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A B S T R A C T

We study the stability of rotating collisionless self-gravitating spherical systems by using high-

resolution N-body experiments on a Connection Machine CM-5.

We added rotation to Ossipkov±Merritt (OM) anisotropic spherical systems by using two

methods. The ®rst method conserves the anisotropy of the distribution function de®ned in the

OM algorithm. The second method distorts the systems in velocity-space. We then show that

the stability of systems depends both on their anisotropy and on the value of the ratio of the

total kinetic energy to the rotational kinetic energy. We also test the relevance of the stability

parameters introduced by Perez et al. for the case of rotating systems.

Key words: instabilities ± celestial mechanics, stellar dynamics.

1 I N T R O D U C T I O N

Various analytical and numerical studies (Antonov 1973; Barnes,

Goodman & Hut 1986; Palmer & Papaloizou 1986; Perez & Aly

1996; Perez et al. 1996 and references therein) have shown that

spherical, collisionless, self-gravitating anisotropic systems with

components moving mainly on radial orbits are unstable. However,

all these works considered non-rotating systems, and it is well

known that rotation can play an important role in the dynamical

evolution of systems and modify their stability properties. It has

been shown that rotation can be the cause of the deformation

of systems like globular clusters or weakly elliptical galaxies

(Staneva, Spassova & Golev 1996; Goodwin 1997).

The stability of rotating stellar systems is a very complex

problem. Much work has been concerned with barred galaxies

(which are rapidly rotating stellar systems) (for a review see, Buta &

Crocker & Elmegreen 1996), but in a more general context, few

studies have been devoted in the literature to this topic. For

example, Papaloizou, Palmer & Allen (1991) have performed a

series of numerical simulations to analyse the stability of systems

where rotation was introduced by using the technique proposed by

Lynden-Bell (1962). All their simulations produced end-states in

which a triaxial bar appears. These important results cannot be

considered general, since they were obtained for systems domi-

nated by particles evolving on radial orbits, and put in rotation by a

speci®c procedure. In order to analyse the in¯uence of rotation on

the (in)stability of a given system, it is necessary to consider not

only spherical systems with different kinds of anisotropy but also

different methods for introducing the rotation. This paper develops

such an analysis. We are also interested in testing the relevance of

the stability parameters (Perez et al. 1996) on rotating systems.

Perez et al. have shown that the stability of spherical self-gravitating

non-rotating systems can be deduced from the `anisotropic' com-

ponent of the linear variation of the distribution function (see

Section 2.2). Such stability parameters can be computed from

rotating systems. We show that they are still relevant for anisotropic

systems as long as the rotational kinetic energy is not too large.

The paper is arranged as follows. We describe in Section 2 the

method that we use to obtain the initial non-rotating systems as well

as the parameters describing the (in)stability of such systems. In

Section 3 we detail the techniques used to introduce a parametriz-

able rotation to the initial conditions presented in Section 2. In

Section 4 we show our numerical results on the (in)stability of

various rotating systems generated with different procedures.

Finally, the discussion and physical interpretation of our results

are presented in Section 5.

2 S TA B I L I T Y A N D I N S TA B I L I T Y O F

N O N - R OTAT I N G S Y S T E M S

2.1 Non-rotating initial conditions

In a previous paper (Perez et al. 1996) we used the Ossipkov±

Merritt (OM) algorithm (Ossipkov 1979; Merritt 1985a,b; Binney

& Tremaine 1987) to generate anisotropic self-gravitating spherical

systems with various physical properties. This algorithm starts from

a density given by riso�r� ~ wn
iso, where wiso�r� is a known gravita-

tional potential satisfying the Poisson equation, while n is the

polytropic index (1=2 < n # 5). This density pro®le riso�r� is then

deformed according to

rani�r� :� 1 �
r2

r2
a

� �
riso�r� ; �1�

where the anisotropic radius ra is a parameter which controls the

deformation.
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Using the Abel inversion technique, this procedure allows one to

de®ne an anisotropic distribution function (DF) which depends both

on E and L2 through the variable Q :� E � L2=2r2
a ,

fo�Q� �

���
2

p
4p2

d

dQ

�0

Q

dwiso�����������������
wiso ÿ Q

p drani

dwiso

: �2�

Once this DF has been computed, the initial conditions of our N-

body numerical simulations are generated by choosing at random,

from the above DF, the positions and velocities for the N particles.

