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ABSTRACT 
The so-called 'symplectic method' is used for studying the linear stability of a self
gravitating collisionless stellar system, in which the particles are also subjected to an 
external potential. The system is steady and spherically symmetric, and its 
distribution function/o thus depends only on the energy E and the squared angular 
momentum L 2 of a particle. Assuming that %/oE < 0, it is first shown that stability 
holds with respect to all the spherical perturbations - a statement which turns out 
also to be valid for a rotating spherical system. Thus it is proven that the energy of 
an arbitrary aspherical perturbation associated with a 'preserving generator' bg1 [Le., 
one satisfying 0/0/oL2{bg1, L2} =0] is always positive if %/oe~o and the external 
mass density is a decreasing function of the distance r to the centre. This implies in 
particular (under the latter condition) the stability of an isotropic system with 
respect to all the perturbations. 

Some new remarks on the relation between the symmetry of the system and the 
form of /0 are also reported. It is argued, in particular, that a system with a 
distribution function of the form/o=/o(E, L2) is necessarily spherically symmetric. 

Key words: instabilities - celestial mechanics, stellar dynamics. 

1 INTRODUCTION 

The analytical study of the linear stability of a steady colli
sionless stellar system is a quite formidable task which has 
great difficulties in its progression since the pioneering work 
of Antonov (Antonov 1961, 1973). The methods of investi
gation that have been used up to now fall into two cate
gories: the normal mode approach and the energetic 
approach. The first of these is presented in a systematic way 
in the most recent monograph by Palmer (Palmer 1994, see 
also Fridman & Polyachenko 1984, and references in these 
two books). It consists of a derivation, from the linearized 
equations of motion (Vlasov-Poisson's system, hereafter 
VP) of a dispersion relation for the eigenfrequencies of the 
system, and an attempt to extract from it as much informa
tion as possible on the nature of these numbers. An 
instability is assumed to be present if at least one of the 
eigenfrequencies has a non-zero imaginary part, while 
stability holds if they are all real. The second method con
sists of constructing a quadratic functional Wover a set fl of 
admissible test functions that satisfy some of the constraints 
actually fulfilled by any solution of VP. The system is found 
to be stable if W keeps the same sign over fl. Actually there 
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are several types of energy method, which correspond to 
different choices for Wand fl. The simplest one is the 
'thermodynamic method' (Lynden-Bell & Sannit 1969; 
Ipser 1974; Ipser & Horwitz 1979), in which only a very few 
constraints are taken into account. On the contrary, all of 
the VP constraints are retained in the more elaborate 
'energy principle' (Antonov 1962; Kulsrud & Mark 1970; 
Kandrup & Sygnet 1985), as well as in the 'symplectic 
method' (Bartholomew 1971; Kandrup 1990, 1991; Perez 
1995), the latter differing from the former by a restriction 
imposed on the perturbations, which are taken to be 'sym
plectic', i.e., they are generated by the infinitesimal canon
ical transforms acting on a steady state. 

Our aim here is to reinvestigate the linear stability of a 
spherically symmetric system by fully working in the sym
plectic framework, with the hope of extending - or at least 
clarifying - some of the results which have been obtained 
thus far by the other energy methods. Our paper thus 
presents an interesting illustration of the general principles 
in Perez (1995). At the same time, it also provides the 
theoretical background for the following paper of this series 
(Perez et al. 1996, hereafter Paper II), in which the problem 
is tackled from a numerical point of view. It should be 
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stressed from the very beginning that it has not thus far been 
proved that the method used here will be able to reproduce 
all the results based on the normal mode analysis reported 
in Palmer (1994). The latter, however, are sometimes based 
on approximations which appear quite difficult to justify 
rigorously, while ours are derived without the help of any 
approximation. 

Our plan is as follows. In Section 2, we state precisely our 
assumptions (which include the possible presence of an 
external potential, generally not considered by previous 
authors), and we develop some new considerations on the 
relationship between the symmetry of the steady states we 
are interested in and the form of their distribution functions 
10' In Section 3, we recall the definition of a linear symplectic 
perturbation, the expression of its energy (which we cast 
into a particularly uSt:ful form) and the relationship of the 
latter to the stability properties of. the system. Thus we 
consider in detail stability with respect to spherical (Section 
4) and aspherical (Section 5) perturbations, respectively, 
assuming that 10 is a decreasing function of the energy. Some 
extensions of our results to spherical rotating systems (Lyn
den-Bell 1960), and to systems with non-monotonic 10' are 
reported in Section 6. 

2 EQUILIBRIUM 

2.1 Notations and equations 

We consider a system consisting of a large number of gravi
tating particles interacting together, and also subjected to 
an 'external' potential cDc. We denote as x and v, respec
tively, the position and the velocity of a particle with respect 
to a Galilean frame (0; £,;9, t), and as ~: = (x, v) the corre
sponding point in the phase space R6. Most often, we shall 
represent ~ either by its standard spherical coordinates (r, (), 
c/J, V" ve, v</» (with () measured from the z-axis), or by its 
'canonical' coordinates (r, (), c/J, p" Pe, p</», with p,=V" 
Pe=rve,p</>=r sin (}v</> being the 'conjugated' momenta of (r, 
(), c/J) (e.g., Landau & Lifchitz 1966). 

We assume the following. 

(a) The external potential is spherically symmetric about 
0, i.e., cDc = cDc (r). In most practical applications, cDc will 
represent the potential either of a central massive object or 
of a massive halo. For our theoretical purpose, however, we 
do not need to fix its form precisely, and we simply consider 
it as being created by some matter distributed with the given 
smooth density Pe (r). The total respective masses Mc of that 
distribution and M of the system are finite. 

