ E ∈ L2(Ω)3,Divβ(εE) ∈ L2(Ω),
E × n = 0 on ∂Ω}.(4)

In fact, V does not depend on β and can be defined equivalently by

V =
{
E ∈ L2(Ω)3;E3 ∈ H1(Ω), E2,1 − E1,2 ∈ L2(Ω),

εE1,1 + (εE2),2 ∈ L2(Ω), E × n = 0 on ∂Ω
}
.

It is a Hilbert space for the following norm (with the usual notation for the norms in
Sobolev spaces):

‖E‖V =

√
‖E‖2

0,Ω + ‖E3‖2
1,Ω + ‖E2,1 − E1,2‖2

0,Ω +
∥∥∥εE1,1 + (εE2),2

∥∥∥
2

0,Ω
,

and the embedding of V in L2
loc(Ω)3 is compact (cf. [16] for the case of homogeneous

boundary conditions and [8] for nonhomogeneous ones).
For every β ∈ R, consider the following variational eigenvalue problem:

Find ω ∈ R such that there exists E ∈ V, E '= 0 satisfying
∫

Ω
{Curlβ E.Curlβ F + Divβ(εE)Divβ(εF )} = ω2

∫

Ω
εE.F ∀F ∈ V.

(5)

Following [4], we can prove the following.
Lemma 2.1. Every solution of (3) satisfies (5). Conversely, if ω2 < β2, every

solution of (5) satisfies (3).
Proof. The fact that every solution of (3) satisfies (5) is a direct consequence of

Green’s formula. To show the converse result, we first prove that for ω2 < β2, every
solution E ∈ V of (5) satisfies

ϕ := Divβ(εE) = 0 (Ω).

Indeed, taking as test functions in (5)

F = Gradβ ψ,

where ψ ∈ H1
0 (Ω) is such that Divβ(εGradβ ψ) ∈ L2(Ω), problem (5) reads
∫

Ω
ϕDivβ(εGradβ ψ) = ω2

∫

Ω
εE.Gradβ ψ = −ω2

∫

Ω
ϕψ.(6)

If we define the self-adjoint operator T of L2(Ω) by





D(T ) =
{
ψ ∈ H1

0 (Ω); Divβ(εGradβ ψ) ∈ L2(Ω)
}
,

Tψ = −Divβ(εGradβ ψ) − ω2ψ ∀ψ ∈ D(T ),

then (6) shows that ϕ ∈ R(T )⊥, where R(T ) denotes the range of T . Thus, ϕ ∈
Ker(T ), and

(Tϕ,ϕ) = 0 =

∫

Ω
ε
(
|∂1ϕ|2 + |∂2ϕ|2

)
+

(
β2ε− ω2

)
|ϕ|2.
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Since ε ≥ 1, we have β2ε − ω2 > 0, and thus ϕ = Divβ(εE) = 0 in Ω. Now, (5) can
be written

∫

Ω
Curlβ E.Curlβ F = ω2

∫

Ω
εE.F ∀F ∈ V.(7)

Taking as particular test functions in (7) indefinitely differentiable fields F with sup-
ports in ΩD or in ΩA, one can check that






Curlβ Curlβ E = ω2εE in ΩD,

Curlβ Curlβ E = ω2εE in ΩA.
(8)

The lemma will be proved if we show that Curlβ Curlβ E belongs to L2(Ω)3. One
can easily check that this is equivalent to proving that the tangential component of
Curlβ E is continuous through the interface Σ \ ΓS between the dielectric and the air
(Σ denotes here the interface {x2 = h}). So let us prove that

∫

Σ\ΓS

[(Curlβ E × n) × n].(F × n) = 0 ∀F ∈ C∞
0 (Ω)3,(9)

where the integral has to be understood as a duality.
The first point to notice here is that this relation is satisfied for F ∈ V . Indeed,

multiplying the two equations of (8) by F ∈ V , one derives, thanks to Green’s formula,
the relation

∫

Ω
Curlβ E.Curlβ F −

∫

Σ\ΓS

[(Curlβ E × n) × n].(F × n) = ω2

∫

Ω
εE.F .

Comparing this last equation to (7), we obtain
∫

Σ\ΓS

[(Curlβ E × n) × n].(F × n) = 0 ∀F ∈ V.(10)

The difficulty comes now from the fact that C∞
0 (Ω)3 '⊂ V , since F ·n is not continuous

through the interface Σ \ ΓS for F ∈ V . Nevertheless, (9) can be deduced from (10),
since one can easily show that

∀F ∈ C∞
0 (Ω)3, ∃G = (GD, GA) ∈ V such that : G× n = F × n on Σ \ ΓS .

(Take, for example, GA = F in ΩA, and GD in ΩD such that GD × n = F × n and
εDGD · n = εAF · n on Σ \ ΓS .)

Thus, (9) holds and, consequently,

Curlβ Curlβ E ∈ L2(Ω)3.

Remark 2.2. (i) Notice that condition ω2 < β2 simply means that the mode’s
propagation speed is lower than the propagation speed in the vacuum. We will see
later that this condition will always be satisfied if we look for eigenvalues that are not
embedded in the essential spectrum.

(ii) More generally, we could have studied the regularized problem obtained by
adding to the bilinear form,

∫
Ω Curlβ E · Curlβ F , the penalization term

s

∫

Ω
Divβ E · Divβ F ,
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where s ≥ 1. The equivalence between the original problem and the regularized
formulation still holds in this case, provided that the eigenvalue ω2 satisfies ω2 < sβ2.

In this paper, L2(Ω)3 is equipped with the scalar product

(E,F )ε =

∫

Ω
εE.F ,(11)

the associated norm being denoted

‖E‖ε =

(∫

Ω
ε|E|2

)1/2

.

Let A(β) be the unbounded operator of L2(Ω)3 with domain D(A(β)) associated with
the bilinear form a(β; ·, ·) defined on V × V by

a(β, E, F ) =

∫

Ω
{Curlβ E.Curlβ F + Divβ(εE)Divβ(εF )}.

Then, problem (5) reads

For β ∈ R, find ω ∈ R such that there exists E ∈ D(A(β)), E '= 0, satisfying

A(β)E = ω2E.

Lemma 2.1 shows that every eigenvalue ω2 of A(β) such that ω2 < β2 corresponds to
a guided mode of the microstrip line. In other words, finding the guided modes of the
microstrip line amounts to the spectral analysis of the operator A(β).

Before we achieve this spectral analysis, let us first give an explicit definition of
the operator A(β) and of its domain D(A(β)). Recall that we have the following
equivalence:






E ∈ D(A(β))
and

A(β)E = G
⇔






E ∈ V and ∃G ∈ L2(Ω)3 such that

a(β;E,F ) = (G,F ) ∀F ∈ V.
(12)

Proposition 2.3. The operator A(β) is the operator of domain

D(A(β)) =
{
E ∈ L2(Ω)3, Curlβ E ∈ L2(Ω)3, Curlβ Curlβ E ∈ L2(Ω)3,
Divβ(εE) ∈ H1

0 (Ω) and E × n|∂Ω = 0
}

and such that for E ∈ D(A(β))

A(β)E =
1

ε
{Curlβ Curlβ E − εGradβ Divβ(εE)}.

Proof. Set

D =
{
E ∈ L2(Ω)3, Curlβ E ∈ L2(Ω)3, Curlβ Curlβ E ∈ L2(Ω)3,
Divβ(εE) ∈ H1

0 (Ω) et E × n|∂Ω = 0
}
,

and let us prove that D = D(A(β)).
(i) For E ∈ D, Green’s formula shows that

a(β;E,F ) =

∫

Ω
(Curlβ Curlβ E − εGradβ Divβ(εE)) · F dx ∀F ∈ V.
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Consequently, D ⊂ D(A(β)) and, for E ∈ D,

A(β)E =
1

ε
{Curlβ Curlβ E − εGradβ Divβ(εE)}.

