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This paper investigates the three-dimensional instabilities and the transient growth of perturbations

on a counter-rotating vortex pair. The two dimensional base flow is obtained by a direct numerical

simulation initialized by two Lamb–Oseen vortices that quickly adjust to a flow with elliptic

vortices. In the present study, the Reynolds number, Re�=� /�, with � the circulation of one vortex

and � the kinematic viscosity, is taken large enough for the quasi steady assumption to be valid.

Both the direct linearized Navier–Stokes equation and its adjoint are solved numerically and used to

investigate transient and long time dynamics. The transient dynamics is led by different regions of

the flow, depending on the optimal time considered. At very short times compared to the advection

time of the dipole, the dynamics is concentrated on the points of maximal strain of the base flow,

located at the periphery of the vortex core. At intermediate times, depending on the symmetry of the

perturbation, one of the hyperbolic stagnation points provides the optimal amplification by

stretching of the perturbation vorticity as in the classical hyperbolic instability. The growth of both

short time and intermediate time transient perturbations are non- or weakly dependent of the axial

wavenumber whereas the long time behavior strongly selects narrow bands of wavenumbers. We

show that, for all unstable spanwise wavenumbers, the transient dynamics last until the

nondimensional time t=2, during which the dipole has traveled twice the separation distance

between vortices b. During that time, all the wavenumbers exhibit a transient growth of energy by

a factor of 50, for the Reynolds number Re�=2000. For time larger than t=2, energy starts growing

at a rate given by the standard temporal stability theory. For all wavenumbers and two Reynolds

numbers, Re�=2000 and Re�=105, different instability branches have been computed using a high

resolution Krylov method. At large Reynolds number, the computed Crow and elliptic instability

branches are in excellent agreement with the inviscid theory �S. C. Crow, AIAA J. 8, 2172 �1970�;
S. Le Dizes and F. Laporte, J. Fluid Mech. 471, 120 �2002�� and numerical analysis �D. Sipp and

L. Jacquin, Phys. Fluids 15, 1861 �2003��. A novel oscillatory elliptic instability involving Kelvin

waves with azimuthal wavenumbers m=0 and �m�=2, that was missed in previous numerical

analysis �D. Sipp and L. Jacquin, Phys. Fluids 15, 1861 �2003�� is found. For the stationary elliptic

instability, we show that viscous effect may be estimated using the large Reynolds number direct

and adjoint eigenmodes. This asymptotically exact estimate of the viscous damping of elliptic

instability mode agrees with our direct numerical computation of instability branches at moderate

Reynolds number and demonstrates that formula proposed by Le Dizes and Laporte �J. Fluid Mech.

471, 120 �2002�� strongly over estimated the viscous correction. © 2009 American Institute of

Physics. �doi:10.1063/1.3220173�

I. INTRODUCTION

Trailing vortices behind aircrafts consist of a horizontal

pair of counter-rotating vortices propagating downwards.

Such a dipole can be hazardous to following aircrafts during

the take-off and landing since it can persist over a long time

and can induce a strong rolling moment to following air-

crafts. Safety regulation imposes a minimum distance be-

tween airplanes to avoid such danger.

The dynamics of counter-rotating vortices has been

widely studied. These studies have shown that a pair of

counter-rotating vortices is unstable with respect to three-

dimensional perturbations. A long- and a short-wavelength

instabilities have been observed and numerically analyzed.

This confirmed the theoretical work of Crow
1

on a pair of

vortex filaments predicting the existence of a long-

wavelength symmetric �with respect to the plane separating

the two vortices� instability with a wavelength of about five

to ten times the vortex core separation distance. The exis-

tence of a short-wavelength elliptic instability has been de-

scribed theoretically by Moore and Saffman
2

and Tsai and

Widnall,
3

who have investigated the stability of a vortex

patch in a uniform strain field. They have shown that this

instability originates from the resonant interaction between

the strain and Kelvin waves of azimuthal wavenumbers m

=1 and m=−1 when both waves have the same frequency �

and is particularly intense for �=0. Later, Pierrehumbert
4

showed that an unbounded strained vortex, with elliptic

streamlines, is unstable to three-dimensional instabilities. In

this unbounded limit, Bayly
5

and Waleffe,
6

using a local ap-
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proach, have shown that the elliptic instability appears as a