The density pro®le rani�r� de®ned by equation (1) is the probability

density from which the positions are generated. The velocities are

generated from the velocity probability density deduced from the

equation (2) (see Appendix A).

It must be noted that there is a fundamental limitation in the OM

models: any given value of the polytropic index n implies a critical

value of ra below which the DF becomes negative and unphysical in

some region of phase-space. Merritt (1985a) interprets this limita-

tion as a simple illustration of the well-known fact that radial orbits

cannot always reproduce an arbitrary spherical mass distribution. In

these cases, in order to extend the OM algorithm to highly radially

anisotropic (ra . 1) systems, we have arbitrarily set the DF equal to

zero in this region. Such a procedure on DF affects only particles

with a large value of Q. This procedure is applied for systems with a

small value of ra which contain mainly particles with a small value

of Q. Such a procedure then affects a very small number of particles

(less than 0:1 per cent of the total number of particles). The systems

with a modi®ed DF are not strictly OM systems. However, they

conserve the properties which are for the present work: the density

pro®les deduced from the modi®ed DF are indistinguishable from

the density pro®les given by equation (1) with the same value of ra,

the Lindblad diagrams are very peaked around a small value of Q

(Perez et al. 1996), they well correspond to highly radially aniso-

tropic systems, and ®nally the radial dependence of the velocity

anisotropy

j2
r

j2
t

:�
< v2

r >
1
2
< v2

t >
� 1 �

r2

r2
a

: �3�

is preserved.

Finally, since each particle is initialized independently, the

equilibrium DF fo�E; L
2
� of the system is, in fact, slightly perturbed.

The perturbation is due to local Poissonian ¯uctuations of the

density. The dynamical evolution of the system then represents

the response of an anisotropic, self-gravitating spherical equili-

brium system submitted to such a perturbation.

2.2 Stability analysis

The equilibrium DF of a spherical self-gravitating system depends

only on the one-particle energy E and the squared total angular

momentum L2. If g1 denotes the perturbation generator, the linear

variation of the DF can be written as

df �
¶fo

¶E
fg1;Eg �

¶fo

¶L2
fg1; L

2
g: �4�

If DF is a monotonic decreasing function,1 the stability is then

related to the Poisson brackets fg1;Eg and fg1; L
2
g (Perez & Aly

1996; Perez et al. 1996). In our N-body simulations, these quantities

appear as two random variables, e and l respectively, de®ned for

each particle i (Perez et al. 1996). The stability of the system can be

predicted from the probability Pe for e to be negative, and the

statistical Pearson index (Calot 1973) Pl of the variable l. All

anisotropic, collisionless, self-gravitating, non-rotating spherical

systems with

Pl & 2:5 and Pe * 20 per cent �5�

are unstable, while those with

Pl * 2:5 and Pe & 20 per cent �6�

are stable. The two other regions of the �PlPe� plane correspond to a

transition between a stable system and an unstable system. In the

particular case of OM models, these regions correspond to an

anisotropy radius ra close to 2 (Perez et al. 1996).

3 G E N E R AT I O N O F R OTAT I N G S Y S T E M S

3.1 De®nition

In order to generate virial-relaxed rotating spherical systems, we

modify the non-rotating systems de®ned in the previous section by

using techniques derived from the Lynden-Bell method (1962).