(ii) To prove the inverse inclusion, let E ∈ D(A(β)) and set G = A(β)E ∈ L2(Ω)3.
Since D(A(β)) ⊂ D(a(β; ·, ·)) = V , we have

Curlβ E ∈ L2(Ω)3, Divβ(εE) ∈ L2(Ω), and E × n|∂Ω = 0.

Moreover, thanks to Green’s formula, the definition of D(A(β)) (see (12)) shows that

G = A(β)E =
1

ε
{Curlβ Curlβ E − εGradβ Divβ(εE)} ∈ L2(Ω)3.(13)

Consequently, proving the inclusion D(A(β)) ⊂ D amounts to showing that each of
the two terms Curlβ Curlβ E and Gradβ Divβ(εE) belongs to L2(Ω)3 if E ∈ D(A(β)).
To achieve this, the key point is to prove that the divergence ϕ := Divβ(εE) ∈ L2(Ω)
belongs, in fact, to the space H1

0 (Ω). Notice that if we prove this result, the assertion
Curlβ Curlβ E ∈ L2(Ω)3 then follows immediately from (13).

To show that ϕ ∈ H1
0 (Ω), we use the same kind of arguments as those used

in the proof of the equivalence between the strong formulation and the regularized
variational formulation in Lemma 2.1.

Taking in (5) test functions F of the form F = Gradβ ψ, where ψ ∈ H1
0 (Ω) is

such that Divβ(εGradβ ψ) ∈ L2(Ω)3, we see that ϕ = Divβ(εE) satisfies
∫

Ω
ϕDivβ(εGradβ ψ) =

∫

Ω
εG · Gradβ ψ.(14)

Now let ϕ̃ ∈ H1
0 (Ω) be the unique solution of the coercive (for β '= 0) variational

problem
∫

Ω
εGradβ ϕ̃ · Gradβ ψ = −

∫

Ω
εG · Gradβ ψ ∀ψ ∈ H1

0 (Ω).(15)

Taking in (15) test functions ψ ∈ H1
0 (Ω) such that Divβ(εGradβ ψ) ∈ L2(Ω), we

obtain the following relation for ϕ̃:
∫

Ω
ϕ̃Divβ(εGradβ ψ) =

∫

Ω
εG · Gradβ ψ.

Comparing this equation to (14), one can see that
∫

Ω
(ϕ− ϕ̃)Divβ(εGradβ ψ) = 0.

The surjectivity of the operator

T : ψ −→ Divβ(εGradβ ψ),
H1

0 (Ω) −→ L2(Ω)

then implies that ϕ = ϕ̃ ∈ H1
0 (Ω).

Proposition 2.4. The operator A(β) is self-adjoint.
Proof. Since A(β) is symmetric, a sufficient condition for its self-adjointness is

that the operator A(β) + Id be surjective. This follows immediately from the Lax–
Milgram theorem, since the bilinear form a(β; ., .) is clearly coercive on V ×V .

Because the operator A(β) is positive and self-adjoint, its spectrum is included in
R+. To study its possible eigenvalues, we first determine its essential spectrum and
then apply the min-max principle.
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2.4. The essential spectrum. As shown before, an important consequence of
the omission of the metallic cavity is that the spectrum of A(β) is not discrete, but
involves a continuous part—the so-called essential spectrum—which corresponds to
the radiating modes. The main result of this section is that this essential spectrum
is identical to the essential spectrum of the unperturbed medium. Here we mean by
unperturbed medium the medium obtained after removing the strip from the transmis-
sion line. Of course, this result is due to the boundedness of the strip. Nevertheless,
it cannot be deduced from classical results on the spectrum’s stability under compact
perturbation. Indeed, the difference between the two operators involved, A(β) for the
microstrip line and A∞(β) for the unperturbed medium, appears in their principal
parts. Consequently, A(β) − A∞(β) is not a compact perturbation of the operator
A∞(β).

In order to define the operator A∞(β), let us set

ε∞(x) = ε∞ (x2) =

{
εD if 0 < x2 < h,
1 if x2 > h.

Then A∞(β) is the operator with domain

D (A∞(β)) =
{
E ∈ L2 (Ω∞)3 , Curlβ E ∈ L2 (Ω∞)3 , Curlβ Curlβ E ∈ L2 (Ω∞)3 ,

Divβ (ε∞E) ∈ H1
0 (Ω∞) , and E × n|∂Ω∞ = 0

}

such that

A∞(β)E =
1

ε∞
{Curlβ Curlβ E − ε∞ Gradβ Divβ (ε∞E)} .

The operator A∞(β) is associated with the bilinear form a∞(β; ·, ·), of domain

V∞ =
{
E ∈ L2 (Ω∞)3 ; Curlβ E ∈ L2 (Ω∞)3 ,Divβ (ε∞E) ∈ L2 (Ω∞) ,

E × n|ΓG
= 0

}(16)

and satisfying

a∞(β;E,E) =

∫

Ω∞

|Curlβ E|2 + |Divβ (ε∞E)|2 ∀E ∈ V∞.(17)

We show the main result of this section in the following.
Theorem 2.5.

σess(A(β)) = σess (A∞(β)) = [γTM (β),+∞[ ,

where

γTM (β) = inf
u∈H1(R+),u '=0

∫ +∞

0

1

ε∞ (x2)

(∣∣∣∣
du

dx2

∣∣∣∣
2

+ β2|u|2
)

dx2

∫ +∞

0
|u|2dx2

.(18)

Remark 2.6. The equation ω2 = γTM (β) is the dispersion relation of the funda-
mental transverse magnetic guided mode of the slab waveguide (cf. [7, 10]). In other
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words, γTM (β) represents the first eigenvalue of the self-adjoint operator ATM (β)
defined on L2 (R+) by






D (ATM (β)) =

{
u ∈ H1

(
R

+
)
;

d

dx2

(
1

ε∞

du

dx2

)
∈ L2

(
R

+
)
,

du

dx2
(0) = 0

}
,

ATM (β)u = − d

dx2

(
1

ε∞

du

dx2

)
+
β2

ε∞
u.

One can easily check (cf. [10]) that γTM (β) is the first positive solution γ of the
dispersion relation

tan(κh) = εDη/κ,(19)

where we have set κ =
√
γεD − β2 and η =

√
β2 − γ. Furthermore, a graphical

study of the dispersion equation (19) (cf. [13]) shows that γTM (β) has the following
properties:






β −→ γTM (β)/β2 is a decreasing function on R+,

1

εD
< γTM (β)/β2 < 1 ∀β > 0,

γTM (β)/β2 ∼ 1 for β ∼ 0,

γTM (β)/β2 ∼ 1

εD
for β ∼ +∞,

lim
β−→+∞

γTM (β) − β2

εD
=

π2

4εDh2
.

(20)

For the proof of Theorem 2.5, we also need to define the quantity corresponding to
the fundamental transverse electric guided mode,

γTE(β) = inf
u∈H1

0 (R+),u '=0

∫ +∞

0

(∣∣∣∣
du

dx2

∣∣∣∣
2

+ β2|u|2
)

dx2

∫ +∞

0
ε∞ (x2) |u|2dx2

,

which is the first positive solution γ of the dispersion relation

tan(κh) = −κ/η.(21)

It can be shown that for a slab waveguide (cf. [10, 13]), the fundamental transverse
electric mode is faster than the fundamental transverse magnetic one. Indeed,

0 <
√
γTM (β)εD − β2 <

π

2h
<

√
γTE(β)εD − β2 <

π

h
.

