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ABSTRACT 
We have performed a series of high-resolution N-body experiments on a connection 
machine CM-5 in order to study the stability of collisionless self-gravitating spherical 
systems. We interpret our results in the framework of symplectic mechanics, which 
provides the definition of a new class of particular perturbations: the preserving 
perturbations, which are a generalization of the radial ones. Using models defined 
by the Ossipkov-Merritt algorithm, we show that the stability of a spherical 
anisotropic system is directly related to the preserving or non-preserving nature of 
the perturbations acting on the system. We then generalize our results to all 
spherical systems. 

Since the 'isotropic component' of the linear variation of the distribution function 
cannot be used to predict the stability or instability of a spherical system, we propose 
a more useful stability parameter which is derived from the 'anisotropic' component 
of the linear variation. 

Key words: instabilities - celestial mechanics, stellar dynamics. 

1 INTRODUCTION 

A steady state of a collisionless self-gravitating system - in 
which the distribution function (DF) is determined only by 
the isolating integrals of motion (Jeans' theorem) - may be 
subject to some form of dynamical instability. After being 
slightly perturbed, it thus suffers a rapid evolution, which 
may lead to significant changes after a few crossing times. It 
is well known, for instance, that spherical anisotropic sys­
tems with components moving mainly on radial orbits are 
unstable. The physical origin of this instability has been 
extensively investigated analytically (Antonov 1973; Palmer 
& Papaloizou 1986) and numerically (Henon 1973; Merritt 
& Aguilar 1985; Barnes et al. 1986; de Zeeuw & Franx 1991; 
Dejonghe & Merritt 1993). In particular, Fridman & Poly­
achenko (1984) reached the conclusion that a spherical sys­
tem is unstable once a parameter; - actually equal to the 
ratio between the radial and transversal kinetic energies of 
the system - exceeds some critical value (; > 1.7 ± 0.2). 
However, this criterion is only an empirical suggestion and, 
unfortunately, subsequent simulations (Palmer 1994a, 
1994b) have shown its invalidity in many cases. It thus 
appears at present that there are no simple and general 

stability criteria in which a single parameter intervenes 
depending on the state of the gravitational system. 

In this paper, we revisit this problem numerically, and 
propose a stability parameter for all spherical anisotropic 
systems. Our work rests on some analytical results (Perez 
1995, Perez & Aly 1996a, hereafter Paper I) which have 
been recently obtained by working in the framework of the 
symplectic formulation of Vlasov-Poisson (VP) equations 
(for an introduction to the symplectic formalism, see e.g., 
Arnold 1978). In this approach - first introduced in the 
gravitational context by Bartholomew and by Kandrup 
(Bartholomew 1971; Kandrup 1990, 1991a), and thus 
developed by Perez and by Aly (Perez 1995; Perez & Aly 
1996b, in preparation) - the Vlasov-Poisson system is 
rewritten in algebraic form, from which one can obtain a 
formal expression giving the value at any time of an arbi­
trary function of the DF (whose initial value is assumed to 
be given). For a steady-state system submitted to a 'sym­
plectic' perturbation induced by a 'generator' g, it is then 
possible in particular to write a Taylor expansion of its 
energy in terms of g, and to deduce linear stability criteria 
based on the consideration of the first non-vanishing term in 
that expansion. Using this general result, some form of 
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stability of the anisotropic spheres against the so-called 
'preserving perturbations' (whose class contains as a small 
subclass all the radial perturbations) was demonstrated in 
Paper I, thus providing a generalization of an earlier result 
(see below). Clearly, this is not sufficient to give a complete 
description of the stability properties of a spherical system 
(except in the two limiting cases of a stable isotropic system 
and of an unstable one with purely radial orbits), and it was 
conjectured in Paper I that the stability in the intermediate 
cases is directly related to the preserving or non-preserving 
nature of the perturbations. The numerical simulations pre­
sented here seem to confirm this guess. 

