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ABSTRACT

Recently, there is an encouraging trend in adopting model-
driven engineering approaches for software development in
robotics research. In this paper, currently available model-
based techniques in robotics are analyzed with respect to
the domain specific requirements. A conceptual overview
of our software development approach called ‘Self Adaptive
Framework for Robotic Systems (SafeRobots)’ is explained
and we also try to position our approach within this model
ecosystem.

1. INTRODUCTION
A robotic system is a software intensive system that is

composed of distributed, heterogeneous software components
interacting in a highly dynamic, uncertain environment. How-
ever, no systematic software development process is followed
in robotics research. A major part of the research comprises
of providing ‘proof of concept’ in order to substantiate the
researcher’s idea, for example, a robust path planning algo-
rithm. Most of the time, they are developed from scratch or
by using external code based libraries. Nevertheless, when
such components are composed with other functional mod-
ules, the system does not exhibit the expected behavior.
This has led to the increased time-to-market and large sys-
tem integration efforts when such systems are to be used in
safety critical applications.

In the last decade, the robotics community has seen a
large number of middlewares and code libraries developed
by different research laboratories and universities. They fa-
cilitate software development by providing framework in-
frastructure for communication (e.g. ROS [18]), real-time
control (e.g. Orocos [3]), abstract access to sensors and ac-
tuators (e.g. Player [9]), algorithm reuse (e.g. OpenCV
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[2], PCL [23]), and simulation (e.g, Stage [9], Gazebo [14]).
To a large extend, these frameworks have helped in rapid
prototyping of individual functionalities, but system level
analysis still remains an issue. System level properties such
as response time, synchronization, deployment have been
realized as accidental outcomes, rather than a design deci-
sion. It is high time that roboticists transform themselves
as system thinkers in addition to being domain experts.

Motivated from the positive results from the application
of Model-driven Software Development (MDSD) in other do-
mains such as automotive, avionics, etc., the software engi-
neering community in robotics is gradually moving in that
direction [24]. Model-driven software development helps the
domain experts shift their focus from implementation to the
problem space. They are attracted by the fact that appro-
priately selecting the viewpoints and level of abstraction,
the system can be analyzed more efficiently.

The model driven work flow cannot directly be applied
in the robotics domain. The primary feature that distin-
guishes a robotic system with respect to other embedded
system is that it operates in a highly dynamic environment.
This unpredictability spans over various phases in software
development - from requirement specification, system de-
sign, implementation, integration, and till it is deployed
in real world scenarios. The system cannot be realized in
an uni-directional process flow because the solution for a
robotic problem cannot be finalized during the design time.
It is because neither the problem space nor the target en-
vironment cannot be completely modeled as in embedded
systems. Hence, the current trend is to generate a con-
tainer with slots that allows the developer to insert the
‘hand coded’ functionalities. However, such an approach
may result in inconsistencies with models since most of the
code in robotics domain is through external class libraries,
which do not follow any strict semantics. This is commonly
termed as round trip problem in software engineering liter-
ature. Hence, a more iterative approach is required in the
process.

This research paper has two objectives: the first objec-
tive is to identify the current MDE approaches in robotics
and analyze how these approaches achieve general modeling
related advantages and how effective are they in satisfying
robot specific requirements. The second objective is to po-



sition our MDSD approach ’Self Adaptive Framework for
Robotic Systems (SafeRobots)’ in the model-driven ecosys-
tem.

In our research paper [19], we have identified domain spe-
cific requirements for robotic software component. In gen-
eral, the paper tries to answer the following questions:

1. How is domain knowledge modeled and how it is used
in various phases of software development?

2. What are the common Separation of Concerns (SoC)
that are relevant in robotics and how these SoCs are
used for analyzing the desirable properties and facili-
tate system level reasoning?

3. How are the models used at run time?

4. How are the non-functional properties incorporated in
the system?

5. How are the robotic component specific requirements,
such as composability, compositionality, variability, tech-
nology neutrality, addressed in these systems?