Consequently,

γTM (β) < γTE(β).
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To establish Theorem 2.5, we will demonstrate successively the following three
inclusions:

σess(A(β)) ⊂ σess (A∞(β)) , σess (A∞(β)) ⊂ [γTM (β),+∞[ ,

[γTM (β),+∞[ ⊂ σess(A(β)).

To prove the first inclusion, we will build up a singular sequence of A∞(β) by trun-
cating a singular sequence of A(β).

The main difficulty in proving the second inclusion comes from the coupling of
the electric field components in a(β;E,E) through the curl and the divergence terms.
Because the problem is invariant in the x1-direction, we first perform a Fourier trans-
form in this direction. Using a suitable rotation in (O, x1, x3), we can decouple one
component from the two others. The result will then follow from the properties of
the transverse electric and magnetic modes of the slab waveguide.

Finally, to prove the last inclusion, we use the tools introduced to prove the second
inclusion to build up for every λ ≥ γTM (β) a singular sequence of A(β) associated
with λ. Let us start by proving the first inclusion.

Proposition 2.7.

σess(A(β)) ⊂ σess (A∞(β)) .

Proof. Let λ ∈ σess(A(β)) and E(p) ∈ D(A(β)) be a singular sequence of A(β)
associated with λ:

∥∥∥E(p)
∥∥∥
ε

= 1, E(p) ⇀ 0 in L2(Ω)3,
∥∥∥A(β)E(p) − λE(p)

∥∥∥
ε
−→ 0.

In order to build up a singular sequence of A∞(β) associated with λ, we multiply E(p)

by a regular function θ that vanishes in the vicinity of the strip ΓS . So let us set

F (p) (x1, x2) = θ (x1, x2)E
(p) (x1, x2) ,(22)

where θ ∈ C∞ (Ω∞) is such that
• there exists two open sets O and O′ of Ω∞, with ΓS ⊂ O ⊂ O′, such that

θ ≡ 0 in O and θ ≡ 1 in Ω∞ \ O′.

• ∂2θ ≡ 0 in the vicinity of the interface Σ = {x2 = h}.

The sequence F (p) defined by (22) will be a singular sequence of A∞(β) associated
with λ if and only if it satisfies the following properties:

(i) ∃δ > 0, ‖F (p)‖ε∞ ≥ δ ∀p ∈ N.

(ii) F (p) ⇀ 0 in L2 (Ω∞)3.
(iii) F (p) ∈ D (A∞(β)) and ‖A∞(β)F (p) − λF (p)‖ε∞ −→ 0.

F (p) clearly satisfies (i) and (ii). Indeed, we have

F (p) = E(p) − (1 − θ)E(p) and
∥∥∥E(p)

∥∥∥
ε

= 1.
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Since E(p) is bounded in V, the compactness of the embedding V ⊂ L2
loc(Ω)3 implies

that

(1 − θ)E(p) −→ 0 in L2(Ω)3.

Consequently,
∥∥F (p)

∥∥
L2(Ω∞)

≥ 1/2 for p large enough, and thus (i) is satisfied.

Property (ii) is a direct consequence of the weak convergence of E(p) to 0 in
L2(Ω)3.

To check property (iii), let us define for every U = (U1, U2, U3)
T the quantity

A∞U =
1

ε∞
{Curlβ Curlβ U − ε∞ Gradβ Divβ (ε∞U)} .

The important point here is that A∞F (p) belongs to L2 (Ω∞ \ Σ), but does not belong
to L2 (Ω∞) (recall that Σ = {x2 = h}). Indeed, F (p) does not fulfill some of the
continuity conditions on Σ, ensuring that A∞F (p) ∈ L2 (Ω∞). More precisely, since
∂2θ vanishes in the vicinity of Σ, we have

[
Curlβ F (p) × n

]

|Σ
= −

[
E(p)

2

]

|Σ
(∂1θ, 0, 0)T ,

[
Divβ

(
ε∞F (p)

)]

|Σ
=

[
ε∞E(p)

1

]

|Σ
∂1θ.

Consequently, these jumps are not (in general) equal to zero and F (p) '∈ D (A∞(β)).
Nevertheless, F (p) is a relevant choice for a singular sequence of A∞(β) associated
with λ. Indeed, a straightforward computation shows that

A∞F (p) − λF (p) = θ
(
A(β)E(p) − λE(p)

)
+ G(p),

where we have set

G(p) = grad θ × Curlβ E(p) + Curlβ
(
grad θ × E(p)

)
+ Gradβ

(
grad θ.ε∞E(p)

)
.

Since E(p) is a singular sequence of A(β) associated with λ, we have

θ
(
A(β)E(p) − λE(p)

)
−→ 0 in L2 (Ω∞)3 .

Furthermore, classical interior regularity results for the Maxwell operator imply that
E(p) is bounded in H2 (Ω∞ \ Σ). Thus, since the support of grad θ is included in
O′ \O which is bounded, we have G(p) −→ 0 in L2 (Ω∞)3, thanks to the compactness
of the embedding of H1 (Ω∞)3 into L2

loc (Ω∞)3. Consequently, we have

A∞F (p) − λF (p) −→ 0 in L2 (Ω∞ \ Σ)3 .

To obtain a singular sequence of A∞(β), we need only rectify the nonzero jumps of
F (p) across Σ. This will be achieved by adding to F (p) a corrective term C(p), defined
as the solution of the boundary value problem






A∞C(p) +
1

ε∞
C(p) = 0 in Ω∞ \ Σ,

C(p) × n|ΓP
= 0 and Divβ

(
ε∞C(p)

)

|ΓP

= 0,
[
C(p) × n

]

|Σ
= 0 and

[
ε∞C(p).n

]

|Σ
= 0,

[
Curlβ C(p) × n

]

|Σ
= −

[
Curlβ E(p) × n

]

|Σ
,

[
Divβ

(
ε∞C(p)

)]

|Σ
=

[
Divβ

(
ε∞E(p)

)]

|Σ
.
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The existence and uniqueness of C(p) follow immediately from the Lax–Milgram the-
orem. Furthermore, we have

C(p) −→ 0 in H1 (Ω∞ \ Σ)3 .

Now, the sequence F (p) +C(p) belongs to D (A∞(β)) and still satisfies properties (i),
(ii), and (iii). It is thus a singular sequence for A∞(β) associated with λ.

Now we prove the most difficult inclusion.
Proposition 2.8.

σess (A∞(β)) ⊂ [γTM (β),+∞[ .

Proof. Since A∞(β) is a self-adjoint operator, the proposition will be proved if
we show that

(A∞(β)E,E)ε∞ ≥ γTM (β)‖E‖2
ε∞ .(23)

To prove this inequality, we perform a Fourier transform in the x1-direction and
express (A∞(β)E,E)ε∞ and ‖E‖2

ε∞ with respect to Ê1, Ê2, and Ê3. After a rotation
in the plane (O, x1, x3), we obtain a decoupling of one component from the others.
The result will then follow from the study of the monodimensional problem in x2,
obtained by “freezing” the Fourier variable. Expanding (A∞(β)E,E)ε∞ , we have

(A∞(β)E,E)ε∞ =

∫

Ω∞

{
|∂2E3 + iβE2|2 + |∂1E3 + iβE1|2 + |∂1E2 − ∂2E1|2

+ |ε∞∂1E1 + ∂2 (ε∞E2) − iβε∞E3|2
}

dx1dx2.

Let us define for almost every x2 ∈ R+ the Fourier transform of E (·, x2) ∈ L2(R) by

Ê (ξ, x2) =
1√
2π

∫

R

E (x1, x2) e
−iξx1dx1.