It may be worth recalling that two other analytical 
approaches have been developed in the past 30 years for 
studying the stability of collisionless self-gravitating systems. 
The first rests on an angle-action description and on a 
decomposition of the gravitational potential into normal 
modes, and it applies to a large class of systems (Fridman & 
Polyachenko 1984; Palmer & Papaloizou 1986; Goodman 
1988; Polyachenko 1992). However, the calculations and the 
derived stability criteria are often tedious, and difficult to 
apply. The second method, inspired from plasma physics 
(Laval, Mercier & Pellat 1965), is related to the variational 
energy principle, and it has been adopted by Kulsrud & 
Mark (1970) to gravitational systems. This method has 
yielded interesting criteria in two situations. On one hand, 
the stability of radially perturbed isotropic or anisotropic 
spheres has been obtained - the most general result here 
being that found by Doremus and his collaborators (Dor­
emus, Feix & Baumann 1971), whose analytical arguments 
were thus considerably simplified by Sygnet et al. (1984) and 
Kandrup & Sygnet (1985). On the other hand, the stability 
of isotropic spheres against non-radial perturbations has 
also been established. The proof here appeals to the well­
known Antonov-Lebovitz theorem (Binney & Tremaine 
1987) on the stability of gaseous spheres (Lynden-Bell & 
Sannit 1969; Antonov 1973), a simplified derivation of 
which has been reported most recently by Aly & Perez 
(1992). A strong limitation of the energy principle arises 
from the necessity to have the 'operator of the small 
motions' being Hermitian - which is not the case, e.g., for a 
non-radially perturbed anisotropic sphere. 

The paper is arranged as follows. In Section 2, we outline 
the main analytical results obtained in the framework of 
symplectic mechanics concerning the stability of collision­
less self-gravitating spherical systems. In Section 3 we 
present the numerical methods for simulating the initial 
conditions and the dynamical evolution of such systems. In 
Section 4, we give a physical interpretation of their 
(in)stability in terms of the 'symplectic quantities' intro­
duced in Section 2. Finally (Section 5), we deduce from the 
numerical results two laws concerning the stability of any 
anisotropic collisionless self-gravitating spherical systems. 

2 THEORETICAL CONTEXT AND 
ANALYTICAL RESULTS 

Iff is the DF of the system in the {~: = (x,v)} phase space, 
l/I(x) the gravitational potential and G the gravitational con­
stant, the evolution of the system (during a period compat­
ible with the collisionless assumption) is given by the 
Vlasov-Poisson system 
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of - + v' V' f- V' .1.. V' f=O at x x 'I' v , 

1/1 (x,t) = - 4nG f f(x', v',t) de 
Ix-x'i 

(1) 

where d~: = dx d v denotes an infinitesimal volume of phase 
space. 

It is well known that Vlasov's equation (1) can be written 
in the standard Poisson Bracket form 

of 
-= - V'vE'V'x/+ V'xE'V'J=: {E,f} , at (2) 

where E = v 2 /2 + 1/1 is the one-particle energy of the system. 
E can be viewed as the generator of the canonical trans­
formation describing the motion, and its conjugated quan­
tity is the time t. More generally, the evolution equation of 
f in any transformation defined by a generator gl and its 
conjugated quantity A can be written 

(3) 

The previous equation can also be generalized to yield an 
evolution equation for any functional of f The time evolu­
tion is then generated by the total physical energy H associ­
ated withf 

d~' . f !(x,v,t)f(x',v',t) 

Ix-x'i 
(4) 

H is a functional of f and its functional derivative is 

bH[fl 
--=E. 

bf 
(5) 

For any F[fl we have 

F[fl:=-F[fl= -fd~. 
. a fbF. 

at bf 
(6) 

Inserting the bracket form of Vlasov equations (2) and (5) 
into equation (6), we obtain, after integration by parts, the 
functional form of Vlasov's equation describing the time 
evolution of F[f1 (Morrisson 1980) 

F[fl = f -, - d~: = [F,H] [f]. . f {bF bH} 
bf bf 

(7) 

[,] is a Lie bracket. 
More generally, the functional evolution equation of F[f1 

for any transformation defined by a functional generator 
G 1 (f): = Sgd d~ can be written 

'rIF - F[fl= f _,_I d~=[F,GI][fl. a f {bF bG} 
aA bf bf 

(8) 
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The solution to (8) can be written in exponential form as 

or more explicitly as a Taylor expansion; 

'iF F[f] =F[f2o] - [GbF] [{oJ (A - Ao) 

+ [Gj,[Gj,F]][fAo] (A-A)2 
2! 0 

(9) 

where fAo denotes the value of the DF at the point A = Ao. 
In the particular case F=H, equation (10) provides a 

development of the total energy of the system. When fAo is 
an equilibrium DF fo, the first non-vanishing term of this 
development gives a linear stability criterion for the system, 
independently of its geometry. 