(b) The statistical state of the system is described at each 
time t by a one-particle distribution function ~ (~, t, m), 
with ~ (~, t, m) d~ dm representing the number of particles 
of mass between m and m + dm contained in the phase
space volume d~ around~. 

(c) Collisions between the particles are negligible. It is 
then sufficient to consider the mass-averaged distribution 
function 

I(~, t): = f m~(~, t, m) dm. (1) 

I solves the VP system 

01 01 
-+v'V 1'- V '1" V/=-+ JI' h}=O ot xJ x ot v' , 

V; 'I' =41tG(p + Pc): = 41tG(f I dv + Pc)' 

'1'=,_",,0 (r- 1) and lim I(x, v)=O, 
(r, v)-+oo 

(2) 

(3) 

(4) 

with the decrease of I at infinity supposed to be sufficiently 
fast. Here, '1': = cD + cDc is the total gravitational potential 
created by the particles and the external masses. 

v2 

h(x, v, t): ="2+ 'I'(x, t) (5) 

is the one-particle Hamiltonian, and {. , .} denotes the Pois
son bracket, defined by 

(6) 

Note that there is no explicit dependence on the mass of the 
particles appearing in equations (2) and (3). 

Instead of using both (2) and (3) we may use only equa
tion (2), in which we have substituted for cD the unique 
solution to equations (3) and (4). The latter can be written 
in integral form as cD =K[f], with the operator Kbeing quite 
generally defined by 

K[f](x): = -Gf I(~') d~'. 
Ix-x'i 

(7) 

2.2 Spherically symmetric steady states 

We are interested here in a steady state which is spherically 
symmetric with respect to 0 and, in particular, occupies a 
sphere of radius R (:::;; 00) in the physical space. Hence 10 -
assumed from now on to be a sufficiently smooth function -
and the associated potential cDo=K[f] are left unchanged by 
any rotation of R3 of centre 0, which implies that they can 
depend only on the three geometrical invariants r, v and 
X'v=rv" i.e., they are necessarily of the form 10 =/o(r, v, rv,) 
and cDo = cDo(r), respectively. 

Let us introduce the two quantities (where we set 
v,: = v-v/") 

and 

(9) 

which represent the energy of a particle in the potential '1'0 
and the squared modulus of its angular momentum with 
respect to O. Clearly, we can express v in terms of r, v, and 
L 2, and thus we may write 

(10) 
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Inserting the expression into the time-independent version 
of equation (2), we obtain 

(11) 

From the theory of first-order partial differential equations, 
we know that the general solution of equation (11) is a 
function of two independent integrals of its characteristic 
system 

dr dVr 

Vr L2/r2_'P~' 
(12) 

Two such integrals are obvious here: L2 (as dL2 does not 
appear) and E (r, v" L 2). We can therefore conclude at once 
that 

(13) 

The particular case fo=fo(E) corresponds to an isotropic 
equilibrium. 

The general form offo in equation (13) is well known, but 
it is usually derived (see, e.g., Dejonghe 1986, Binney & 
Tremaine 1987, Palmer 1994) by appealing to the so-called 
strong Jeans theorem, which deals with the isolating inte
grals of motion. As this theorem is far from being easy both 
to derive and to apply, we felt that it was a useful task to 
provide the reader with a completely straightforward proof. 
In particular, the proof presented here shows most clearly 
the basic reasons why fo depends on only two variables: 
symmetry requires that fo depends on only three variables, 
and the steady VP reduces this number by one unit. 

Eventually, the potential 'Po appearing in E is a solution 
of 

(14) 

(15) 

An immediate consequence (which will prove quite import
ant hereafter) of these equations is that 'Po(r) is a strictly 
increasing negative function (as P~O and Pe~O). <1>0 and <l>e 
(if Pe =f. 0) obviously have the same property. 

The characteristics of the steady-state VP describe the 
motion of the individual particles in the (self-consistent) 
potential 'Po. In particular, if we substitute dr/dt for v" equa
tion (12) and its integral E determine the radial motion of a 
particle of energy E and angular momentum modulus L, 
which can be described as a one-dimensional motion in the 
effective potential 'Peff: = 'PO+L2/2r2. When r increases 
from 0 to + 00, the latter decreases from + 00 to a negative 
minimum, reached for ro(L2), and then increases to 0.1 As 
the system is confined inside a sphere of radius R and v; ~ 0, 
we have, necessarily, 
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(16) 

[withE + (L2) =0 ifR= 00; for an isotropic state, we can even 
take E+(L2) = 'Po (R), because vr=O implies that v=O]: the 
particle thus bounces between the two solutions r-(E, L2) 
and r+(E, L2) [r- ~ro~r+ ~R] to the equation 'Peff(r)=E. 
Equation (16) imposes L 2 to be bounded from above by the 
smallest solution L~ax ofthe equation E - (e) =E + (e), or 
equivalently of ro(L~.,.) =R [the existence of that solution 
results immediately from the monotonic increase of ro(L 2)l 
We have eventually reached the conclusion that fo(E, L 2) 
must vanish outside the energy range [E - (L 2), E + (L 2)], 
where 0 ~L 2 ~L~ax. 

Hereafter, we shall denote as 'la the region of the phase 
space where fo > 0, and set 

and (17) 

Unless otherwise specified, it will be assumed that 

~<O O~ 

in'la. 