Then, the Plancherel theorem shows that for all E ∈ D (A∞(β))

(A∞(β)E,E)ε∞ =

∫

ξ∈R, x2∈R+

{∣∣∣∂2Ê3 + iβÊ2

∣∣∣
2

+
∣∣∣−iξÊ3 + iβÊ1

∣∣∣
2

+
∣∣∣−iξÊ2 − ∂2Ê1

∣∣∣
2

(24)

+
∣∣∣−iξε∞Ê1 + ∂2

(
ε∞Ê2

)
− iβε∞Ê3

∣∣∣
2
} dξ dx2

and

‖E‖2
ε∞ =

∫

R×R+

ε∞
∣∣∣Ê

∣∣∣
2
dξ dx2.

Now notice that since we have used a Fourier transform in the x1-direction, we are
looking for electromagnetic waves propagating in the direction k = (ξ/k, 0,β/k),
where k =

√
β2 + ξ2. Thus, it is natural to perform a rotation in the plane (O, x1, x3)

so that the direction defined by k is one of the two directions of the new system of
coordinates. So, let us set






F̂1 =
1

k

(
βÊ1 − ξÊ3

)
,

F̂2 = Ê2,

F̂3 =
1

k

(
ξÊ1 + βÊ3

)
,

(25)
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or equivalently





Ê1 =
1

k

(
βF̂1 + ξF̂3

)
,

Ê2 = F̂2,

Ê3 =
1

k

(
−ξF̂1 + βF̂3

)
.

(26)

Substituting these last relations in (24), we obtain

(A∞(β)E,E)ε∞ =

∫

ξ∈R, x2∈R+

{∣∣∣∂2F̂1

∣∣∣
2

+ k2
∣∣∣F̂1

∣∣∣
2
}

dξ dx2

+

∫

ξ∈R, x2∈R+

{∣∣∣∂2F̂3 + ikF̂2

∣∣∣
2

+
∣∣∣−ikε∞F̂3 + ∂2

(
ε∞F̂2

)∣∣∣
2
}

dξ dx2.

(27)

Furthermore, we have
∣∣∣Ê1

∣∣∣
2

+
∣∣∣Ê2

∣∣∣
2

+
∣∣∣Ê3

∣∣∣
2

=
∣∣∣F̂1

∣∣∣
2

+
∣∣∣F̂2

∣∣∣
2

+
∣∣∣F̂3

∣∣∣
2

and thus

‖E‖2
ε∞ =

∫

R×R+

ε∞
∣∣∣F̂

∣∣∣
2
dξ dx2.(28)

Since F̂1(ξ, .) ∈ H1
0 (R+) for almost every ξ ∈ R, the definition of γTE(k) shows that

∫

R+

{∣∣∣∂2F̂1

∣∣∣
2

+ k2
∣∣∣F̂1

∣∣∣
2
}

dx2 ≥ γTE(k)

∫

R+

ε∞
∣∣∣F̂1

∣∣∣
2
dx2.

Integrating this inequality with respect to ξ and using the fact that k −→ γTE(k) is
a nondecreasing function, we obtain (since k =

√
β2 + ξ2 ≥ β)

∫

ξ∈R, x2∈R+

{∣∣∣∂2F̂1

∣∣∣
2

+ k2
∣∣∣F̂1

∣∣∣
2
}

dx2 dξ ≥ γTE(β)

∫

ξ∈R, x2∈R+

ε∞
∣∣∣F̂1

∣∣∣
2
dx2 dξ.(29)

Using the inequality (cf. Remark 2.6)

γTM (β) < γTE(β),

we deduce from (29) that
∫

ξ∈R,x2∈R+

{∣∣∣∂2F̂1

∣∣∣
2

+ k2
∣∣∣F̂1

∣∣∣
2
}

dx2 dξ ≥ γTM (β)

∫

ξ∈R,x2∈R+

ε∞
∣∣∣F̂1

∣∣∣
2
dx2 dξ.(30)

Integrating inequality (32) given by Lemma 2.9 below with respect to ξ (notice that
the fields F̂2(ξ, ·) and F̂3(ξ, ·) defined by (25) belong to V for almost every ξ ∈ R) and
using the fact that k −→ γTM (k) is a nondecreasing function, one obtains that

∫

ξ∈R, x2∈R+

{∣∣∣∂2F̂3 + ikF̂2

∣∣∣
2

+
∣∣∣−ikε∞F̂3 + ∂2

(
ε∞F̂2

)∣∣∣
2
}
dξdx2

≥ γTM (β)

∫

ξ∈R, x2∈R+

ε∞

(∣∣∣F̂2

∣∣∣
2

+
∣∣∣F̂3

∣∣∣
2
)
dx2dξ.

(31)

Inequality (23), and thus Proposition 2.8, now follow immediately from the addition
of inequalities (30) and (31).
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Lemma 2.9. Let V be the subspace of L2 (R+) × L2 (R+) defined by

V =
{
F̂ =

(
F̂2, F̂3

)
∈ H1

ε∞

(
R

+
)
×H1

0

(
R

+
)}

,

where H1
ε∞ (R+) =

{
F̂2 ∈ L2 (R+) ,

(
ε∞F̂2

)
∈ H1 (R+)

}
.

Then, for every F̂ ∈ V and k ≥ 0, the following inequality holds:
∫

x2∈R+

{∣∣∣∂2F̂3 + ikF̂2

∣∣∣
2

+
∣∣∣−ikε∞F̂3 + ∂2

(
ε∞F̂2

)∣∣∣
2
}
dx2

≥ γTM (k)

∫

x2∈R+

ε∞

(∣∣∣F̂2

∣∣∣
2

+
∣∣∣F̂3

∣∣∣
2
)
dx2.

(32)

This lemma is proved in the appendix.
To conclude the proof of Theorem 2.5, it remains to show the following.
Proposition 2.10.

[γTM (β),+∞[ ⊂ σess(A(β)).

Proof. First, the definition of γTM (β) shows that the function k −→ γTM (k)
is bijective from [β,+∞[ onto [γTM (β),+∞[. Consequently, Proposition 2.10 will be
proved if we show that we can associate with every γTM (k), k ≥ β, a singular sequence
of A(β). This singular sequence will be constructed by truncating an electric field
deduced from the electric field F of the slab waveguide’s fundamental TM mode. One
can easily check that






F1 = 0,
F2 = − (k/ωε∞)u,

F3 = (i/ωε∞)
du

dx2
,

where u ∈ D (ATM (β)) satisfies ATM (k)u = γTM (k)u. Given a truncation function
θ ∈ C∞

0 (R+), define the sequence E(p) by

E(p) (x1, x2) =
1
√
p
θ (x1/p)E (x1, x2) ,

where

E (x1, x2) =




−ξ/kF3 (x2)

F2 (x2)
β/kF3 (x2)



 eiξx1 .

Notice that, to define E, we have used the rotation defined by (26). Using the same
arguments as those used in the proof of Proposition 2.7, we can build a singular
sequence of A(β) associated with λ by adding to E(p) a corrective term that ensures
the continuity conditions of the sequence across Σ \ ΓS .

As already shown, we do not investigate here the question of the existence of eigen-
values ω2 of A(β) embedded in the essential spectrum, i.e., such that ω2 > γTM (β). In
the following we will find conditions for the existence of eigenvalues below the essential
spectrum (these eigenvalues form the discrete spectrum). Notice furthermore that,
since γTM (β) < β2, every eigenvalue of A(β) such that ω2 < γTM (β) corresponds to
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a guided mode. These modes propagate more slowly than the fundamental mode of
the slab waveguide.

Remark 2.11. Using the same arguments as those used by Weder (cf. [17]), it
could probably be shown that the possible embedded eigenvalues ω2 of A(β) satisfy
γTM (β) ≤ ω2 < β2. In other words, the equivalence between the classical and the reg-
ularized formulations holds even for these eigenvalues, and they define guided modes
of the microstrip line.

From now on, we denote by N (β) the number of eigenvalues λ of A(β) such that
λ <γ TM (β) (counted with their multiplicity).