H(j)[fo] = -[GbH][fo]= - ffot~j, bb~}d~ 

= f gj {E,fo} d~ 

is clearly vanishing ({E,fo} =io=O), while 

(11) 

(12) 

can be written after some straightforward algebra (Perez 
1995; Paper I) 

(2) 1 f H [fo]= -2: {gI1 E }{gj,fo} d~ 

(13) 

The positiveness of H(2) [fo] determines the stability of the 
system against perturbations generated by some gl" Using 
a less general method, this result had been previously 
obtained by Bartholomew (1971) and Kandrup (1990, 
1991a). It is important to notice that this criteria on the 
positiveness of H(2) [fo] is only a stability criterion; it tells us 
nothing about the linear instability of the system. Kandrup 
(1991b) showed that if H(2)[fO] is negative the system 
develops a secular instability in the presence of dissipa­
tion. 

In the particular case of spherical self-gravitating systems, 
where the equilibrium DF depends only on the one-particle 
energy E and squared total angular momentum L 2, the 
linear variation of the DF, bf: = {gj,fo}, which appears in 
the second-order energy variation (equation 13), can be 
written as 

(14) 

When one considers a preserving perturbation defined by 
{gj,L 2} = 0, an anisotropic spherical system behaves as a 
stable isotropic spherical system/ with H2 [fo] positive 
(Perez 1995; Paper I). On the contrary, systems with compo­
nents evolving only on radial orbits are unstable. Such sys­
tems can be described by an equilibrium distribution 
function fo(E,L 2) = v(E)b(L 2), where v(E) is an arbitrary 
monotonic function of E, and b(L2) denotes a Dirac distri­
bution for L 2. In this case, it is then easy to show that all 
preserving physical perturbations are vanishing. The two 
previous opposite cases (stable isotropic spherical systems 
and unstable radial orbit anisotropic spherical systems) sug­
gest that the stability of a spherical self-gravitating system is 
directly related to the preserving or non-preserving nature 
of the perturbations acting on the system. In order to con­
firm this conjecture in all the intermediate cases, which 
cannot be studied analytically, we have performed numeri­
cal simulations. Moreover, under the light of previous ana­
lytical work, we will propose also a stability parameter. 

3 NUMERICAL METHODS 

3.1 Initial conditions 

We use the Ossipkov-Merritt algorithm (Ossipkov 1979; 
Merritt 1985a,b; Binney & Tremaine 1987) which is well 
adapted for generating anisotropic self-gravitating spherical 
systems with various physical properties (see Appendix). 

This algorithm has the effect of deforming the isotropic 
density Piso(r) deduced from a given isotropic gravitational 
potential t/Jiso(r) in the following way (r=lxl): 

Pan/r): =( 1 +~) Piso(r). (15) 

The anisotropic radius ra controls the deformation. Using 
the Abel inversion technique, this procedure allows us to 
generate an anisotropic DF that depends on both E and L 2 

through the variable Q: =E + L 2/2r;: 

(16) 

The velocity anisotropy at any radius r is given by 

(17) 

the model is isotropic near the centre and becomes more 
and more anisotropic outwards. 

For the isotropic potential, we have chosen here the poly­
tropic model. Thus t/Jiso is a solution to the Lame-Emden 
differential equation 

(2n)3/2r(n -1/2) 

r(n + 1) 

(18) 

jWe consider all along this paper only systems with a DF which 
admits a monotonous decreasing dependence with respect to all 
the isolating integrals of motion (p !JoE < 0 and 0 ioioL 2 < 0). 
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with 1/1(0) being taken as a free parameter. We have set 1/1(0) 
equal to -1. Because of the spherical symmetry, we have 
dl/lldr=O at r=O. 

The system admits a finite density and a finite mass pro­
vided the polytropic index falls in the 1/2 < n ::;; 5 (Chan-

O,OIS-r----------------,rr---,.() 
DF 

,00. 