2.3 Symmetry of/o: converse theorems 

In the previous subsection, we have shown that a steady 
spherically symmetric system has anfo of the form (13). It is 
then natural to address the converse question: if a steady 
state is characterized by a distribution function of the form 
fo(E, L 2), is it necessarily spherically symmetric? 

Let us then assume that we have some steady state 
described by a sufficiently smooth distribution functionfo(E, 
e) (condition 18 is not imposed here). Hence, fo does 
satisfy 

{fo, E} =fOE{E, E} +fOLz{L2, E} = -2foL2 Vt • Vx'Po(x) =0, 

(19) 

while u: = - 'Po(x) is a positive solution (with no a priori 
prescribed symmetry) to the non-linear boundary value 
problem 

IThis last statement is quoted very often in the literature, but 
without proof. To establish it, we remark that 'I':ff=O implies 
G (M, + Mer) =L 2Jr, where (M, + Mer) denotes the total mass in a 
sphere of radius T, and we have used the integral of equation (14) 
(Newton's theorem); as the left-hand side of that equation is a non
decreasing function of T, while its right-hand side is a decreasing 
one, it has one and only one solution To(e). The conclusion thus 
follows by noting the obvious behaviour of 'I' eff when T-+O and when 
T-+oo. It is also interesting to note that To(e) increases mono
tonically with e (dro/dL 2 > 0) from 0 to 00, with ToocL 1/2 when 
L2-+O, and roocL2 when L2-+oo. 
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- V;u (x) =41tC{f lo[~-U(X)' r2 v;] du+ Pe(r)} 

= :g[u(x), r], 

u=r_ooO(r- I ). 

(20) 

(21) 

The function g defined in equation (20) is supposed to be 
sufficiently regular. Note that we have distinguished in the 
dependence of g on x a part which arises from the depend
ence of 10 on E, and a part which is related to the depend
ence of both 10 on e and of Pe on r (this separation being 
clearly possible without any ambiguity). 

Consider first the case where 10L' =1= O. Then, equation (19) 
implies that '1'0 (x) = '1'0 (r), (i.e., spherical symmetry holds) 
if, whenever Po(x) > 0, there is a value of u such that IOL2 (x, 
u) =I- 0 [this situation is certainly met if 10L' =I- 0 in no - except 
maybe on a negligible set of points - which happens, for 
instance, if/o is of one of the standard forms/o(E ±L2/2r;), 
II(E)L2·, ••• (Binney & Tremaine 1987)]. If the condition 
above is not satisfied, equation (19) only implies that 
'1'0 (x) = 'l'o(r) inside some spherical shells, but the general 
conclusion can still be reached by applying a continuation 
argument to equation (20) (note that both '1'0 and its normal 
derivative or'l'o take constant values on the boundary of the 
shells). 

The situation appears to be more intricate when 10 does 
not depend explicitly on L2 (fOL'=O). Fortunately, however, 
we may then use some recently obtained mathematical 
results which apply to the solutions to equations (20) and 
(21) under some technical assumptions (Gidas, Ni & Niren
berg 1981: the interested reader is referred to this paper for 
complete statements and proofs of the theorems we will 
use). Let us first assume that Pe=O andg(u)=O(u·) near 
u = 0, with rx > 4 [the last condition is satisfied in most cases 
of practical interest; for instance, it holds true when 
10 (E) =0 for E + ~E, with the constantE + < 0, in which case 
the system is contained in a bounded volume, and for Plum
mer's model, where g(u)ocu 5 (Binney & Tremaine 1987)]. 
We are then within the conditions of theorem 1 of (Gidas et 
al. 1981), and we can assert at once that u and '1'0 are 
necessarily spherically symmetric about the origin 0 (pos
sibly after a translation). The fact that du/dr= - d'l'o/dr < 0 
for r > 0, also asserted by the theorem, results more directly 
here from g being non-negative (see Section 2.2). If Pe =1= 0, 
symmetry around 0 is obtained as a consequence of theo
rem 1" of Gidas et al. (1981) (after some slight changes 
made possible by the particular form of our g); we need only 
assume that p~~O, POPe =1-0 at some point, andg(u, r)~cu· 
near u =0, with c > 0 and rx > 4. 

We have thus eventually reached the conclusion that, 
under reasonable assumptions, a state characterized by 
10(E, L2) is spherically symmetric. 

3 SYMPLECTIC ENERGY FUNCTION AL 
AND LINEAR STABILITY 

3.1 Symplectic perturbations 

Let us now recall some of the basic facts about the sym
plectic approach to the stability of a steady state, referring 
the readers to Bartholomew (1971) and Kandrup (1990, 
1991) for details. A linear 'symplectic' perturbation is 

defined to be a first-order change of the distribution func
tion which is of the form 

(22) 

Here,gl is some arbitrary regular phase-space function - the 
so-called 'generator' - that it is convenient to consider for
mally as being complex valued. Clearly, a symplectic pertur
bation admits of an infinity of generators, two of them 
differing by some functiong commuting with 10 ({/o,g} =0). 
We will say that gl is non-trivial if II =1= O. 

To any gl are also associated a first-order variation of the 
potential, 

(23) 

and a variation of the total energy which turns out to be 
second order in g I, being given by 

(' *, denotes complex conjugation). It is worth noting the 
following. 

(a) H(2)[gl] is a conserved quantity if gl is taken to be a 
solution of the linearized equation of motion 

(25) 

(in which case 11= - {/o, gi} solves the linearized version of 
VP). 