Since this method preserves the position and the norm of the

velocity of each particle, the systems are put in rotation without

modifying their total potential and kinetic energy. In practice, we

apply the following transformations to the velocity components

fvr ; vv; vfg of the particles:

Method 1 Method 2

vr ! vr vr ! 0

vv ! vv vv ! vv

vf ! |vf| vf !
��������������
1 �

v2
r

v2
f

s
|vf | :

�7�

The ®rst method then conserves the radial anisotropy de®ned in

the OM algorithm, while the second method distorts the system in

velocity-space.

The amount of rotation introduced by these methods can be

evaluated through the ratio

m � Krot=Ktot; �8�

where Ktot is the total kinetic energy, and Krot is the rotation kinetic

energy de®ned by Navarro & White (1993):

Krot �
1

2

XN

i�1

mi

�Li´ ÃLtot�
2

�r2
i ÿ �ri´ ÃLtot�

2�
: �9�

Here, Li is the speci®c angular momentum of particle i, and ÃLtot is a

unit vector in the direction of the total angular momentum of the

system; when the system does not rotate at all, the ÃLtot vector is the

null vector, and N is the total number of particles. In order to exclude

counter-rotating particles, the sum in equation (9) is actually carried

out only over those particles satisfying the condition �Li´ ÃLtot� > 0.

In order to have systems with different strengths of homogeneous

rotation (HR), we have applied either Method 1 or Method 2 to a

fraction t of the total number of particles. This fraction has been

constructed by choosing the particles at random in the overall

system. When t ! 0, the system does not turn, while, when t ! 1,

the system rotation reaches its maximum value.

In principle, there is no reason to consider only the case of

homogeneous rotation. Moreover, in order to roughly model the

presence of a rotating massive object like those sometimes con-

sidered in the centre of some elliptical galaxies, we also consider

inhomogeneous rotation (IR). In this case, we apply the above
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monotonous decreasing dependence with respect to all the isolating integrals
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velocity transformations only to those particles placed at a radial

distance smaller than k ´ R1
2
, where k is a positive parameter and R1

2

is the radius containing half of the system mass. If k � 0, the system

does not turn, while, if k ! �¥, the rotation has its maximum value.

We have then four possible procedures for introducing a rotation

motion on our initial conditions. The ®rst two possibilities intro-

duce a homogeneous rotation by choosing particles at random in the

whole system and modifying their velocities according either to the

method 1 or 2, which de®nes the HR1 and HR2 procedures

respectively. The other two possibilities introduce an inhomoge-

neous rotation by applying either method 1 or method 2 to modify

the velocities of those particles placed within a given radial

distance, which de®nes the procedures IR1 and IR2 respectively.

Figs 1 and 2 show the values of m (equation 8) obtained from the

four possible procedures. As we can see from such ®gures, only the

HR2 and IR2 procedures lead to large fractions (m $ 10 per cent) of

kinetic rotation energy. We also note from these ®gures that the

dependence of m on ra depends on whether velocities have been

modi®ed according to method 1 or method 2. As a matter of fact,

for the HR1 and IR1 procedures, the amount of rotation obtained

(m) is greater for large ra values than for small ones. On the

contrary, for HR2 and IR2, m is larger for small ra values than for

large ones.

4 I N F L U E N C E O F T H E R OTAT I O N O N T H E

S TA B I L I T Y

Using the N-body code described in Alimi & Scholl (1993), we have

performed on Connection-Machine 5 a series of numerical

simulations2 of the evolution of the systems de®ned in the previous

section. As the collisionless hypothesis is fundamental for inter-

preting our results, we have not continued our simulations beyond a

few hundred dynamical times in order to avoid the later evolution

where two-body relaxation arises. However, all our models reach a

steady state before about 50 Td (where the initial dynamical time is

estimated by the following formula Td �
�����������������������P

r2
i =
P

v2
i

p
, and the

summations on initial positions and velocities are done on all the

particles). We will then present our results for this interval.

The physical mechanism of the radial-orbit instability for colli-

sionless self-gravitating systems is well known. It has been

described in detail by several authors (see, e.g., Palmer 1994).