0,01 ,01 

-O,OI*---""II"IIr--...,.~--'KT--=~""'K'"r---+ 

Figure 1. Phase-space DF for n = 4.5 with r. = 0.75 (dotted line), 1, 
2, 5, 10 and 100 (solid lines), respectively. As r. decreases, f 
becomes progressively smaller at low energy (Q -+ 1). 

l.~-----------------rl 

0, 

0, 

o 10 20 Radius 30 40 so 

Figure 2. Relative gravitational potential for n = 4.5 with r. = 0.75 
(dotted line), 1, 2, 5, 10 and 100 (solid lines), respectively. The 
radius R at which IjJ vanishes increases with the anisotropy 
(r.-+O). 

0,06 
Density 

o,os 
o,cm; 

0,04 0,000& Zoomfor 

O.oo«B 
larger 

0,1)3 
(),OOQ! 

0,02 o,oD01 

• ..,; • 
0,01 

2 5 6 7 

, 
Figure 3. Radial density profile for a system with n = 4 and r. = 2. 
The solid line is derived from equations (16) and (18), the symbols 
correspond to the radial density profile deduced from particles. 
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14 

o L-_~ __ ~_-L __ ~_~ __ ~_~ 

o 2 3 Radius 4 5 6 7 

Figure 4. The radial dependence of the ratio between the radial 
velocity dispersion and tangential velocity dispersion for n = 4 and 
r. =2. The plain line corresponds to the equation (18), and the 
symbols correspond to the same quantities deduced from the 
particles. 

drasekar 1957). The total mass of the system is fixed equal 
to 1 in our numerical simulations. Tuning nand r., we can 
then modify the only free physical parameters of the system: 
the size and the dynamical time. The size increases as n for 
a given r., while the dynamical time increases as the aniso­
tropy of the system for a given n. All the models are virial­
relaxed (rf = 2EkinetiJEpotenti.l = - 1). One family of DFs is 
plotted on Fig. 1. The DFs generated from such a procedure 
do not present any fixed point as in fig. 2( a) of Merritt 
(1985a). As a matter of fact, since we have not constrained 
the size of the system, the gravitational potential depends in 
our case on r. for a given n (Fig. 2). Consequently, there is 
is no fixed point. 

In order to set up the initial conditions of our N-body 
numerical simulations, we now randomly choose the posi­
tions and the velocities for N particles from the DF. We plot 
in Fig. 3 the radial density profile and in Fig. 4 the velocity 
anisotropy deduced from one simulation of the system with 
n = 4 and r. = 2. The agreement between our initial numeri­
cal conditions and the theoretical models are fully satis­
factory. 

The Ossipkov-Merrit models admit a fundamental limit­
ation. As a matter of fact, for a given polytropic index n, 
there does exist a critical value of r. for which the DF 
becomes negative and unphysical in some region of the 
phase space (Fig. 1). Merrit (1985a) interprets this limita­
tion as a simple illustration of the well-known fact that an 
arbitrary spherical mass distribution cannot always be 
reproduced by radial orbits. We have nevertheless con­
sidered models with r. = 1 or r. = 0.75 for example, which 
admit a negative DF in a region of phase space (Fig. 1). In 
these cases, however, we have arbitrarily set the DF equal to 
zero in this region, the positions and the velocities of the 
particles being thus chosen only after this truncation. As we 
shall see hereafter, our conclusions concerning the stability 
or the instability of such systems with a strong anisotropy 
have been obtained in the same way as for the realistic 
Ossipkov-Merrit systems with r.:2:2. 

Finally, since each particle is initialized independently, 
the equilibrium DF 10(E,L 2) of the system is in fact slightly 
perturbed. The perturbation is caused by local Poissonian 
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fluctuations of the density. The dynamical evolution of the 
system represents then the response of an anisotropic self­
gravitating spherical equilibrium system subject to such a 
perturbation. 

3.2 Numerical integrations 

Particles of mass m i and mj interact through the softened 
potential 

cpij=Gmim/(r~+e2)j/2, (19) 