The paper is organized as follows: Section 2 identifies the
current MDSD approaches available in Robotics research
and an overview of the methods used in each of these ap-
proaches is presented. In Section 3, some of the modeling
features and robotic domain specific requirements are dis-
cussed with respect to the identified approaches. Finally, in
Section 4 a conceptual overview of our MDSD approach is
explained and Section 5 concludes the paper.

2. MDSD APPROACHES IN ROBOTICS
This section provides an overview of some of the MDSD

approaches available in robotics. To the best of our knowl-
edge, currently there are four model based approaches in
robotics: BRICS Model [13], RobotML [7], SmartSoft [24],
and V3CMM [1] approach. We have many component-based
approaches in which modeling is mainly used for basic skele-
ton codes rather than using models as a developmental ar-
tifact.

2.1 BRICS Component Model
BRICS Component model [13] is built upon two compli-

mentary paradigms - Model-driven approach and Separation
of concerns. The syntax of the model is represented by
Component-Port-Connector (CPC) meta-model and their
semantics is mapped to the 5Cs - Communication, Com-
putation, Configuration, Coordination, and Composition.
The components represent computation and can be hierar-
chically composed to represent composite components. A
composite component contains a coordinator whose is in
charge of starting and stopping the computational compo-
nents. The Ports represent the type of communication, for
example: dataflow, events, service calls, etc. and the con-
nectors connect two compatible ports. The components are
configurated by using their visible properties, for example:
maximum iterations for a planning algorithm. The compo-
sitional aspect concerns the interaction between the other 4
concerns. The BRICS approach is built using Eclipse frame-
work and all the concepts are not integrated in the toolchain.
The workflow can be roughly summarized as follows:

2.1.1 Workflow

1. Define the structural architecture by using components,
port, and connectors.

2. Each complex component contains a coordinator that
is defined using state machines.

3. Perform a M2T transformation to generate executable
code (currently Orocos and ROS middlewares are sup-
ported).

2.2 RobotML
RobotML is a DSL for designing, simulating, and deploy-

ing robotic applications. It is developed in the framework of
French research project PROTEUS [7]. The domain model
consists of architecture, communication, behavior, and de-
ployment metamodels. The architectural model defines the
structural design using the CPC model. In addition, it also
defines the environment, data types, robotic mission, and
platform. The communication model associated with ports
defines the type of communication - dataflow port or service
port. The behavior model is defined using state machines.
Specific activities are associated with states and transitions
that are mapped to specific algorithms. The deployment
model specifies a set constructs that define the assignment
of each component to a target robotic middleware or simu-
lator. The workflow is described below:

2.2.1 Workflow

1. Define the architecture using component-port-connector
diagram.

2. Define the communication policy between components
by setting the port attributes.

3. Define the behavioral model of each component using
state machines.

4. Create a deployment plan by allocating the compo-
nents to a middle or a simulator.

5. Execute M2T transformation to generate the executable
code.

2.3 SmartSoft
SmartSoft [24] employs a model based approach in creat-

ing component skeleton (called component hull in SmartSoft
terminology) that mediates the external visible services of
a component and internal component implementation. The
skeleton provides links to four different artifacts - internal
usercode, communication to external components, platform
independent concepts such as threads, synchronization, etc.,
and platform specific middleware, and operating system.

The communication between external services (interfaces
to other components) and internal visible access methods
(interface to user code inside component) is based on a set
of communication patterns. A set of seven communication
patterns are identified that are relevant to robotics systems:
send, query, push newest, push time, event patterns,

state and wiring patterns. The wiring pattern provides
dynamic connection of components at run-time. These pat-
terns provide required abstraction from implementation tech-
nologies with respect to the middleware systems. In order



to promote loose coupling between components, the objects
are transmitted by value and the data are marshaled into a
platform independent representation for transmission. The
behavior of the component is specified by an automaton
with generic states Init, FatalError, Shutdown and Alive.
The Alive state can be extended by the user-defined states.
The life cycle of the component is managed using these pre-
defined states including the fault detection. The workflow
can be summarized as follows:

2.3.1 Workflow

1. Create a Platform Independent Model (PIM) of com-
ponent skeleton with stable interfaces to usercode, ex-
ternally visible interfaces, and interfaces to SmartSoft
framework. The component model contains explicit
parameters and attributes, that finally need to be val-
idated while generating platform specific models (for
e.g., wcet: 100 ms [requirement]).