The morphological deformation of the initial gravitational system

resulting from this instability is mainly due to the trapping of

particles with a low angular momentum in a bounded area of space.

This trapping favours a deformation of the initial spherical system

to an ellipsoidal or even a bar-like structure. To evaluate such a

deformation, it is convenient to use the axial ratio de®ned from the

moment of inertia tensor I (Allen, Palmer & Papaloizou 1990).

From the three real eigenvalues of I, l1 $ l2 $ l3, we compute the

axial ratios a1 � l2=l1 and a2 � l2=l3. These two quantities, which

can always be de®ned because these eigenvalues never vanish,

satisfy a1 # 1 # a2. In order to discriminate clearly between a bar-

like structure, a quasi-sphere and a disc-like structure, we de®ne the

quantity f from a1 and a2:

f �
1 ÿ a1

a2 ÿ 1
: �10�

A bar-like structure is characterized by a1 < 1 and a2 . 1, which

implies an f -value signi®cantly larger than 1. A disc-like structure is

characterized by a1 . 1, a2 > 1 and 0 < f < 1. Any system with a

f -value of order unity has a quasi-spherical structure.

4.1 Rotating systems according to method 1

This type of rotation preserves the anisotropy of the non-rotating

OM systems. The distribution function of the rotating system

depends only on the variable Q � E � L2=2r2
a as in the case of

the non-rotating systems. We see in Table 1 that, in the case n � 4,

the stability parameters de®ned in Section 2.2 are very weakly

modi®ed whatever the t and k parameters values are, that is to say,

whatever the rotational kinetic energy is (low with this method).

According to the conditions given by equations (5) and (6), we

expect the (in)stability of the original non-rotating systems not to be

modi®ed when they are put in rotation. Our numerical simulations

con®rm this. In Fig. 3 we see that the evolution of axial ratios is

similar for the rotating (dashed and dotted lines) and non-rotating

(solid lines) systems. This results holds for the homogeneous and

inhomogeneous rotations whatever the n parameter value is.

4.2 Rotating systems according to method 2

The situation is now more complicated because the rotation

procedure modi®es the system's anisotropy. In the second
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Figure 1. m versus t for n � 4; HR1, ra � 1:5 (thin solid line); HR1,

ra � 100 (thin dashed line) and HR2, ra � 1:5 (bold solid line); HR2,

ra � 100 (bold dashed line).

Figure 2. m versus k for n � 4, IR1, ra � 1:5 (thin solid line); IR1, ra � 100

(thin dashed line) and IR2, ra � 1:5 (bold solid line); IR2, ra � 100 (bold

dashed line).

2The set of numerical simulations performed have been made with 16384

particles. Some experiments have been performed using more particles

(65536); no signi®cant change in comparison with the work presented here

have been obtained.
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method, the stationary OM distribution function is modi®ed by a

positive de®nite and time-independent transformation. The result-

ing DF is then always stationary and positive de®nite. Moreover, as

the modi®ed systems are always spherical (no modi®cation on

positions have been performed), the new DF depends only on

isolating integrals of motion, the energy and the squared angular

momentum (Perez & Aly 1996). It is therefore a stationary solution

of the collisionless Boltzmann±Poisson system. We have also

veri®ed that the resulting systems are always virialized, as con-

®rmed by Fig. 4.

Let us ®rst consider rotating systems with high values of ra. We

recall that non-rotating OM systems with the same anisotropy

parameter are stable (Perez et al. 1996). The dynamical evolution

obtained for such systems in our present simulations (see Fig. 5, top

panels) allows us to distinguish two classes of behaviour. When ra is

large and the rate of rotation stays modest (typically m < 10 per

cent), we ®nd that systems remain stable and spherical (a1 . a2,

f . 1). However, when ra is large and the rate of rotation becomes

862 J.-M. Alimi, J. Perez and A. Serna
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Table 1. Stability parameter evolution for the ®rst method for rotating systems with n � 4.