where rij is their separation. The softening parameter e is 
essentially a particle radius. In our simulations, e = 0.05. The 
most obvious algorithm to integrate equations (19) is direct 
summation (Aarseth 1972, 1985). Unfortunately, the 
number of operations in this algorithm grows as N 2• On 
classical sequential computers, it is at present not possible 
to consider a large number of particles (N::;; 10000) and to 
perform many numerical simulations. On the other hand, 
the direct summation algorithm is particularly well adapted 
to massively parallel computers like a Connection Machine. 
In this paper, numerical simulations have been performed 
on a Connection Machine CM-5 by using a 'Digital Orrery' 
algorithm, first developed on a Connection Machine CM-2 
(Hillis & Barnes 1987; Alimi & Scholl 1993; Serna, Alimi & 
Scholl 1994). In this case, one physical or virtual processor is 
assigned to each particle. One can then imagine two rings of 
processors both containing the same set of N-body coordi­
nates. One ring starts to rotate stepwise according to the 
CM instructions. At each step, forces between all adjacent 
couples of bodies placed on the two different rings are 
calculated in parallel. A complete force calculation between 
all particles requires N - 1 such steps. To illustrate the com­
putational requirements, for a simulation with 8192 par­
ticles, the main part, computing all interacting forces 
between all particles, took less than 10 s per time-step on a 
32-node CM-5. The accuracy of the integration can be illus­
trated by the variation of the total energy throughout a 
complete calculation, typically 30 dynamical times resolved 
by 10000 time-steps. This variation was smaller than 0.01 
per cent. Hereafter, the set of numerical simulations per­
formed have been made with 8192 particles. In order to get 
statistics to put error bars on our results, each model (a 
couple n, ra) has had six independent analyses. Some experi­
ments have been performed using more particles (65536); 
these show no significant changes in comparison with the 
work presented here. 

4 NUMERICAL RESULTS 

4.1 Morphological (in)stability 

The physical mechanism of radial orbit instability for colli­
sionless self-gravitating systems is well known. It is 
described in detail by several authors (Antonov 1962; 
Palmer 1994b). The morphological deformation resulting 
from such an instability is mainly caused by the trapping of 
particles with a low angular momentum in a bounded area 
of space. We can see such trapping in our two opposite 
stable (n =4, ra = 100) and unstable (n =4, ra =0.75) cases in 
Fig. 5. To evaluate this deformation of an initial spherical 
system into an ellipsoid, it is convenient to use the axial ratio 

Figure 5. Left diagram: the orbits of the two particles in a stable 
case n = 4, r, = 100; we can see the regular precession owing to the 
angular momentum and the sphericity of the potential. Right dia­
gram: by opposition, in an unstable n = 4, r, = 0.75 case the orbit of 
a particle with low angular momentum can be trapped. 

defined from the moment of inertia tensor I (Allen, Palmer 
& Papaloizou 1990). From the three real eigenvalues of I, 
Aj::;;A2::;;A3, we compute the axial ratios aj=A j/A 2 and 
a2 = A3/ A2• These two quantities, which can always be 
defined because an eigenvalue never vanishes, satisfy 
aj::;;1::;;a2· 

In Figs 6, 7 and 8 we plot the evolution of both the axial 
ratios and the virial ratio '1 for three classes of systems 
defined by three different polytropic indices n. In each class, 
we have considered six different models which range from a 
purely radial model with ra = 0.75 to a quasi-isotropic one 
with ra = 100. A large range of systems with various physical 
properties (size, dynamical time ... ) (see Appendix), are 
thus taken into account in the set of these simulations. 

All systems are initially spherical and virially relaxed. a j 

and a2 are equal to 1, and '1 is equal to -1 (see Section 3.1). 
The temporal average value for '1 along the evolution is also 
equal to - 1. During the first steps, however, at the same 
time as when the systems possibly deform, a significant fluc­
tuation of '1 appears clearly. It disappears later, '1 staying 
equal to - 1. Independently of the value of the polytropic 
index n, weakly anisotropic systems (ra > 2) keep their initial 
spherical geometry during the evolution. Their axial ratios 
never differ significantly from unity (aj~a2~1). They are 
morphologically stable. On the contrary - but still indepen­
dently of n - systems with a low initial anisotropic radius 
ra::;; 2 inevitably deform, reach a new non-spherical con­
figuration, and stabilize in a new ellipsoidal configuration 
(a j or a2 are significantly different from unity). This is 
exactly the effect of the radial orbit instability, which flat­
tens the system (see de Zeeuw & Franx 1991 for a review). 
The collisionless hypothesis is fundamental for interpreting 
our results. Consequently, we have not continued our 
numerical simulations beyond a few hundred dynamical 
times in order to avoid a later evolution where two-body 
relaxation arises. However, all of our models reach a new 
relaxed state before 30 Td• We thus present our results for 
this interval. Moreover, it is important to notice on Figs 6, 7 
and 8 the evolution of the virial ratio. This parameter, which 
stabilizes also at the - 1 value before 30 Td, is a good 
indicator of the dynamical state of the system, which 
presents all the guarantees of no further dynamical evolu­
tion. Previous studies, which make no use of this parameter, 
must illustrate their results on much larger time-scales. In 
the next section, we interpret all of these numerical results 
with the help of the symplectic formalism described in Sec­
tion 2. We also propose a stability parameter. 
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Figure 6. The axial (bold curves, left ordinates) and the virial (dashed curve, right ordinates) ratio versus dynamical time, for models with 
a polytropic index n = 3.5 and an anisotropy radius '. = 0.75 1, 2, 5, 10 and 100. 