2.5. Existence of guided modes. To prove the existence of guided modes, we
use the min-max principle (cf. [14]). Let (λm(β))m≥1 be the increasing sequence of
positive real numbers defined as follows:

λm(β) = inf
Vm∈Vm(V )

sup
E∈Vm,E '=0

a(β;E,E)

‖E‖2
ε

,(33)

where Vm(V ) is the set of all m-dimensional subspaces of V .
The min-max principle states that the operator A(β) has at least m eigenvalues λ

satisfying λ <γ TM (β) if and only if λm(β) < γTM (β). In other words, the following
assertion holds:

λm(β) < γTM (β) ⇐⇒ N (β) ≥ m.(34)

Furthermore, if N (β) ≥ m, the first m eigenvalues of A(β) are exactly the numbers
λi(β), 1 ≤ i ≤ m.

First, let us use this result to prove an existence result at low frequency for the
fundamental mode.

Theorem 2.12. N (β) ≥ 1 for β small enough.
Proof. Inequality (34) shows that the theorem will be proved if we can establish

that λ1(β) < γTM (β) for β small enough, i.e., if we can find (for β small enough) an
electric field E ∈ V such that

a(β;E,E) − γTM (β)‖E‖2
ε < 0.

To build such an electric field, we use the electrostatic potential, which is the solution
ϕ of the following boundary value problem:






div(ε∇ϕ) = 0 (Ω),
ϕ = 0 (ΓG) ,
ϕ = 1 (ΓS) .

(35)

Thanks to Hardy’s inequality (cf. [11]), the Lax–Milgram theorem shows that this
problem has a unique solution in the weighted Sobolev space

W 1
0 (Ω) =

{
u,

(
1 + |x|2

)−1/2 (
log

(
1 + |x|2

))−1
u(x) ∈ L2(Ω), ∇u ∈ L2(Ω)

}
.

Then, let us set

E = (∂1ϕ, ∂2ϕ, 0)T = (∇ϕ, 0).

First, we have E ∈ V . Indeed, one can easily check that

E ∈ L2(Ω)3, Divβ(εE) = div(ε∇ϕ) = 0, and Curlβ E = iβ (E2,−E1, 0)T ∈ L2(Ω)3.
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Furthermore, since ϕ is constant on ΓG and ΓS , the tangential trace of E (which is
nothing but the tangential derivative of ϕ) is equal to zero on ∂Ω =Γ G ∪ ΓS .

We can then compute





a(β;E,E) =

∫

Ω
|Curlβ E|2 = β2

∫

Ω
|∇ϕ|2,

‖E‖2
ε =

∫

Ω
ε|∇ϕ|2.

Consequently,

a(β;E,E) < γTM (β)‖E‖2
ε ⇔ J(ϕ) :=

∫
Ω |∇ϕ|2∫
Ω ε|∇ϕ|2

<
γTM (β)

β2
.(36)

Now notice that γTM (β)/β2 = cTM (β)2, where cTM (β) is the propagation speed of the
fundamental TM mode of the slab waveguide. It follows from (20) that β −→ cTM (β)2

is a decreasing function on R+ that satisfies

lim
β−→0

cTM (β)2 = 1, lim
β−→+∞

cTM (β)2 = 1/εD.

Since

1/εD ≤ J(ϕ) =

∫
Ω |∇ϕ|2∫
Ω ε|∇ϕ|2

≤ 1,

there exists β∗ > 0 such that (36) is satisfied for β < β∗, i.e., such that the funda-
mental mode exists for β < β∗.

Remark 2.13. The proof of Theorem 2.12 gives an estimation of the propagation

speed c1(β) =
(
λ1(β)/β2

)1/2
of the fundamental mode. Indeed, we have

c1(β) ≤
(
a(β;E,E)

β2‖E‖2
ε

)1/2

= (J(ϕ))1/2.

Now we are going to see that, under some assumptions on the geometries of
the strip and the dielectric substrate, we can establish an existence result at high
frequency. Recall that w and h are, respectively, the width of the strip and the
thickness of the dielectric substrate.

Theorem 2.14. If w
2h > m, then N (β) ≥ m for β large enough.

Proof. Thanks to the min-max principle, this result can be obtained by proving
that for w

2h > m, the min-max λm(β) (defined by (33)) satisfies λm(β) < γTM (β) for
β large enough. To prove this, we first notice that for every m-dimensional subspace
Vm of V , we have from (33)

λm(β) ≤ sup
E∈Vm,E '=0

a(β;E,E)

‖E‖2
ε

.(37)

In particular, let Vm be the m-dimensional subspace of V spanned by the m electric
fields

(
E(p)

)
p=1,...,m

, where

E(p)
1 = E(p)

3 = 0 and E(p)
2 =






sin

{
pπ (2x1 + w)

2w

}
if 0 < x2 < h and |x1| <

w

2
,

0 elsewhere.
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One can easily check that E(p) ∈ V for p = 1, . . . ,m. Furthermore, we have





Divβ

(
εE(p)

)
= 0,

Curlβ E(p) =





iβ sin

(
pπ (2x1 + w)

2w

)

0
pπ

w
cos

(
pπ (2x1 + w)

2w

)




for |x1| < w/2 and 0 < x2 < h

and for 1 ≤ p '= q ≤ m :
(
E(p), E(q)

)
= 0 and a

(
β;E(p), E(q)

)
= 0. Thus

sup
E∈Vm

a(β;E,E)

‖E‖2
ε

=
a
(
β;E(m), E(m)

)
∥∥∥E(m)

∥∥∥
2

ε

.

A straightforward computation shows that

‖E(m)‖2
ε =

∫

Ω
ε
∣∣∣E(m)

∣∣∣
2

= εD

∫ w/2

−w/2

∫ h

0

∣∣∣∣sin
(
mπ (2x1 + w)

2w

)∣∣∣∣
2

dx1dx2

and

a
(
β;E(m), E(m)

)
=

(
β2 +

m2π2

w2

)∫ w/2

−w/2

∫ h

0

∣∣∣∣sin
(
mπ (2x1 + w)

2w

)∣∣∣∣
2

dx1dx2.

Thus, inequality (37) reads

λm(β) ≤ β2

εD
+

m2π2

w2εD
.

On the other hand, we know from (20) that

lim
β−→+∞

γTM (β) − β2

εD
=

π2

4εDh2
.

Consequently, if m2π2

w2εD
< π2

4εDh2 , i.e., if w
2h > m, then for β large enough, we have

λm(β) ≤ β2

εD
+

m2π2

w2εD
< γTM (β).

Theorem 2.14 shows that at high frequency there exist at least m guided modes
in a perfectly conducting microstrip line if it has a sufficiently thin dielectric substrate
or a sufficiently large strip.