HR1 IR1

ra � 1:5 ra � 100 ra � 1:5 ra � 100

t P« Pl P« Pl k P« Pl P« Pl

0.0 22.42 1.39 13.84 4.07 0.4 24.54 1.31 15.25 3.89

0.2 22.83 1.41 14.28 4.12 0.6 24.04 1.31 14.60 3.84

0.4 22.76 1.39 14.05 4.23 0.8 24.02 1.33 14.44 3.75

0.6 22.22 1.41 13.68 4.22 1.0 23.57 1.27 17.18 3.77

0.8 22.04 1.42 13.34 4.08 1.2 22.04 1.25 14.09 3.79

1.0 21.93 1.44 12.98 4.18 1.4 23.59 1.26 13.99 3.79

Figure 3. The axial ratio versus dynamical time for n � 4; ra � 100-HR1 (top-left panel), ra � 100-IR1 (top-right panel), ra � 1:5-HR1 (bottom-left panel) and

ra � 1:5-IR1 (bottom-right panel). The amount of rotation is represented by using different kinds of lines. Solid lines: t � 0(HR) or k � 0 (IR), dotted lines:

t � 0:3 (HR) or k � 0:6 (IR), and dashed lines: t � 0:8 (HR) or k � 1:4 (IR).

Figure 4. The evolution of the virial ratio for the initial systems de®ned

respectively by n � 4, ra � 1:5, and n � 4, ra � 100 which have acquired

their rotation according to the procedure HR2 with t � 30 per cent (thin line)

and IR2 with k � 1:4 (bold line) . A similar evolution for the virial ratio

(remaining very close to 1) is obtained for all runs.
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important (typically m > 10 per cent), we ®nd that initially spherical

systems develop a very soft bar-like instability (a2 . 1, a1 . 0:85,

f . 1:3).

Systems with small ra-values have a different behaviour, which

depends on whether the rotational motion has been introduced by

using a homogeneous or an inhomogeneous procedure. In the ®rst

case (HR2 procedure), Fig. 5 (bottom-left panel) shows that systems

which are radial orbit-unstable without rotation (e.g.,

a1 . 0:55; a2 . 1, f q 1) (solid line), become quasi-spheroidal

(a1 . 0:85, a2 . 1:1, f . 1:3) when they have a modest rotation

motion (m < 10 per cent) (dotted line). However, when rotation is

important (typically m > 10 per cent), such systems develop a disc-

like instability (a1 . 1, a2 . 1:25, f . 0) (dashed line). In the

second case (IR2 procedure)(bottom-right panel), the fact that

rotation has been introduced only in a central region of the

system prevents one from obtaining quasi-spherical systems, and

therefore the radial-orbit instability persists (a1 . 0:65, a2 . 1:1,

f . 3:5) for systems with a modest amount of rotation (n � 4; IR2;

ra � 1:5; k � 0:6) (dotted line). When the amount of rotation is

high enough (m > 10 per cent) a disc-like structure appears (a1 . 1,

a2 . 1:25, f . 0), as in the HR2 procedure. The evolution of the

axial ratio for the system (n � 4; IR2; ra � 1:5; k � 1:4) is

represented by dashed line. These results hold whatever the n

parameter value is. In practice, we have performed numerical

simulations for three values of n (n � 3:5; 4 and 4:5).

Are the stability parameters Pe and Pl still discriminating for

such rotating systems? We can see in Table 2 that non-rotating

stable systems (ra � 100) are predicted to remain stable when the

second rotation method is applied (Pe stays smaller than 20 and Pl

stays larger than 2.5) whatever the t and k parameters values are. On

the other hand, non-rotating radial-orbit unstable systems

(ra � 1:5) are predicted to become stable when suf®cient method

2 rotation is applied, from t � 0:4 and k � 0:8 which correspond in

Figs 1 and 2 to typically m . 5 per cent. Actually, in this case Pe

becomes less than 20, and Pl becomes greater than 2.5. Conse-

quently, these stability parameters which have been constructed to

Stability of rotating spherical stellar systems 863
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Figure 5. The axial ratios versus dynamical time for n � 4; ra � 100-HR2 (top-left panel), ra � 100-IR2 (top-right panel), ra � 1:5-HR2 (bottom-left panel) and

ra � 1:5-IR2 (bottom-right panel). The amount of rotation is represented by using different kinds of lines: solid lines: t � 0(HR) or k � 0 (IR), dotted lines:

t � 0:3(HR) or k � 0:6 (IR), and dashed lines: t � 0:8(HR) or k � 1:4 (IR).