4.2 Physical interpretation in terms of {glOE} and 
{guLl} 

The analytical developments presented in Section 2 concern 
the dynamics and the properties in the mean field approxi­
mation of the six-variable DF f. In an N-body simulation we 
have access to the 6N-variable exact DF,f(N) (Xl' VI>'" ,XN, vN) 
which is a solution ofthe Liouville equation (for a detailed 
justification of the approximations required for reconstruct­
ingffromj<N), see Saslaw 1985) 

(20) 

Consequently, the Poisson brackets {gI>E} and {gl>L 2} 
appearing in equation (14), defining the linear perturbation, 
are estimated in N-body simulations from statistical proper­
ties of the random variables Gi and Ai defined for each par­
ticle i. 

Gi:={gI>E};:~=(Vxgl·V)i- (Vvgl'VxV/)i=(:~ 'dV} 

+ (OE. dx ) = dE-ox . " 
1 

(21) 

© 1996 RAS, MNRAS 280,700-710 

and 

(
OL2 ) + -·dx =dL;. ox . 

1 

(22) 

Gi and Ai are computed from positions and velocities of each 
particle i at the initial time to and at a time tl =to + M. In 
order to compare different models (defined by different n 
and,.) we tune bt such that bf/f=O.Ol. In all cases, we have 
M < Td/lOO. 

The variable Gi is related to the energy perturbation seen 
by the system (equation 21) and thus it is related to the 
stability of the system. In Fig. 9, we plot, for different 
models, the fraction of Gi in the numerical simulations at 
initial time with a negative value, i.e., the probability Pnb(G) 
that G is negative. 

The variable Ai is related to the anisotropic component of 
the linear variation of the DF of the system (equation 22). 
We have shown (Section 2, Perez 1995; Paper I) that the 
systems have particular stability properties against all pre­
serving perturbations, i.e., the perturbations generated by gl 
such that {gl>L 2} = O. Except for the purely isotropic stable 
case, however, there exist no physical systems that are sub-
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Figure 9. Probability Pnb(s) for s to be negative (dashed curves, left ordinate) and Pearson index of the random variable A (plain curves, right 
ordinates) versus anisotropy radius, for models with a polytropic index n =3.5,4 and 4.5, respectively. 

mitted only to preserving perturbations. In the opposite 
case, a fully anisotropic system with all components evolving 
only on radial orbits, is unstable. Consequently, in order to 
characterize the preserving nature of the perturbations act­
ing on the system, we suggest the use of the distribution of 
A; around their vanishing mean value. In order to discrimi­
nate between the preserving and non-preserving nature of 
perturbations we must take into account not only how 
weakly the A; are scattered around their mean, but also how 
highly they are peaked at their mean. We thus compute the 
statistical Pearson index of the random variable A (hereafter 
PJ. This parameter is both a shape and a scattering param­
eter. A flattened distribution (platikurtic) of a random vari­
able is characterized by a small or negative Pearson index. A 
distribution which is both concentrated around its mean 
value and which is highly peaked (leptokurtic) has a large 
Pearson index (Calot 1973). However, we are interested 
only in the distribution of A; around their mean value and, in 
order to eliminate some aberrant contributions, we define a 
truncated variable 

when IA;I~ka.l 

when IA;I>ka/ 

where k is such that K per cent of particles are taken into 
account, with 

K per cent = min (95 per cent, v~ x 100), 
3vR 

a· is the standard deviation of the random variable A; and 
tis the mean of J:;. We compute the statistical Pearson index 

© 1996 RAS, MNRAS 280, 700-710 

of the variable A;. 
N 

_i=_I _____ 3, (23) 

[~ (J:;-Jrr 

with J being the mean A;. 
In Fig. 9 we plot P-x for different models. The error bars 

both for PI and Pnb(e) are calculated from six numerical 
simulations of a given model. The bars represent ± a varia­
tions (i.e., 95 per cent of the values for these non-Gaussian 
variables ). 