2. The platform specific information is then added to
PIM and component attributes are refined (for e.g.,
wcet: 80 ms [estimation]).

3. In the deployment phase, a system is designed by wiring
the components and system level parameters are ex-
tracted with the help of Platform Description Model
(PDM) (for e.g., wcet: 85 ms [measurement]).

4. The timing parameters of system are exported to an
external tool called Cheddar [25] to analyze for the
timing analysis.

5. The PSI is generated from Platform Specific Model
(PSM) using Model to Text (M2T) transformation.

2.4 V3CMM
V3CMM component meta-model consists of three com-

plementary views: structural, coordination, and algorithmic
views. The structural view describes the static structure
of the components, coordination view describes the event
driven behavior of the components and the algorithmic view
describes the algorithm executed by each component based
on its current state. The structural view consists of com-
ponent, ports, interfaces and their interconnections. The
coordination model is defined using UML state machines,
while algorithmic view consist of UML activity diagrams.
The workflow is described below:

2.4.1 Workflow

1. Define the common data types and interfaces.

2. Create the simple and complex component definitions.

3. Design the behavioral model of each component using
the UML state machines.

4. Design the algorithmic models using the UML activity
diagrams.

5. Link activities to state machines and state machines
to components.

6. Execute M2M transformation to generate UMLmodels
and M2T transformation to generate the executable
code.

Table 1: Feature Comparison of MDD Approaches

Feature RobotML SmartSt BCM V3CMM

Composability ✕ ✕ ✕ ✕

Compositionality ✕ ✕ ✕ ✕

Static Variability ✓ ✓ ✓ ✓

Dynamic
Variability

✕ ✓ ✕ ✕

Component
Abstraction

✓ ✓ ✓ ✓

Technology
Neutrality

✓ ✓ ✓ ✓

Knowledge Model ✓ ✕ ✕ ✕

System Reasoning ✕ ✓ ✕ ✕

Non-Functional
Property Model

✕ ✕ ✕ ✕

3. FEATURE ANALYSIS
An overview of features available in each approaches is

depicted in Table 1. The detailed discussions are provided
in the following sections:

Separation of Concerns

In MDD, the complexity of the software is managed using
the mechanism called ‘separation of concerns (SoC)’. Ver-
tical SoC is built on multiple levels of abstraction. Model
Driven Architecture (MDA), a model based architecture stan-
dardized by OMG specifies four abstraction layers - Com-
putation Independent Model (CIM), Platform Independent
Model (PIM), Platform Specific Model (PSM), and Plat-
form Specific Implementation (PSI). Horizontal SoC man-
ages complexity by providing different overlapping viewpoints
of the model at the same abstraction level. All of the MDD
approaches in robotics primarily use only two vertical SoC
- PIM and PSI. Horizontal SoC is seen only in one of the
abstraction layer - PIM. A comparison of SoCs is depicted
in Figure 1.

Composability

A model is said to be composable if its core properties do
not change upon integration. In other words, the compos-
ability of a model guarantees preservation of its properties
across integration with other components. A highly compos-
able model can freely move around in the design space and
assemble itself to a more complex structure that is seman-
tically correct. However, semantic correctness of the com-
posed models are not addressed in any of the approaches.
It is very important in robotics since the components are
highly heterogeneous in nature in terms of semantics and
necessary for providing unambiguous interfaces. For exam-
ple, the authors of [5], in their proposal of standardization,
have provided approximately 24 different ways of represent-
ing geometric relation between rigid bodies and have pro-
posed a DSL based on it [6].