(b) If the system is translated as a whole by an infinitesi
mal vector a (gl =a • u and II = - a • Vx!o), then H(2) [gl] = 0 
in the absence of external potential (this is intuitively obvi
ous, and easy to check formally). This type of 'neutral' dis
placement being of no interest, we shall eliminate it by 
imposing the admissible generators, whose set will be 
denoted by '§, to satisfy 

(26) 

in the case where <l>e=O, this condition impeding the centre 
of mass of the system to be moved by the perturbation. 

3.2 Linear stability criteria 

The stability properties of the steady state turn out to be 
strongly related to the values taken by H(2) on '§, and it is 
always an important first step when considering stability to 
classify as precisely as possible the generators gl according 
to the sign of that quantity. In fact, this study may even 
provide in some cases useful sufficient conditions of stability 
(Bartholomew 1971; Kandrup 1990, 1991). 

(a) If 

(27) 

for any non-trivial gl of '§, then the system is linearly stable 
with respect to any perturbation. Unfortunately, this condi-
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tion may be satisfied only if/o=/o(E) andlOE:s;;O (actually, it 
may be fulfilled for a more general form of/o corresponding 
to a uniformly rotating system). Indeed, if/o depends expli
citly on some other integral, both positive and negative 
energy perturbations always exist [Perez 1995: the main step 
in proving this result is the construction of two phase-space 
functions a and f3 and a number B such that the first term in 
the right-hand side of equation (24) be positive (respec
tively, negative) for the generator gl: = aeW']. 

(b) Suppose that we cannot prove equation (27) for all 
the admissible gl> but that we can identify in t§ a linear 
subspace t§' that is 'closed' under evolution, which means 
that, if an arbitrary glEt§' is taken as an initial condition for 
an evolution governed by equation (25), then the solution 
gl(t) stays in t§' forever. Then the system is stable with 
respect to the corresponding restricted class of perturba
tions if equation (27) holds true for all the non-trivial ele
ments of t§'. 

3.3 Decomposition of H(l) 

For our spherically symmetric system, it will prove con
venient to transform the expression for H(2)[gI] into a dif
ferent form. For that, we first introduce the following 
notations associated with the arbitrary phase function g and 
the arbitrary rotation 9f of R3 about 0: 

g(~)= 4~ f g91(~) d9f, 

(jg=g-g. 

(28) 

(29) 

(30) 

Clearly, the average g is spherically symmetric, i.e., 
g(9f~) =g(~) for any 9f andg=g(r, v, rvJ We also have the 
useful simple relations 

(jg=- «(jg)91 d9f=O, - If 
47t 

(31) 

and, for any g andg', 

(32) 

For a perturbation generated by gl> we can thus write 

gl=~+(jgl> 

II =J; + (j/l' 
cI>1 = cI>1 + (jcI>I' 

(33) 

(34) 

(35) 

Using the symmetry of/o and E, the rotational invariance of 
the Laplacian and the properties of the averaging process 
quoted above, we obtain immediately 

J;= -{to,~}= -/OE{E,~} and (j/l= -{to, (jgl}, (36) 

cI>1 =K[ - {to,~}] and (jcI>1 =K[ - {to, (jgl}], (37) 

and after some straightforward algebra 

H(2) [gl] =H(2)[~] +H(2)[(jgl]' (38) 

with, of course, 
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H(2)[~]=~ f (-IOE)I{E, ~}12 d~ --I-f IVx cI>112 dx, (39) 
2 87tG 

(40) 

We now consider in tum each of the two terms appearing 
in the right-hand side of equation (38). 

"4 STABILITY WITH RESPECT TO 
SPHERICAL PERTURBATIONS 

4.1 A further decomposition 

For studying the term H(2)[g;"], it is useful to effect one 
further decomposition by proceeding as follows. For any 
average g, we denote as g + /- , respectively, its symmetric and 
antisymmetric parts (with respect to the transform 
Vr-> -vr), defined by 

-g(r, v, -rvr)] = :g+(r, v, rvr) +g-(r, v, rvJ 

(41) 

With 

~=~+ +~-, 

J; =J;+ +J;-, 

we thus have 

J;± = - {to,~+}, 

cI>1 =K[ - {to, ~ -}], 

and, after some simple algebra, we obtain 

H(2) [g;"] =H(2) ~ +] + H(2) [~-], 

with 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

H(2)[g;"-]=~f (-/OE)I{E,~-}f d~ __ I_f IVx cI>112 dx. 
2 87tG 

(48) 

The first partH(2)[~+] ofH(2)[~] is clearly non-negative, 
and thus we just need to consider in detail the second part 
H(2)[g;" -]. 

4.2 The sign of H(l) [g; - ] 

To study the sign of H(2) [~ -], we closely follow the method 
of Sygnet et al. (1984), which originates in the work of 
Gillon, Doremus & Baumann (1976). However, in addition 
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to the fact that we have an external potential <l>e and that we 
do not use (r, L 2, E) as independent variables, there are 
some essential differences between their calculations and 
ours, which we shall discuss below. 

First, we transform the expression H(2) [eft" -] into a more 
convenient form. We integrate once Poisson's equation 

1 d ( 2f -- ) =41tG -;z dr r fOEv,.g1 dv, (49) 

(where we have effected two integrations by part in the 
second member to arrive at the right-hand side), which 
gives 

(50) 

Injecting this result into the second term of the right-hand 
side of equation (39) and using Schwartz's inequality, we 
obtain 

Noticing that 

::;;21tG fU (-fOE) v; dV] 

xU (-fOE) Ieft"-f dv] dx. 