Table 2. Evolution of the stability parameter for systems with n � 4 and put in rotation by using the second

method.

HR2 IR2

ra � 100 ra � 1:5 ra � 100

t P« Pl P« Pl k P« Pl P« Pl

0.0 22.42 1.39 13.84 4.07 0.4 23.50 1.81 17.93 3.51

0.2 21.31 1.94 13.43 4.08 0.6 21.68 2.17 13.34 3.57

0.4 19.21 2.92 12.32 4.10 0.8 18.43 2.81 11.67 3.67

0.6 16.96 3.55 10.46 4.17 1.0 16.56 3.17 10.55 3.75

0.8 14.08 4.04 8.97 4.22 1.2 15.23 3.62 9.39 3.80

1.0 11.24 4.58 7.40 4.46 1.4 13.85 3.97 8.64 3.96
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predict the stability of non-rotating spherical systems are not

relevant as soon as the quantity of kinetic rotation energy becomes

large, typically m * 10 per cent.

5 P H Y S I C A L I N T E R P R E TAT I O N A N D

C O N C L U S I O N S

The rotational properties of collapsed systems depend to a large

extent on the amount of angular moment before the collapse. In

order to study in a realistic way the importance of rotation for the

dynamics of self-gravitating systems, it is necessary either to

attempt an analytical approach, or to perform a complete numerical

study modelling the collapse and relaxation phases prior to the two-

body relaxation phase. However, although the collapse of a

system can be studied by using the introduced amount of rota-

tional kinetic energy as parameter, it is dif®cult to extract general

conclusions from this kind of experiments. As a matter of fact, in

this way the post-collapse physical features of the object cannot

be completely controlled, and hence it can then be dif®cult to

study with these methods the in¯uence of the rotation on post-

collapse systems.

This justi®es the method that we have used in this paper. Starting

from virialized systems with exactly known dynamical properties,

we can study the in¯uence of rotation by controlling its features. If

the initial systems cover a wide variety of physical properties, and

if the methods to introduce the rotation preserve certain funda-

mental features of these systems (invariance of mean energy,

conservation or controlled modi®cation of the distribution func-

tion), the numerical study will then be able to be used as a model to

extract some general conclusions. As a matter of fact, our simula-

tions start from a wide variety of initial conditions fully controllable

through the dependence on the two parameters n and ra. On the

other hand, the techniques used to introduce rotation to the systems

preserve (as explained in Section 3) the properties that ensure that

our models are spherical stationary solutions of the collisionless

Boltzmann±Poisson system.

The main properties found in our study are the following.

(1) There do not exist spherical self-gravitating systems in `fast'

rotation. Our simulations show in fact that, when m * 10 per cent,

the systems do not remain spherical but become lengthened along

one or two axes depending on whether they are isotropic or

anisotropic respectively, when they do not have a rotational motion.

(2) Rotation (in our case HR2 and IR2) can allow for a reorgani-

zation of systems in velocity-space able to modify their dynamical

behaviour. We have, in fact, shown that a moderate rotation

(typically 0 # m & 10 per cent) can stabilize and confer a quasi-

spherical structure to systems that, when they are not rotating, suffer

a radial-orbit instability. Therefore there can exist rotating spherical

self-gravitating systems. This is the case for our models with ra * 2

and m & 10 per cent.