parametric instability of inertial waves of zero frequency in

the fixed frame and is therefore similar to the one discovered

by Tsai and Widnall.
3

Numerous papers ever since have fo-

cused on this instability with both numerical and theoretical

studies �Sipp and Jacquin,
7

Billant et al.,
8

Laporte and

Corjon,
9

Le Dizès and Laporte,
10

see the review by

Kerswell
11�. The general case of the resonant interaction be-

tween Kelvin waves of azimuthal wavenumbers m and

m�=m−2 has been also analyzed �Tsai and Widnall,
3

Eloy

and Le Dizès
12�. Effect of axial flow and density variations in

the core of the vortices have been discussed in Mayer and

Powell,
13

Lacaze et al.,
14

Coquart et al.
15

among others. In

particular axial flow on a single vortex is known to be

strongly destabilizing and to promote helical instability

through a generalized centrifugal instability �Leibovich and

Stewartson
16�. Stability and transient growth on such a swirl-

ing flow have recently been addressed �Ben-Dov et al.,
17

Heaton and Peake
18� but will not be discussed further since

no axial flow will be considered in the present paper.

A few experimental works have described the short-

wavelength instability experienced by a pair of counter-

rotating vortices. Among them, Leweke and Williamson
19

observed the internal deformation of the vortex cores char-

acteristic of the elliptic instability and have been able to ob-

tain quantitative measurements of the wavelength and the

growth rate in agreement with theoretical analysis. In their

laboratory experiments, they have observed preferentially

antisymmetric deformations of the cores. This selectivity is

not predicted by linear stability of inviscid base state, since

in that case, both symmetric and antisymmetric elliptic

modes present nearly equal growth rate �Sipp and Jacquin,
7

Billant et al.
8�. Sipp and Jacquin

7
showed, by taking into

account the unsteadiness of the flow due to slow viscous

diffusion and using quasisteady approximation with a shape

assumption, a growth of the antisymmetric mode stronger

than that of the symmetric one, which may account for the

observed selection. The present paper will address the possi-

bility of transient growth on such a flow. In particular we will

show that the antisymmetric mode also presents a higher

sensitivity to initial perturbations than the symmetric mode.

In this paper, a three-dimensional stability analysis of a

Lamb–Oseen vortex pair is performed in Sec. II. Transient

growths of perturbations on the counter-rotating vortex pair

are studied in Sec. III. In Sec. III A, we give the adjoint

equations and discuss the adjoint eigenmodes. After the

study of the large time energy growth of the perturbations in

Sec. III B, we focus in Sec. III C on the short time behavior

of the perturbations on the dipole by computing the optimal

linear perturbations with a direct-adjoint technique similar to

the one introduced by Luchini.
20

Recent related works, in

particular, by Antkowiak and Brancher,
21

Pradeep and

Hussain,
22

and Brion, Sipp and Jacquin
23

on optimal ampli-

fication and transient growth on a single vortex or on a pair

of vortices are discussed in the concluding section.

II. LINEAR THREE-DIMENSIONAL STABILITY
ANALYSIS OF A VORTEX PAIR

We investigate the three-dimensional instabilities of a

horizontal pair of counter-rotating vortices of initial circula-

tion �0, vortex radius a0 and vortex separation b0. The spatial

coordinates are Cartesian �x ,y ,z�, corresponding, respec-

tively, to transverse, axial and vertical directions. The vortex

pair propagates downward along the vertical direction with

the initial advection velocity W0=�0 /2�b0. The initial state

is the superposition of two circular Lamb–Oseen vortices

with two-dimensional initial vorticity field �By given by

�By�x,z,t = 0� =
�0

�a0
2
e−�x − x1�2+�z − z1�2

/a0
2

−
�0

�a0
2
e−�x − x2�2+�z − z2�2

/a0
2

, �1�

where �x1 ,z1� and �x2=x1+b0 ,z2=z1� are the initial coordi-

nates of the two vortex centroids.