Compositionality

Compositionality allows to deduce properties of a composite
component models from its constituent components. It en-
ables hierarchical composition of components and provides
correctness of the structure. The reusability of a component
is enhanced by providing compile-time guarantees by veri-



Figure 1: A comparison of vertical and horizontal separation of concerns

fying that formal parameters and actual parameters match
regardless of the software module’s location. The behavior
of the reused components can be predicted in the new con-
figuration and the result of the composition can be analyzed
for anomalies. Only syntactic correctness of the architecture
is addressed in all the approaches. It is worth mentioning
that the works associated with Ptolemy [4] framework pro-
vide formal proofs for correctness when heterogeneous actors
with different models of computation are composed. The
major hindrance in robotics is the lack of standards, how-
ever, the robotics domain task force at OMG [15] and stan-
dard committee at IEEE Robotics and Automation society
[21] is in process of standardization. The European project
‘RoSta’ provides standards and a reference architecture for
service robots [22].

None of the architectures previously analyzed, currently
provide support for the composability and compositional-
ity properties. This is due to the fact that the component
attributes are not explicitly modeled using formal methods.

Static and Dynamic Variability

Static variability is the configuration of the system and dy-
namic variability is related to the context dependent coor-
dination of the components. Configuration defines which
system can communicate with each other and coordination
determines when such communication can occur. Configu-
ration can be completely specified during design time while
coordination is achieved by allowing variability during de-
sign time and run-time dynamic invocation. Static vari-
ability and limited context dependent dynamic variability is
provided by the analyzed approaches. SmartSoft approach
models variation points, context, Quality of Service, and
Adaptation rules using Variability Modeling Language (VML)
to support run-time variability for service robotics [11]. Brics
approach uses feature models similar to the one used in
Software Product Lin (SPL) to specify, implement, and con-
straint resolution of variabilities and provide graphical mod-
els for selecting possible configuration during design time
[10].

Technology Neutrality

The component properties and specification should not de-
pend on a specific technology. Software technology neutral-
ity and hardware neutrality to some extend are achieved by
many of the already available code-based frameworks, such
as, ROS [18], Player project [9], etc. To a larger extend,

all the MDSD approaches have achieved middleware inde-
pendence by using various M2T approaches for generation
executable code.

Modeling Domain knowledge

One of the primary focus of MDD is the separation of do-
main knowledge and implementation details. Among the
compared MDD approaches, domain knowledge is explicitly
modeled only in RobotML. In RobotML, the DSL is de-
signed with the robot domain ontology as the backbone. In
fact, the domain concepts that is required while designing
the DSL is derived from the ontology. The ontology is used
for two purposes - to normalize the robot domain concepts
and to act as an inference mechanism during runtime [17].
However, it is not clear from the literature how the ontolo-
gies can effectively be used during model developmental and
runtime models.

Round-tripping Problem

Round-tripping is a major concern of model-based system,
especially if it has multiple abstraction layers and differ-
ent horizontal separation of concerns. It is a major prob-
lem in analyzed approaches because separation of concerns
is applied only at the model level. Restricting SoC only
to models and in addition only to single abstraction levels
worsens the round tripping effect and reduces the reusabil-
ity. Providing SoC to models and code can support better
traceability and system evolution. Aspect oriented mod-
eling and template based techniques can be used to pro-
vide an integrated way of dealing with SoC. It will sim-
plify the model development and transformation tasks [26]
[16]. Approaches in RobotML and V3CMM provide only
loose coupling among different viewpoints, for example in
V3CMM approach, the uni-directional relationship between
structural, coordinational, and algorithmic views have to
manually be corrected if there is change in one of the view-
points.

System level reasoning

SmartSoft and RobotML approach provide limited support
to reason the timing analysis of the models at the system
level. Properties such as WCET, Periods, etc, are provided
as attributes to components. During the system deployment
these properties are exported to an external tool ‘Cheddar’
for schedulability analysis. Semantic reasoning is not yet
realized in any approaches because of the lack of standards.



Runtime Models

In robotics, the adaptation of the robotic system to the dy-
namic environments is embedded in the computational al-
gorithms of the constituent systems. This severely limits
the configuration space of such systems. Explicit modeling
of the variabilities and variation points during the system
design can help finding the best possible solution during
runtime and can lead to the use of framework supported
adaptation mechanisms. Hence, in order to achieve runtime
adaptiation, explicit models of variation points, variabilities,
context or environment and decision mechanisms should be
supported by the framework. In [12] run time models are
used for simple scenarios. The authors in [11] have demon-
strated how SmartSoft framework with support of VML can
be used for runtime adaptation for service robots.