3. The superconducting microstrip line.

3.1. Modelling the strip superconducting properties. The zero-thickness
strip is now supposed to be made of a superconducting material. The simplest way to
model the superconducting properties of a material (cf. [15]) is to use London’s macro-
scopic model for superconductivity. It consists of adding to the classical Maxwell’s
equations the so-called London’s equation, which relates the current J (in the super-
conductor) to the electric field E. In the time domain, this equation reads

∂J

∂t
=

1

µ0λ2
L(T )

E,
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where λL(T ) denotes the length of London’s equation, which depends only on the
temperature T and the nature of the superconducting material used. It represents
the penetration depth of the electromagnetic field inside the superconducting material
and is very small in practice. For an electromagnetic field of the form (1), London’s
equation becomes

J =
−i

µ0λ2
L(T )ω

E,

which looks like Ohm’s law, but with a purely imaginary conductivity, depending on
the frequency ω. Substituting this equation into Maxwell’s equations, one can easily
check that a superconducting material behaves, in London’s model framework, as a
material of negative dielectric permittivity εS(ω) depending on the frequency

εS(ω) = − 1

µ0λ2
L(T )ω2

.(38)

Nevertheless, in the particular case of a zero-thickness strip studied here, we can
use London’s model to derive formally an asymptotic model (cf. [13]), in which the
superconducting properties of the strip are taken into account through an impedance
condition written on the strip ΓS . More precisely, the asymptotic model is obtained
by simultaneously letting the strip’s dielectric permittivity εS(ω) tend to −∞ and its
thickness d to zero at the same speed. In other words, we first write

εS(ω) = ε∗S(ω)/δ and d = δd∗,

where δ is a small parameter and ε∗S(ω) and d∗ are some given characteristic values.
After a scaling step, we develop into a power series of delta the electromagnetic field
inside the strip and look for the equations satisfied by this field as the small parameter
delta tends to 0. This leads to a model in which the tangential component of the
electric field is continuous through ΓS and, moreover, proportional to the current
density in the strip. In other words, the conditions satisfied by the electric field are

{
[E × n] = 0 on (ΓS) ,

E × n =
1

Λ
[Curlβ E × n] × n on (ΓS) ,

(39)

where Λ is a positive constant.
Remark 3.1. (i) The positive constant Λ is given by the relation

Λ = −µ0ω
2εS(ω)d = −µ0ω

2ε∗S(ω)d∗.(40)

Using (38), one should notice that (40) shows, in particular, that Λ does not depend
on the frequency, since

Λ = d/λ2
L(T ).

(ii) If the strip was made of a conducting material, the parameter Λ would have
been a complex number, with negative real and imaginary parts.

In the following, we will use conditions (39) to take into account the supercon-
ductivity of the strip.
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3.2. Mathematical setting of the problem. With the notation introduced
in section 2.1, the equations satisfied by the electric fields corresponding to the guided
modes are






Curlβ Curlβ E = ω2εE (Ω),
Divβ(εE) = 0 (Ω),
[E × n] = 0 (ΓS) ,

E × n =
1

Λ
[Curlβ E × n] (ΓS) ,

E × n = 0 (ΓG) .

(41)

Remark 3.2. Notice that, because of the continuity of the tangential component
of E across ΓS , a guided mode necessarily satisfies Curlβ E ∈ L2 (Ω∞)3.

To write a regularized variational formulation of problem (41), we proceed as in
section 2.3.

Let W be the subspace of L2(Ω)3 defined by

W =
{
E ∈ L2(Ω)3; Curlβ E ∈ L2 (Ω∞)3 , Divβ (εE) ∈ L2(Ω),

E × n|ΓS
∈ L2 (ΓS) , E × n = 0 on ΓG

}
,

and a(Λ;β; ·, ·) the bilinear form defined on W ×W by

a(Λ;β;E,F ) =

∫

Ω
Curlβ E.Curlβ F +

∫

Ω
Divβ(εE)Divβ(εF ) +Λ

∫

ΓS

(E × n).(F × n).

Now consider for every β ∈ R the following variational problem:

E ∈ W ∀F ∈ W, a(Λ;β;E,F ) = ω2(E,F )ε.(42)

Using the same arguments as those used in Lemma 2.1, we obtain the following.
Lemma 3.3. Every solution of (41) satisfies (42). Conversely, if ω2 < β2, every

solution of (42) satisfies (41).
The variational formulation (42) can be seen as a penalization of the boundary

condition E × n = 0 on ΓS , which is satisfied in the case of the perfectly conducting
strip studied in section 2. One can also formally notice from (39) that this case
corresponds to the limit problem obtained for Λ tending to infinity. This result will
be rigorously proved in section 3.4.

Before studying the spectral properties of the operator associated with the bilinear
form a(Λ;β; ·, ·), let us point out some useful properties of its domain W . First, as
can easily be checked from its definition, W does not depend on β. More precisely,
we have

W =
{
E ∈ L2(Ω)3; E3 ∈ H1(Ω), E2,1 − E1,2 ∈ L2(Ω), εE1,1 + (εE2),2 ∈ L2(Ω),

[E × n] = 0 on ΓS , E × n|ΓS
∈ L2 (ΓS) , E × n = 0 on ΓG

}
.

Furthermore, W is a Hilbert space for the norm

‖E‖W =
√
‖E‖2

ε + ‖Curlβ E‖2
ε + ‖Divβ E‖2

ε + ‖E × n‖2
0,ΓS

,

and the embedding of W in L2
loc(Ω)3 is compact (cf. [8]).
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Finally, one should notice that V ⊂ W (where V is defined by (4)), since the
conditions [E × n]|ΓS

= 0 and E × n ∈ L2 (ΓS) are clearly fulfilled by the electric
fields E that belong to V . As we will see later, this property will be very useful to
establish existence results for the guided modes.

Because the space L2(Ω)3 is equipped with the scalar product (·, ·)ε defined by
(11), let A(Λ;β) be the unbounded operator of L2(Ω)3 associated with the bilinear
form a(Λ;β, ·, ·).

Finding guided modes of the microstrip line amounts to finding the positive eigen-
values of A(Λ;β) such that ω2 < β2. Since A(Λ;β) is a positive self-adjoint operator,
its spectrum is included in R+ and is composed of a (possibly empty) discrete part
and a continuous part. Before using the min-max principle to show existence results of
guided modes, we have to determine the essential spectrum σess(A(Λ;β)) of A(Λ;β).
Using the same arguments as those used to prove Theorem 2.5, we can establish that
this spectrum is still the same as that of the unperturbed medium.

Theorem 3.4.

σess(A(Λ;β)) = [γTM (β),+∞[ .

Remark 3.5. (i) If we had used a conducting strip instead of a superconducting
one (see Remark 3.1), the bilinear form a(Λ;β; ·, ·) obtained would still have been
coercive, although Re(Λ) < 0. This result is a direct consequence of the fact that
Λ has a nonzero imaginary part. Nevertheless, this last property is also responsible
for the loss of symmetry of a(Λ;β; ·, ·). Consequently, the operator A(Λ;β) is not
self-adjoint in this case, and its spectral analysis is much more complicated.

(ii) As already shown, a superconducting and nonzero-thickness strip behaves as
a material of negative dielectric permittivity, depending on the frequency. The change
of sign of the permittivity (positive outside the strip and negative inside) makes the
operator involved no longer elliptic and its self-adjointness study quite difficult.

3.3. Existence of guided modes. The results presented here follow from those
obtained in section 2.5 in the case of the perfectly conducting microstrip line. Let
N (β) (respectively, N (Λ;β)) be the number of guided modes of this line (respectively,
of the superconducting microstrip line studied in this section). Recall that N (β) and
N (Λ;β) are, respectively, the numbers of eigenvalues λ of A(β) and A(Λ;β) such that
λ <γ TM (β), counted with their order of multiplicity. Then we have the following.

Theorem 3.6. For fixed β, Λ −→ N (Λ;β) is a decreasing function which is
bounded from below by N (β):

N (Λ;β) ≥ N (β).

Proof. The key point of the proof is the fact that V ⊂ W and that for every
E ∈ V , we have

a(Λ;β;E,E) = a(β;E,E).

Consequently,

inf
Vm∈Vm(V )

sup
E∈Vm,E '=0

a(β;E,E)

‖E‖2
ε

= inf
Vm∈Vm(V )

sup
E∈Vm,E '=0

a(Λ;β;E,E)

‖E‖2
ε

and

inf
Vm∈Vm(V )

sup
E∈Vm,E '=0

a(Λ;β;E,E)

‖E‖2
ε

≥ inf
Wm∈Vm(W )

sup
E∈Wm,E '=0

a(Λ;β;E,E)

‖E‖2
ε

.
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In other words, we have shown that

λm(β) ≥ λm(Λ;β).(43)

The min-max principle then shows that

N (Λ;β) ≥ N (β).