(51) 

(52) 

(using dv=21tv,dvrdv, and integrating by parts with respect 
to vr), we thus obtain 

We now make the change of variable 

(54) 

with the new function Jl still being regular for rVr = 0 as eft" - (r, 
v, rvr = 0) = 0 owing to the antisymmetry of g; -. Using the 
derivative property of the Poisson bracket, and the fact that 
the integral over the phase space of a Poisson bracket 
vanishes, we can rewrite equation (53) in the form 

H(2)[eft"-]~~ f (-fOE)[(rvr)21{E, Jl}12 +rvr{E, rvr} {E, IJln 

+ IJlI2{E, rvY-41tGpo(rvrIJl)2] d~ 

=~ f ( - fOE)[(rvr)21{E, Jl}12 + {E, IJlfrvr {E, rvJ} 

-I Jll2rvr {E, {E, rvr} } -I Jl f {E, rvrF 

+ IJlI2{E, rvY-41tGPolrvrJlI2] d~ 

=~ f (- fOE)[(rvr)21 {E, Jl} 12 -IJl f(rvr {E, {E, rvJ} 

+ 41tGpo(rvrn] d~. (55) 

By a straightforward calculation, we obtain 

(56) 

whence, injecting this expression into equation (55), 

(57) 

the last inequality sign resulting from the negativeness offOE 
and the positiveness of Pe and d'P o/dr. 

Let us now assume that H(2) [eft"] = O. Then H(2) [eft" +] = 0, 
whence {to, eft" +} = 0; and H(2) [eft" -] = 0, whence fOEeft" - = 0, 
and {to, eft" -} = O. Therefore r; = 0, and we can eventually 
conclude that H(2) [eft"] > 0 for any gl such that r; = - {to, 
eft"} =/;0. 

We can summarize the results of this section in the form 
of a theorem. 

Theorem 1. If the steady state satisfies condition (18), 
then H(2) [eft"] > 0 for any gl with a non-trivial average eft". 

4.3 Consequences for stability 

It is quite obvious that the set f'§' of the generators under
lying the spherically symmetric perturbations is 'closed with 
respect to evolution' in the sense of Section 3.2, i.e., the 
solution gl (t) to equation (25) generates a spherically sym
metric perturbation if the initial conditiong1 (0) does. Then, 
by the general statement (b) of Section 3.2, we can conclude 
at once that any spherical steady state satisfying (18) is linearly 
stable with respect to all the spherical perturbations. 

4.4 Comparison with previous works 

Of course, this result has been reported many times in the 
literature for the case where <l>e=O, and it is then worth 
explaining in a few words the differences between our proof 
and previous ones. In fact, in the framework of the energy 
methods, the aim consists, in any case, of showing the pos
itiveness of some quadratic functional W[q] over a set fl of 
admissible functions q. 

© 1996 RAS, MNRAS 280, 689-699 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/280/3/689/1003035 by guest on 20 M
arch 2022

http://adsabs.harvard.edu/abs/1996MNRAS.280..689P


1
9
9
6
M
N
R
A
S
.
2
8
0
.
.
6
8
9
P

(a) In the first class of methods (Antonov 1961; Kulsrud 
& Mark 1970; Kandrup & Sygnet 1985), 221 is taken to be the 
set of all the functions which vanish outside no and are 
antisymmetric in the change Vr ~ - Vr, to which belongs the 
antisymmetric part [; of any solution to the linearized VP. 
The relevant functional WI may be derived in a standard 
way (e.g., Laval, Mercier & Pellat 1965) from the equation 
of motion (second order in time!) 

(58) 

satisfied by [;, the self-adjoint character (with respect to the 
usual Hermitian product) of the operator JIt (Kandrup & 
Sygnet 1986) here being essential. It turns out that 

(59) 

It appears that the 'energy principle' method and the sym
plectic one lead to formally identical functionals in the 
situation we are considering here. They can thus be treated 
by similar techniques, and the same results are obtained. 
However, the two methods are conceptually very different 
(Bartholomew 1971; Kandrup 1990, 1991). In the former, 
the derived 'energy functional' is closely related to the pecu
liar properties of the second-order equation one starts with 
(the existence of WI results from the self-adjointness of u1t, 
which is just a consequence of the strong symmetries of the 
system), and it has no obvious physical meaning. The latter, 
on the contrary, is more transparent. It only deals with a 
first-order equation - the one satisfied by the generators gl 
of the symplectic perturbations (which form a restricted 
class of perturbations) - and H(Z) [~] is easily seen to 
actually be the energy of the perturbation, an interpretation 
which keeps its validity when one considers more general 
systems. 

(b) In a second class of methods (Lynden-Bell & Sannit 
1969; Ipser 1974; Ipser & Horwitz 1979), the relevant func
tional Wz is the second variation of E [f1 + He[f1. Here E [f1 
is the energy off and 

(60) 

with E (fo, L Z) being the 'inverse' of the monotone function 
fo(E, LZ) (the results obtained by the authors quoted above 
are for isotropic systems, but there is no problem in general
izing them to the anisotropic case, as we do here). Formally, 
Wz is easily shown to satisfy the relation 

(61) 

for any function gl' The admissible 22z is taken to be the set 
of all the [; satisfying the constraints 

(62) 

which imply a conservation of mass and He function to first 
order. The constraints which are retained from VP are thus 
quite weak, and, as a consequence, it has not been possible 
up to now to derive in this framework stability results as 
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complete as those furnished by the energy and the sym
plectic methods. 