Non-Functional Properties

Non-functional properties define how a functionality oper-
ates, for example, performance, availability, effectiveness,
etc. QoS is the aptitude of a service for providing a qual-
ity level to the different demands of the clients. There is
no general consensus in the community about the concepts
of NFP and QoS. Non-Functional Requirements are not im-
plemented in the same way as functional ones. NFPs are
seen as by products when a functionality is implemented.
The functional and non-functional attributes of the compo-
nents are considered to make ‘who does, what, and when’
decisions depending on the operational context. However,
non-functional properties are not given sufficient importance
compared to that of the functional requirements during the
developmental stages. However, none of the approaches an-
alyzed provide explicit models for non-functional properties.
SmartSoft uses NFPs as attributes to component model, but
it is not formally modeled.

4. SAFEROBOTS FRAMEWORK
In this section, we propose and position our framework

‘Self Adaptive Framework for Robotic Systems (SafeRobots)’
in MDD ecosystem. Currently, it is in the conceptual and
in initial stages of development. In our research paper [20],
we have analyzed the common problems ecountered during
software development in robotics research. These common
issues can broadly be classified into three classes of prob-
lems:

Uncertain problem space: Ambiguity in requirements due
to the desire to reuse the system across various applications.
For example, in one of our previous projects, we decided
to develop a vehicle tracking system that can be used for
multiple application such as ground truth generation, au-
tonomous driving, traffic detection. Later it was found that
although the functionality is the same, the requirements for
non-functional properties such as timing, confidence, and
resolution were different for each scenarios. Since this was
not formally captured in the system, the adoption of the
tracking system in the target application was further de-
layed.

Large solution space: The availability of multiple algo-
rithms for implementing a functionality is very common in
the robotics domain, for example, for segmenting a point
cloud that represents an outdoor environment, various meth-
ods can be used depending on the context, terrain type, etc.
The decision on which algorithm to use is taken by the do-
main expert during the design phase without considering the

Figure 2: SafeRobots Framework: Ecosystem of

Models and their relationships

operational profile of those functionalities and their prereq-
uisites, run-time environment, potential interactions, etc.

Lack of design time context information: The developer
of software component that realizes a functionality cannot
anticipate all the use cases and his/her assumptions are not
properly documented. Commonly, data flow driven models
are used in robotics which cannot be effectively used of func-
tional adaptation depending on the non-functional proper-
ties such as confidence, resolution of the data.

Incorrect level of Abstraction: External code libraries con-
tain number of hard-coded magic numbers. They are either
tightly bound to a particular sensor or to a specific sce-
nario. Without properly documented meta-data, using such
libraries hinders portability and reusablity.

In SafeRobots framework, the entire software development
process can be conceptually divided into three spaces: prob-
lem space, solution space, and operational space. Each space
can be further classified into knowledge level and application
level. The complete ecosystem is illustrated in Figure 2. In
problem space, the problem, requirements, and contexts are
modeled using appropriate Modeling Languages (ML) us-
ing metamodeling approach. The solution model captures
the large solution space that satisfies the problem model.
The SSML proposed in our paper [20] provides abstract syn-
tax with limited semantic content for modeling the solution.
The syntactic and semantic enrichment is done by specific
sub-domain modeling languages such as perception, naviga-
tion, control, kinematics, planner, etc. The DSLs proposed
by the authors in [8] and [6] for kinematics and rigid body
geometric relations can be easily integrated in the system.
Operational space comprises of more concrete models that
can be modeled as loosely coupled separation of concerns for
in-depth analysis.



5. CONCLUSION
The paper identified currently available MDSD approaches

available in the robotics research. A qualitative analysis of
these approaches is performed with respect to the domain
specific requirements and features. Most of the approaches
are either in a development stage or in a conceptual state.
Hence, quantitative analysis is currently not possible. How-
ever, it was found that many of the robotic specific require-
ments were not addressed. A conceptual overview of our
MDSD approach, SafeRobots is explained by illustrating
various metamodels and models involved in the proposed
ecosystem.
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