The fact that the function Λ −→ N (Λ;β) is decreasing also follows from the min-max
principle, since Λ −→ λm(Λ;β) is clearly a nondecreasing function for fixed β.

Thanks to result (i) of Theorem 3.6, it immediately follows from Theorems 2.12
and 2.14 that the same existence results as those obtained for a perfectly conducting
strip hold.

Theorem 3.7.
(i) N (Λ;β) ≥ 1 for β small enough.

(ii) If
w

2h
> m, then N (Λ;β) ≥ m for β large enough.

3.4. Asymptotic behavior of the guided modes for Λ −→ +∞. Problem
(41) can be seen as a penalization of the problem corresponding to a perfectly con-
ducting strip of zero thickness, the penalization parameter being Λ. In this section,
we make this statement precise by proving that the fundamental guided mode and
the corresponding eigenvalue of A(Λ;β) converge, as Λ −→ +∞, to the corresponding
eigenelements of A(β). This result is given by the following.

Theorem 3.8. Suppose that N (β) ≥ 1 and let λ1(Λ;β) (respectively, λ1(β)) be
the first eigenvalue of the operator A(Λ;β) (respectively, A(β)). Then

lim
Λ−→+∞

λ1(Λ;β) = λ1(β).

Furthermore, if E(Λ;β) ∈ W denotes an eigenvector associated with λ1(Λ;β), then
there exist a subsequence of E(Λ;β), still denoted E(Λ;β), and an eigenvector E(β) ∈
V of A(β) associated with λ1(β) such that

E(Λ;β) −→ E(β) in W.

Proof. To make the proof easier to read, we will omit in the notation the depen-
dence with respect to β. For instance, the operator A(Λ;β) (respectively, A(β)) is
denoted A(Λ) (respectively, A).

First, let us notice that since N (Λ) ≥ N ≥ 1 (see Theorem 3.6), the first eigen-
value λ1(Λ) of A(Λ) exists.

In order to establish Theorem 3.8, we are going to prove successively the following
assertions:

(i) There exist a real number λ∗1 and an electric field E ∈ V such that

lim
Λ−→+∞

λ1(Λ) = λ∗1 and E(Λ) ⇀ E weakly in W.

(ii) E(Λ) −→ E strongly in W .
(iii) λ∗1 = λ1 and E is an eigenvector of A associated with λ1.

Let us start by proving property (i).
(i) The function Λ −→ λ1(Λ) is nondecreasing and satisfies λ1(Λ) ≤ λ1 (see (43)).

Thus, there exist λ∗1 = limΛ−→+∞ λ1(Λ), and, furthermore, we have

λ∗1 ≤ λ1.(44)
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Let E(Λ) be an eigenvector associated with λ1(Λ) satisfying (without loss of general-
ity) the condition ‖E(Λ)‖ε = 1. Then

a(Λ;E(Λ), E(Λ)) = λ1(Λ).

This equation can be written
∫

Ω
|Curlβ E(Λ)|2 + |Divβ(εE(Λ))|2 + Λ

∫

ΓS

|E(Λ) × n|2 = λ1(Λ).(45)

Consequently, E(Λ) is bounded in W (with respect to Λ), and there exist E in W and
a subsequence of E(Λ), still denoted E(Λ), such that E(Λ) ⇀ E in W . Furthermore,
since (45) implies that

lim
Λ−→+∞

∫

ΓS

|E(Λ) × n|2 = 0,(46)

we have E × n|ΓS
= 0 and E belongs to V .

(ii) To prove that e(Λ) = E(Λ)−E converges to 0 in W , we shall first prove that
it converges to 0 in L2(Ω)3.

Taking the limit as Λ −→ +∞ in the variational formulation (42) satisfied for
every F ∈ V ⊂ W , one obtains that

a(Λ;E,F ) = a(E,F ) = λ∗1(E,F )ε ∀F ∈ V.(47)

It then follows from (42) and (47) that

a(Λ; e(Λ), e(Λ)) = λ1(Λ) + λ∗1‖E‖2
ε − 2λ1(Λ)(E(Λ), E)ε.(48)

Since ‖e(Λ)‖2
ε = 1 + ‖E‖2

ε − 2(E(Λ), E), (48) shows that

a(Λ; e(Λ), e(Λ)) = λ1(Λ)‖e(Λ)‖2
ε + (λ∗1 − λ1(Λ)) ‖E‖2

ε.(49)

Now set

e∞(Λ) = θ e(Λ),

where θ ∈ C∞ (Ω∞) satisfies
• ∀x ∈ Ω∞ : 0 ≤ θ(x) ≤ 1.
• There exist two open sets O and O′ of Ω such that






ΓS ⊂ O ⊂ O′,
θ = 0 in O,
θ = 1 in Ω∞ \ O′.

• θ (x1, x2) = θ (x1) in the vicinity of the interface Σ = {x2 = h} between the
dielectric substrate and the air.

It is clear that e∞(Λ) ∈ V∞, where V∞ (defined by (16)) is the domain of the
bilinear form a∞(·, ·) (defined by (17)) associated with A∞. Since

γTM = inf (σess (A∞)) = inf
F∈V∞,F '=0

a∞(F, F )

‖F‖2
ε∞

,
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we have

a∞ (e∞(Λ), e∞(Λ)) ≥ γTM ‖e∞(Λ)‖2
ε∞

.(50)

A straightforward computation shows that





a∞ (e∞(Λ), e∞(Λ)) =

∫

Ω
|θ|2

{
|Curlβ e(Λ)|2 + |Divβ(εe(Λ))|2

}
+ G(Λ)

‖e∞(Λ)‖2
ε∞

= ‖e(Λ)‖2
ε + H(Λ),

where





G(Λ) =

∫

Ω
|∇θ × e(Λ)|2 + 2 Re

(∫

Ω
(θCurlβ e(Λ)) · (∇θ × e(Λ))

)

+

∫

Ω
|∇θ · εe(Λ)|2 + 2 Re

(∫

Ω
(θDivβ(εe(Λ))) · (∇θ · e(Λ))

)
,

H(Λ) = −
∫

Ω
ε
(
1 − θ2

)
|e(Λ)|2.

Inequality (50) then reads
∫

Ω
|θ|2

(
|Curlβ e(Λ)|2 + |Divβ(εe(Λ))|2

)
≥ γTM‖e(Λ)‖2

ε + (γTMH(Λ) −G(Λ)) .

Since 0 ≤ θ ≤ 1, this inequality implies that

a(Λ; e(Λ), e(Λ)) ≥ γTM‖e(Λ)‖2
ε + (γTMH(Λ) −G(Λ)) .(51)

We now deduce from (49) and (51) that

(γTM − λ1(Λ)) ‖e(Λ)‖2
ε ≤ (λ∗1 − λ1(Λ)) ‖E‖2

ε − (γTMH(Λ) −G(Λ)) .(52)

To conclude the proof of (ii), we notice that (thanks to the compactness of the em-
bedding of W in L2

loc(Ω)3)






e(Λ) −→ 0 in L2
loc(Ω)3,

‖Curlβ e(Λ)‖ε and ‖Divβ(εe(Λ))‖ε are bounded,

(1 − θ) and ∇θ have compact supports.

Thus

lim
Λ−→+∞

G(Λ) = lim
Λ−→+∞

H(Λ) = 0.

On the other hand, we have

γTM − λ1(Λ) ≥ γTM − λ1 > 0 and lim
Λ−→+∞

λ1(Λ) = λ∗1.