(c) The functional used by Sygnet et al. (1984) appears to 
be Wz[h], as in the previous method, but the set of admis
sible functions [; is not clearly specified. The authors, how
ever, effect without further justifications the change of 
dependant variable [; ~ fl defined by 

- Z [ o (rVrfl)] Z fl (r, E, L ) = (rvr)fOE -----a;:- (r, E, L ) (63) 

(their equation B3, written with our notation), where use is 
made of (r, E, L Z) as independent variables [actually, this is 
a proper choice only in the region (vr > 0) or in the region 
(vr < 0)]. However, such a change can be valid only for par
ticular perturbations. First, it is easy to see that any [; of the 
form equation (63) is symplectic, being generated by ~(r,E, 
LZ): = (rvrfl)(r, E, LZ). Secondly, the new function fl intro
duced by this relation can be regular only if ~ = 0 for rVr = O. 
In our work, on the contrary, these conditions are an explicit 
part of a coherent formalism: the symplectic nature of the 
perturbations is a basic element of the framework, while the 
vanishing of~ for rvr=O is automatically ensured by restrict
ing our attention to the antisymmetric part ~ - of ~, the 
part of the functional related to ~ + turning out to be triv
ially positive. 

5 STABILITY WITH RESPECT TO 
ASPHERICAL PERTURBATIONS 

5.1 A further decomposition 

Using the relation 

bfl = - {fo, bgl} = - fOE{E, bgl} - fOL2{L z, gl}, (64) 

we can write the quantity H(2) [bgl ] as a sum of two terms: 

H(Z) [bgl] = HiZ) [bgl] + m2)[bgl], (65) 

with 

Hz bgl . - -- -- L, bg l lO, vg l e· (Z) [ ]. _ 1 f fOL 2 {Z *} {f < } d 
2 -fOE 

5.2 Sign of Hf! [t5gl ] 

We now set 

(66) 

(67) 

(68) 

that is, we use the standard trick (introduced in the gravita
tional context by Lynden-Bell 1966) which consists of sin
gling out the 'quasi-static part' in the variation bfl of the 
distribution function. Then, taking into account the rela
tion 

(69) 
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we can write 

= 8~G HlVxb<l>llZ-4nG [f (-foE) dV}b<l>lIZ} 

x dx+!f (bf1)Zd~. 
2 -foE 

Following Aly & Perez (1992), we now set 

b<l>l =: 'P~w. 

Then 

- 4nG (f (-foE) dV) Iw IZ] 

-Iw IZ'P~V; 'P~} dx. 

(70) 

(71) 

(72) 

The quantity V;'P~ can be computed by differentiating 
equation (14) with respect to r, which gives 

'P' 
V; 'P~=4nG(p~ + p~) + 2-i-

r 
(73) 

On the other hand, w has zero average value on any spheri
cal surface of centre 0 and, then, by the so-called Wirtinger 
inequality (Aly & Perez 1992), we have for any value of r 

(74) 

with equality holding if and only if w is of the form w (r, e, 
cjJ) =wo(r)r'a for some constant vector a (in equation 74, we 
have set Vn: = Vx - r%r and dQ: = sin e de dcjJ). 

Using these results in equation (72), we eventually 
obtain 

(75) 

Therefore, H~Z) [ bg 1] :2: 0 for all g 1 if 

(76) 

and 

(77) 

Let us now assume that both conditions are satisfied, and 
that HiZ)[bg1]=0. Then, (i) 15/:=0; (ii) ow/or=O and 
Wirtinger's inequality reduces to an equality, whence 
w =r' a; (iii) if either p; :¢ 0 or fOL' :¢ 0, we must also have 
w = 0 for some values of r - then w = 0 everywhere, and 
bf1=0; (iv) if p~=O (which implies Pe=O and <l>e=O) and 
fOL2=0, the previous results and the definition of w imply 
bf1= -foE'P~r'a= -a'Vx!o, which means that the pertur
bation results simply from a rigid translation of the system 
of a vector a. But there are no such perturbations with a =I- 0 
generated by the elements of'§ (see Section 3), and also in 
this case we have w = 0 and bf1 = O. We have thus proven 
eventually that, under conditions (76) and (77), 

H\Z) [bg1] > 0 if bf1:¢ O. (78) 

5.3 Sign of m2 ) [t5g11 

Clearly, the term H~Z)[bg1] can be of either sign, depending 
on the choice of the generator. We even know from the 
general theorem of Perez (1995), quoted in Section 3.2, 
that, by an appropriate choice of gl' it can be made suffi
ciently negative to overcome the positiveness of 
H(Z)[g;"] + HiZ) [bg1], which holds under conditions (76) and 
(77). Then, we could only attempt to classify the perturba
tions according to the sign of that quantity. 

Even this more modest goal appears to be difficult to 
reach, and we shall content ourselves here with the follow
ing simple remark: there is a particular class of perturba
tions, defined by the condition 

(79) 

for which HiZ) [bg1] vanishes [note the use in equation (79) of 
the obvious relation {L2, g;-} =0]. We feel that these ele-
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ments of '§ - which thus commute with L 2 in the region of 
the phase-space where tOL 2 =I- 0 - play some role in the 
dynamics of the system, and then they deserve a particular 
name: we shall call them 'preserving generators', the associ
ated perturbations being the 'preserving perturbations', and 
denote by (Jj> their set. 