For any polytropic index n, the respective behaviours of 
Pnb(e) and P~ are similar. As a matter of fact, the strongly 
anisotropic initial systems with ra:52 which are morpho­
logically unstable (Section 4.1, Figs 5, 6 and 7), are charac­
terized by a large Pnb(e), 

Pnb(e):<:20 per cent, 

and by a small PI 

PI:52.5. 

(24) 

(25) 

On the contrary, the median and weakly anisotropic initial 
systems (ra:<: 2), which are morphologically stable (Section 
4.1, Figs 5, 6 and 7), are characterized by a small Pnb(e), 

Pnb(e):520 per cent, 

and a large PI 

PI:<:2.5. 

(26) 

(27) 
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Table 1. Physical characteristic of used general 
anisotropic spherical systems. 

Rl. Td Pnb(f) It ~ 

Modell 2.69 4,42 18,75 8,26 

Model 2 9.94 31,35 22,82 2,12 

Model 3 3.27 5,94 17,46 2,93 

Model 4 3.18 5,68 18,04 3,42 

Energy 

n=4.5-r i' 10 

Moreover, these two classes of systems are clearly separated 
with respect to the logarithmic scale used for ra. 

5 UNIVERSALITY OF OUR PREDICTIONS 
AND CONCLUSIONS 

In order to generalize to all collisionless self-gravitating 
spherical systems the stability criterion - defined in terms of 
the parameters Pnb(e) andP;: - which has been obtained for 

n=4.5- r a=2 

n=4.5-r ",100 
a 

Figure 10. Lindblad diagram for polytropic Ossipkov-Merritt models with n = 4.5, ra = 1, 2, 10 and 100. 
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Figure 11. Lindblad diagram for models 1, 2, 3 and 4. 

© 1996 RAS, MNRAS 280, 700-710 

© Royal Astronomical Society • Provided by the NASA Astrophysics Data System 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/280/3/700/1003040 by C
N

R
S - ISTO

 user on 21 M
arch 2022

http://adsabs.harvard.edu/abs/1996MNRAS.280..700P


1
9
9
6
M
N
R
A
S
.
2
8
0
.
.
7
0
0
P

1,6 ,....-------.-------..,.--------, 

1,4 

0,6 

....r.J. 0,4 L-_____ ....1..._--iO;.;;::.:::::...._---1 _____ ---I 

o 10 20 30 

-0,8 ,....-------.-------y---------, 
-0,85 VUielRatiD 

-0,9 

-0,95 1----:M2 

-1,05 

-1,1 

-1,15 

-1,2 L-_____ -L-_~pyn"_....r.J._.----L--------J 

o 10 20 30 
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gram) versus dynamical time for models 1,2, 3 and 4. 

the Ossipkov-Merritt models (equations 24-27), we have 
generated four independent spherical models. These 
models do not follow an Ossipkov-Merritt distribution 
(Section 3.1). They are virialized and present an anisotropy 
in the velocity space. We show in Table 1 the physical 
characteristics (size and dynamical time) of these different 
configurations. Since all these models are spherical and 
anisotropic, their DF depends both on E and L 2. We plot 
the isocontour of this function in the E-L 2 plane, thus 
forming the so-called Lindblad diagram of the system (see 
Merritt 1985a and Lindblad 1933). For comparison, we have 
plotted in Fig. 10 a set of such diagrams for the Ossipkov­
Merritt models with n = 4.5, ra = 1, 2,10 and 100. We show in 
Fig. 11 the Lindblad diagram of the systems described in 
Table 1. 

We have considered four models in order to illustrate the 
three classes of foreseeable spherical systems: quasi-iso­
tropic models (M1 and M3); circular anisotropic models 
(M4); and a non-Ossipkov-Merritt radial anisotropic sys­
tem (M2). 