Consequently, (52) implies that

lim
Λ−→+∞

‖e(Λ)‖2
ε = lim

Λ−→+∞
‖E(Λ) − E‖2

ε = 0.
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The convergence in W now follows from the fact that (for Λ ≥ 1)

‖E(Λ) − E‖W = ‖e(Λ)‖W ≤ a(Λ; e(Λ), e(Λ)) = λ1(Λ)‖e(Λ)‖2
ε + (λ∗1 − λ1(Λ)) ‖E‖2

ε.

(iii) Since E(Λ) − E converges to 0 in L2(Ω)3 and ‖E(λ)‖ε = 1, we have E '= 0.
Furthermore, (47) shows that

λ∗1 =
a(E,E)

‖E‖2
ε

.

On the other hand, the min-max principle shows that

λ1 = inf
F∈V,F '=0

a(F, F )

‖F‖2
ε

.

Consequently,

λ1 ≤ λ∗1.

Joined to (44), this inequality implies that

λ1 = λ∗1,

and thus E is an eigenvector associated with λ1.
Remark 3.9. Using the same arguments, it can be proved that the results of

Theorem 3.8 may be extended to the guided modes of higher order. In other words,
if N (β) ≥ m, we have (with obvious notation)

lim
Λ−→+∞

λm(Λ;β) = λm(β) and Em(Λ;β) −→ Em(β) in W.

Appendix. This appendix is devoted to the proof of Lemma 2.9. We have to

show that the following inequality holds for every F̂ =
(
F̂2, F̂3

)
∈ V:

∫

x2∈R+

{∣∣∣∂2F̂3 + ikF̂2

∣∣∣
2

+
∣∣∣−ikε∞F̂3 + ∂2

(
ε∞F̂2

)∣∣∣
2
}
dx2

≥ γTM (k)

∫

x2∈R+

ε∞

(∣∣∣F̂2

∣∣∣
2

+
∣∣∣F̂3

∣∣∣
2
)
dx2,

(53)

where

V =
{
F̂ =

(
F̂2, F̂3

)
∈ H1

ε∞

(
R

+
)
×H1

0

(
R

+
)}

and

H1
ε∞

(
R

+
)

=
{
F̂2 ∈ L2

(
R

+
)
,
(
ε∞F̂2

)
∈ H1

(
R

+
)}

.

Proof. The main difficulty comes from the coupling of the two components F̂2

and F̂3, which is induced by the regularizing term.
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Consider the bilinear form b∞(β; ., .) defined for
(
F̂ , Ĝ

)
∈ V × V by

b∞
(
k; F̂ , Ĝ

)
=

∫

R+

(
dF̂3

dx2
+ ikF̂2

)(
dĜ3

dx2
+ ikĜ2

)

+



−ikε∞F̂3 +
d
(
ε∞F̂2

)

dx2







−ikε∞Ĝ3 +
d
(
ε∞Ĝ2

)

dx2



 dx2.

The lemma will be proved if the following inequality holds:

b∞
(
k; F̂ , F̂

)
≥ γTM (k)

∥∥∥F̂
∥∥∥

2

ε∞
∀F̂ ∈ V,(54)

where

∥∥∥F̂
∥∥∥

2

ε∞
=

∫

R+

ε∞
∣∣∣F̂

∣∣∣
2
dx2 =

∫

R+

ε∞

(∣∣∣F̂2

∣∣∣
2

+
∣∣∣F̂3

∣∣∣
2
)

dx2.

Indeed, inequality (53) can immediately be obtained by integrating inequality (54),
with respect to ξ, and using the fact that t −→ γTM (t) is a nondecreasing function.

So let us prove (54).

Let F̂ ∈ V, and define ϕ̂ as the unique function of H1
0 (R+) such that

− d

dx2

(
ε∞

dϕ̂

dx2

)
+ k2ε∞ϕ̂ =

d

dx2

(
ε∞F̂2

)
− ikε∞F̂3.(55)

Then, if we set

Ĝ = F̂ +

(
dϕ̂

dx2
,−ikϕ̂

)
,

we have Ĝ ∈ V, and thanks to (55),

d

dx2

(
ε∞Ĝ2

)
− ikε∞Ĝ3 = 0.(56)

A straightforward computation then shows that

b∞
(
k; F̂ , F̂

)
=

∫

R+

∣∣∣∣∣
dĜ3

dx2
+ ikĜ2

∣∣∣∣∣

2

+

∫

R+

∣∣∣∣−
d

dx2

(
ε∞

dϕ̂

dx2

)
+ k2ε∞ϕ̂

∣∣∣∣
2

dx2

and

∥∥∥F̂
∥∥∥

2

ε∞
=

∫

R+

ε∞
∣∣∣Ĝ

∣∣∣
2

+

∫

R+

ε∞

(∣∣∣∣
dϕ̂

dx2

∣∣∣∣
2

+ k2 |ϕ̂|2
)

.

Consequently, to prove (54) it is sufficient to prove the following two inequalities:

∫

R+

∣∣∣∣∣
dĜ3

dx2
+ ikĜ2

∣∣∣∣∣

2

≥ γTM (k)

∫

R+

ε∞
∣∣∣Ĝ

∣∣∣
2

(57)
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and

∫

R+

∣∣∣∣−
d

dx2

(
ε∞

dϕ̂

dx2

)
+ k2ε∞ϕ̂

∣∣∣∣
2

dx2 ≥ γTM (k)

∫

R+

ε∞

(∣∣∣∣
dϕ̂

dx2

∣∣∣∣
2

+ k2 |ϕ̂|2
)

.(58)

Let us start by proving (57). First, notice that (56) shows the existence of ψ̂ ∈
D (ATM (k)) such that






Ĝ2 =
ik

ε∞
ψ̂,

Ĝ3 =
1

ε∞

dψ̂

dx2
.

Inequality (57) then reads, in terms of ψ̂,

∫

R+

∣∣∣∣∣−
d

dx2

(
1

ε∞

dψ̂

dx2

)

+
k2

ε∞
ψ̂

∣∣∣∣∣

2

dx2 ≥ γTM (k)

∫

R+

1

ε∞




∣∣∣∣∣
dψ̂

dx2

∣∣∣∣∣

2

+ k2
∣∣∣ψ̂

∣∣∣
2



 ,(59)

or equivalently,

∥∥∥ATM (k)ψ̂
∥∥∥

2

L2
≥ γTM (k)

(
ATM (k)ψ̂, ψ̂

)

L2
,(60)

where we have set (u, v)L2 =
∫

R+ uv and ‖u‖2
L2 =

∫
R+ |u|2.

Setting f̂ = ATM (k)ψ̂, inequality (60) can be written

(
ATM (k)−1f̂ , f̂

)

L2

∥∥∥f̂
∥∥∥

2

L2

≤ 1

γTM (k)
.(61)

Since the essential spectrum of the self-adjoint operator ATM (k)−1 is the interval[
0, 1/k2

]
, and 1/γTM (k) is nothing but the largest eigenvalue of ATM (k)−1, we have

(
ATM (k)−1f̂ , f̂

)

L2

∥∥∥f̂
∥∥∥

2

L2

≤ supσ
(
ATM (k)−1

)
=

1

γTM (k)

and (61)—and thus (57)—is satisfied.
Comparing (58) and (59), we see that (58) can be proved simply by replacing

ε∞ with 1/ε∞ in the previous arguments. In this case, the spectrum of the operator
ATM (k)−1 is purely continuous and is still equal to

[
0, 1/k2

]
. Thus

supσ
(
ATM (k)−1

)
= 1/k2 ≤ 1/γTM (k),

and consequently,

‖ATM (k)ϕ̂‖2
L2 ≥ γTM (k) (ATM (k)ϕ̂, ϕ̂)L2 .
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interne de l’Ecole Polytechnique, Paris, France, 1977.
[12] C. Poirier, Guides d’Ondes Electromagnétiques Ouverts: Etude Mathématique et Numérique,
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