Clearly, (Jj> is a linear subspace of '§, and the general form 
of its elements (which do automatically satisfy condition 26) 
can be found as follows. Consider the part 0, of 0 0 where 
tOL 2 =I- O. We first note that there are five obvious solutions to 
equation (79) in 0" namely r, p" Lx = - cot e cos <pp", - sin 
<PPe, Ly= - cot e sin <pp", + cos <PPe and Lz=p",. Moreover, 
they are linearly independent, which can be most easily 
checked by considering the Jacobian determinant D(r, p" 
LX' Ly , Lz)/D (r, e, <P,P"Pe,P",), which turns out to be of rank 
5. As the general solution to equation (70) in 0, must 
depend on at most five integrals, we can thus conclude that 
any preserving generator is of the form 

g,(r, e, <P,P"Pe,p",)=g,(r,p"p"" -cot e cos <pp", 

- sin <PPe, - cot e sin <pp", + cos <PPe), (80) 

in 0, , and arbitrary elsewhere. Of course, all the spherically 
symmetric g, belong to (Jj>; but this set contains many other 
elements, as the spherically symmetric elements depend on 
three variables fg,=g;=g,(r, p" L;+L;+L;)], while the 
general preserving ones depend on five variables. Unfortu
nately, (Jj> is not 'closed under evolution' (see Section 3.2). 
Indeed, it results at once from the equation of evolution 
(25) that condition (79) is time invariant only if the potential 
<1>, stays spherically symmetric, which can be the case only 
for spherically symmetric perturbations. 

We can thus eventually summarize the results of Sections 
5.2-5.3 in the following form. 

Theorem 2. If the conditions (18), (76) and (77) are satis
fied, then we have H(2)fg,] > 0 for all the non-trivial aspher
ical generators of '§ satisfyingtoL2{e, bg,} =0. 

5.4 Consequences for stability 

From Theorem 2 and the general statements of Section 3.2, 
we can make the immediate conclusion that an isotropic 
system is stable with respect to any aspherical perturbations 
- and then is stable with respect to any perturbation, 
because of the result of Section 4.2 - if condition (76) is 
satisfied, i.e., if the external mass density Pe is a non-increas
ing function of r (which should be the case in the 
applications ). 

For anisotropic systems satisfying (76) and (77), our The
orem 2 shows that any non-trivial aspherical perturbation 
generated by a preserving bg, has positive energy - the same 
result holding true for any preserving g, because of Theo
rem 1. This completely new result is unfortunately more 
difficult to interpret. Strictly speaking, the general stability 
criteria established thus far do not apply here, as the pre
serving character of a perturbation is conserved in time only 
for spherically symmetric perturbations ({fo, g,} =0). How
ever, we feel that our result has some relevance for the 
stability problem. Numerical simulations giving some 
support to this idea are reported in Paper II. 
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5.5 Comparison with previous works 

For isotropic systems, the stability result above has already 
been derived by the thermodynamic method and the energy 
principle (Antonov 1961; Lynden-Bell & Sannit 1969; Bin
ney & Tremaine 1987, where it is referred to as the Anto
nov-Lebowitz theorem) in the case where there is no 
external potential (i.e., <1>e=O). The new proof we have pre
sented here, however, is more simple and transparent, and it 
is self-contained (e.g., it does not use results on the stability 
of gaseous stars). Moreover, it does not appeal to some 
unproven assumptions on the completeness of the modes of 
some operator (assumptions which may certainly be proven, 
but with much effort). Our work thus answers an important 
question addressed by Kandrup & Sygnet (1985) concerning 
the possibility of finding a stability proof that does not use 
some peculiar completeness theorem, which certainly justi
fied its presentation in detail. 

Concerning the aspherical stability of an anisotropic sys
tem, there seems to be only one published result based on 
the consideration of an energy functional. This is by Gillon 
et al. (1976), and it states that any spherically symmetric 
steady state satisfying <1>e=O and conditions (18) and (77) is 
stable with respect to any aspherical perturbations. Some 
doubts have been repeatedly cast in the literature on the 
validity of this result (e.g., Binney & Tremaine 1987), but no 
explicit rebuttal (or approval!) has been yet presented. 
Owing to its possible importance, we have thus conducted a 
detailed analysis of Gillon et al.'s complicated proof, in 
which a spherical system is approximated by a multiple 
water-bag model. Unfortunately, we have found two serious 
flaws and our conclusion does confirm the fear of the 
sceptics. 

(a) There is an inconsistency in the calculations, as the 
conservation law for the basic quantity A (their equation 49) 
is obtained by using both the non-linear and the linearized 
VP systems, without distinguishing carefully the order of the 
various terms. When the derivation is made correctly, it 
does not seem to lead to an interesting result. 

(b) If we forget about this inconsistency and admit for a 
while the validity of their equation (49), then we must note 
that the 'conserved' quantity A (their equation 52) takes a 
positive value Aeq > 0 at equilibrium (just make a ±k = 0 in 
their equation 52, where a ±k are the functions describing an 
arbitrary perturbation). Therefore, to be a Lyapunov func
tion,A should satisfy the condition A ;::o:A eq for any perturba
tion rather than the stated one, A ;::0:0. It is, however, easy to 
check that the former condition is certainly not fulfilled, as 
A can be made larger or smaller than Aeq by choosing ade
quately a ±k' Then, even under our optimistic assumption, 
no conclusion could be actually drawn from the sign ofA. 

6 EXTENSION TO OTHER SYSTEMS 

6.1 Rotating spherical systems 

Consider a spherically symmetric steady state characterized 
by the functionts(E, L 2) and the potential '1'0' and introduce 
an arbitrary functionta(E, L2, LJ such that 

(81) 
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and 

(82) 

As noted long ago by Lynden-Bell (1960)'/0 is also a steady
state distribution function associated with the potential 'Po 
(the mass density corresponding to fo is the same as the one 
corresponding to f,), and it describes a system which is rotat
ing about the z-axis. We now discuss whether the stability 
results derived above can be extended to these more general 
distribution functions. 