Models 1 and 3 are weakly anisotropic. They are similar 
to the Ossipkov-Merritt systems (respectively with n = 4.5, 
ra = 10 and n =4.5, ra = 100). Model 2 represents a system 
with particles mainly on radial orbits. Its DF is highly 
peaked around L 2 = O. An analysis in velocity space of 
model 4 shows that this model presents a strong circular 
orbit anisotropy. 

In Fig. 12, we present the evolution of the axial and virial 
ratios for models 1 to 4. Only model 2 is morphologically 
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unstable, contrary to model 1 which is very stable. We have 
computed for these models the parameters Pnb(s) and P~. 
The stability criteria (equations 24-27) are confirmed. For 
the unstable model 2, parameter Pnb(s) is larger than 20 per 
cent (Table 1) and parameter PI is smaller than 2.5 (Table 
1). The very stable model 1 is characterized by a low Pnb(s) 
(= 18.75 per cent < 20 per cent) and by a very large 
P~( =8.26>2.5) (Table 1). We are thus able to generalize 
our stability criteria from the previous section to all colli­
sionless self-gravitating spherical systems. 

(i) All anisotropic collisionless self-gravitating spherical 
systems with parameter Pnb(s) smaller than 20 per cent are 
stable. As we do not have analytical suggestions for the 
opposite case, we do not propose any conclusions on the 
instability of such systems from parameter Pnb(s). 

(ii) The dynamical evolution of all anisotropic collision­
less self-gravitating spherical systems with Pi < 2.5 is domi­
nated by non-preserving perturbations (Section 2). Such 
systems are unstable. 
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{gl' E} calculated for each particle to be negative 
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Table AI. Physical characteristics for models with n = 3.5, 4, 4.5 and r. = 0.75, 1, 2, 5, 
10 and 100. 

n=3.5 Til Rl. Pnb(E) peA) 
~ 

r" = 0.75 5.455 ::1:0.062 3.099 ::1:0.023 23.04 ±0.72 0.953 ::1:0.053 

ro = 1 5.127 ::1:0.057 2.973 ::1:0.022 21.03 ::1:0.73 1.205 ::1:0.064 

r" = 2 4.157 ::1:0.039 2.585 ::1:0.016 16.38 ::1:0.61 2.088 ::1:0.076 

r" = 5 3.238 ::1:0.022 2.189 ::1:0.010 12.87 ::1:0.55 2.85 ::1:0.13 

r" = 10 3.043 ::1:0.020 2.0997 ::1:0.0095 12.38 ::1:0.46 3.06 ::1:0.13 

r" = 100 2.973 ::1:0.020 2.0676 ::1:0.0097 12.10 ::1:0.48 3.082 ::1:0.13 

n=4 Til Rl. Pnb(E) peA) 
~ 

r" = 0.75 8.720 ::1:0.096 4.237 ::1:0.031 25.63 ::1:0.60 0.935 ::1:0.082 

r" = 1 8.257 ::1:0.087 4.085 ::1:0.029 23.45 ::1:0.72 1.079 ::1:0.044 

ro= 2 6.473 ::1:0.037 3.472 ::1:0.013 18.74 ::1:0.57 1.962 ::1:0.065 

r" =5 4.503 ::1:0.037 2.727 ::1:0.015 14.77 ::1:0.64 3.04 ::1:0.15 

ro = 10 4.015 ::1:0.033 2.526 ::1:0.014 13.98 ::1:0.60 3.40 ::1:0.12 

r" = 100 3.835 ::1:0.031 2.450 ::1:0.013 13.59 ::1:0.55 3.53 ::1:0.16 

n=4.5 Til Rl. 
~ 

Pnb(E) P(A) 

r" = 0.75 17.09 ::1:0.21 6.634 ::1:0.053 26.67 ::1:0.38 1.161 ±o.070 

ro = 1 16.26 ::1:0.19 6.418 ::1:0.050 24.79 ::1:0.56 1.241 ::1:0.042 

ro= 2 12.56 ::1:0.12 5.403 ::1:0.035 19.78 ::1:0.60 1.898 ::1:0.094 

r" = 5 7.206 ::1:0.081 3.730 ::1:0.028 16.12 ::1:0.61 3.16 ::1:0.13 

r" = 10 5.655 ::1:0.062 3.174 ::1:0.023 15.14 ::1:0.57 3.85 ::1:0.13 

ro = 100 5.064 ::1:0.051 2.949 ::1:0.020 14.73 ::1:0.57 4.18 ::1:0.14 
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