(3) We have ®nally found that the stability parameters intro-

duced in (Perez et al. 1996) remain valid as long as m & 10 per cent.
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A P P E N D I X A : G E N E R AT I O N O F I N I T I A L

C O N D I T I O N S

A1 The initial positions for the particles

Let us consider a density riso given by the polytropic relation

riso � cnw
n
iso, where

cn �
�2p�nG�n ÿ 1=2�

G�n � 1�
; G�n � 1� :�

�¥

0
xneÿxdx;

and wiso is the solution of the Lame-Emden equation

1

r2

d

dr
r2 dw

dr

� �
� 4pGcnw

n
� 0:

This isotropic model is then deformed according to

rani�r� � 1 �
r2

r2
a

� �
riso;

where the anisotropic radius ra is a parameter which controls

the deformation. The polytropic index n is chosen in the range

�0:5; 5� in order to the system admits a ®nite mass

M�< r� � 4p
� r

0 r2rani�r�dr. The total mass of the system is

normalized to unity, and we then compute for a large set of particles

(1 # i # N) from the inverse function of M�x� and sin�x�, the

components

ri � rmaxMÿ1
�x�;

vi � 2 arcsin�
���
x

p
�;

fi � 2px;

where x is an uniform random variable in the range �0; 1�. The size

of the system rmax is chosen such that rani�r > rmax� < 10ÿ5.

A2 The initial velocities for the particles

Let us consider the velocity components in spherical coordinates

(vr ; vv; vf); we compute vt �

����������������
v2

v � v2
f

q
and a � arctan�vv=vf�.

The probability p�G� of ®nding a particle in a volume

dG :� dr dv df dvr dvv da of the phase-space is de®ned by the
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DF of the system

p�G�dG �
1

N
f �G�r2dr sin vdvdfvtdvtdvrda: �A1�

In the OM model, DF is a function only of the Q variable:

f � f �Q� with Q �
1

2
v2

r �
1

2
1 �

r2

r2
a

� �
v2

t � w�r�; �A2�

equation (A1) then reduces to�
p�G�dG �

�
8p2r2vt

N
f �r; vr ; vt�dr dvt dvr; �A3�

where r, vr and vt are dependent random variables. In order to

continue the integration of equation (A3), we introduce the vari-

ables R and b, de®ned as follows

vr � R cos b;

vt

�������������
1 �

r2

r2
a

s
� R sin b:

We then get

f �r; vr ; vt�
8pr2vt

N
� f

R2

2
� w�r�

� �
8p2r2R2 sin b

N 1 �
r2

r2
a

� � drdRdb:

We see from the previous expression that the random variable b is

independent of r and R, and we have

p�b�db �
sin b

2
db

p�r;R�drdR �
16p2r2R2

1 �
r2

r2
a

f
R2

2
� w�r�

� �
drdR:

The conditional probability of ®nding a particle with a velocity

de®ned by R at a given distance r0 is then

p�R | r0� �
p�r0;R�

p�r0�
with p�r0� �

4pr2r�r0�

M�� 1�
; �A4�

and ®nally

P�R | r � ro� �
4p

r�ro� 1 �
r2

o

r2
a

� � �R

0
R02f

R02

2
� w�ro�

� �
dR0

�
2p

r�ro� 1 �
r2

o

r2
a

� � �w�ro��
R2

2

w�ro�

f �Q�dQ�������������������������
2�Q ÿ w�ro��

p : �A5�

We are now able to assign a velocity for each particle for which the

position have been previously determined:

Ri � Pÿ1
�xjr � ro�;

bi � 2 sinÿ1
�
���
x

p
�;

ai � 2px

where x is an uniform random variable in the range �0; 1�, and Pÿ1 is

the inverse function of the probability de®ned by equation (A5).

Finally,

vr i � Ri cos bi;

vv i �

�������������
1 �

r2
o

r2
a

s
Ri sin bi cos ai;

vf i �

�������������
1 �

r2
o

r2
a

s
Ri sin bi sin ai:

This paper has been typeset from a TEX=LATEX ®le prepared by the author.
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