Proceeding as in Section 3.3, we obtain, after some 
algebra, 

x {E, bgn d~ - f if.,~} {E, bgn d~ 

(83) 

with 

<l>j =K[ -if.,~} - {f., bg1}], (84) 

b<l>j =K[ - if" bg1} - (ifa, bg1} - {fa, bg1})]. (85) 

Because of the presence of the non-spherically symmetric 
termf. info, it is then no longer possible to separate H(2)[gj] 
into two terms depending respectively on~ and bgl> and the 
analysis becomes rather intricate. 

However, there are two simple - but new - results which 
can be extracted from the expressions above when of,/ 
oE < o. Consider first a purely spherically symmetric pertur
bation generated by ~. Then 

(86) 

<1>1 =K[ -if., ~}], (87) 

that is, we recover the expressions valid for the spherical 
state f,. It thus results at once from Section 4 that 
H(2)~] > 0 for any non-trivial ~, and our rotating state 
turns out to be stable with respect to all the spherically 
symmetric perturbations (their character being preserved in 
time). 

Consider now a system with f, = f, (E) which is submitted 
to some axisymmetric perturbation (obg1/oc/J=0) satisfying 
c5gj( -v",)=bgj(v",) (a property also conserved in time): 
stability is then obtained in that case too. As is easily 
checked, the cross term in equation (83) [containing both~ 
and bgl ] and the perturbed potential associated with f. 
vanish, and the results of Sections 4 and 5 imply that 
H(2)[gI] > o. 

6.2 Systems with a non-decreasing distribution function 

The stability of a spherical system when condition (18) is not 
satisfied has been considered numerically by Henon (1973). 
From an analytical point of view it appears to be quite a 
difficult problem, and here we shall content ourselves with 
making two points. 

(a) Consider the case where fOE > 0 in the region 00 where 
fo> O. This of course implies that fo is discontinuous on the 
boundary 000 = {~ IE ( ~) = Eo ::;; O}, and there is a violation of 
our smoothness assumption. Consider a spherical perturba
tion generated by~, and assume that {E,~} vanishes on 
000. It is easy to check thatH(2)~] is still given by equation 
(39) [the boundary term related to the presence ofthe delta 
function c5 (E - Eo) for the derivative fOE disappearing], and 
that H(2)[~] <0 for any non-trivial ~. Then the system 
appears to be stable with respect to these particular pertur
bations (Section 3.2a) - a conclusion also obtained by 
Kandrup & Sygnet (1985) by means of their energy prin
ciple. 

(b) Consider the case where the system is isotropic 
[fo=fo(E)] andfOE may have a changing sign in 00, and let us 
assume that the system admits a neutral aspherical mode 
generated by bgj. Then we have bfl =0 and H(2)[gl] =0 
(Perez 1995), which implies at once, by using the arguments 
at the end of Section 5.1, that bfl =0. We have thus proved 
the following new result: whatever the sign of fOE is, an 
isotropic spherically symmetric system cannot admit an 
aspherical neutral mode. 

7 CONCLUSION 

In this paper we have considered a self-gravitating collision
less system, in which the particles are also submitted to an 
external potential <1> •• We have first presented some new 
considerations on the relations between the spherical sym
metry of a steady state and the form of its distribution 
functionfo. In particular, we have argued that, under quite 
general assumptions, a system with an fo depending only on 
E and L 2 is necessarily spherically symmetric. 

We have thus reinvestigated from an analytical point of 
view the problem of the linear stability of this system in the 
consistent framework of the symplectic method. By effect
ing a systematic study of the sign of the energy of an arbi
trary symplectic perturbation, we have reached in particular 
the following conclusions, valid when fOE < O. 

(a) Any steady state is stable with respect to all the spheri
cally symmetric perturbations. 

(b) An isotropic system [fo=fo(E)] is also stable with 
respect to all the aspherical perturbations, at least if the 
external mass density p. is a non-increasing function of the 
radial coordinate r. Of course, this result and the one in (a) 
are well known in the case where <1>. == 0; but even if we 
restrict our attention to this particular case, our proofs are 
much simpler and complete than all the previous ones, 
bringing about some new important elements which were 
called for by many authors. In particular, our proof of the 
second quoted result shows more clearly the origin of the 
stability, and it is the first which does not appeal to some 
unproved assumption on the completeness of a set of 
modes. 
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(c) For an anisotropic system withioL2~O and p:~O, any 
non-trivial 'preserving perturbation' - i.e., one having a gen
erator commuting with L2, which of course does not mean 
that it is spherically symmetric - has a positive energy. The 
exact meaning of this result is still not completely clear, and 
we have tried to elucidate it by effecting numerical investi
gations. The results obtained thus far (in particular for the 
case where the distribution function is of the Ossipkov
Meritt type - see, e.g., Binney & Tremaine 1987 - and there 
is no external potential) are reported in the companion 
paper (Paper II). More general situations, currently under 
intensive study, will be analysed in forthcoming papers. 

Finally, 

(a) we have analysed in detail a challenged result of Gil
lon et al. (1976), according to which stability with respect to 
any perturbation holds if iOL2~O, and found the proof to 
contain some flaws, which we have clearly exposed; 

(b) we have shown that a spherical rotating system is 
stable with respect to all the spherically symmetric perturba
tions and [when Is = is (E)] to all the axisymmetric even 
ones; 

(c) we have proved that an isotropic system with a deriva
tive iDE' which may change its sign, cannot admit a non
trivial neutral mode (i.e., one differing from a mere global 
translation of the system). 
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