A. 2D base state

The base state is computed from this initial state by a 2D

numerical simulation described in Appendix A. As described

by Sipp et al.,
24

the counter-rotating vortices adapt to each

other by a two-dimensional process in two steps. First, the

mutual strain imposed on one vortex by the other drives the

vortices to become elliptical. An equilibrium is rapidly

reached and a quasisteady solution of the Euler equations is

established. Then, the dipole belongs to a unique family

characterized by its aspect ratio a /b �Sipp et al.
24� for which

� and b are constant and a evolves by viscous diffusion

according to the law �Batchelor
25�: a2=a0

2+4�t, where � is

the viscosity of the flow. At that stage, for large Reynolds

numbers, the evolution of the dipole in the frame moving

with the vortices at the vertical velocity W0 is therefore ex-

tremely slow and, at each instant, we can perform a quasi-

static stability analysis by freezing the instantaneous flow

field.

Figure 1�a� represents the isovalues of the axial vorticity

obtained in the diffusive regime at time t�0 /2�b0
2=3 for

Re�0
=�0 /�=2400. The aspect ratio of the dipole has evolved

from its initial value a0 /b0=0.1 to the value a /b=0.206,

where the vortex radius a is computed using the vorticity

polar moment: a2= ���x−x2�2+ �z−z2�2��By� / ��By� with � . �
denoting the integration over the semi-infinite domain x�0

and the distance between the two vortices is b= �x2−x1�,
�x1 ,z1�, and �x2 ,z2� being the location of the vorticity ex-

trema. This base state is symmetric with respect to the axis

x=0,

�uB,0,wB��x,z� = �− uB,0,wB��− x,z� ,

�2�
�0,�By,0��x,z� = �0,− �By,0��− x,z� ,

where uB and wB are, respectively, the transverse and the

vertical velocity of the base state.

094102-2 Donnadieu et al. Phys. Fluids 21, 094102 �2009�
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Figure 1�a� shows the streamlines in the frame moving

with the dipole. The base state streamlines possess two

hyperbolic points �indicated by stars on Figs. 1�a� and 1�b��.
Figure 1�b� represents the strain

��x,z� =�	 �wB

�z

2

+
1

4
	 �uB

�z
+

�wB

�x

2

�3�

of the base state. The strain is maximum at the periphery

of the vortex cores �dark red in Fig. 1�b�� in nontrivial

locations.

B. Linearized equations

For the stability analysis, the base state presented in Fig.

1 is frozen in the frame moving with the dipole. This frame

of reference is taken by subtracting the advection velocity of

the dipole to the base state velocity field. The quasistatic

stability analysis is valid as long as the time scale of the

instability is smaller than the diffusion time scale T�=a2
/�.

As known from previous studies, the mutual strain exerted

by one vortex on the other is the driving instability mecha-

nism for both Crow and elliptic instabilities, and the time

scale of the instability is of the order Ti=2�b2
/�. We have,

T� /Ti=Re�a /b�2 where Re=Wb /� is the Reynolds number,

with W=� /2�b the advection velocity of the dipole. The

quasistatic approximation implies Ti�T�, i.e., Re�a /b�2�1,

in the following, we will use the circulation Reynolds

number Re�=2� Re=� /�. This condition is always fulfilled

in this paper, for Re�=2000, Ti=4, and T�=51, for

Re�=105, Ti=4, and T�=2546 meaning that for Re�=2000,

Ti /T�= �� /4�10−1 and for Re�=105, Ti /T�= �� /2�10−3. The

procedure is here identical to that of Sipp and Jacquin
7

ex-

cept that we will carry out a finite Reynolds number viscous

stability analysis.

Infinitesimal three-dimensional perturbations are super-

posed to the frozen base state,

u��x,y,z,t� = uB�x,z� + u�x,y,z,t� ,

���x,y,z,t� = �B�x,z� + ��x,y,z,t� , �4�

p��x,y,z,t� = pB�x,z� + p�x,y,z,t� ,

where �u ,� , p��x ,y ,z , t�, the velocity, the vorticity, and the

pressure of the three-dimensional perturbation are solutions

of the linearized Navier–Stokes equations,

�u

�t
= uB 	 � + u 	 �B − ��p + u · uB� + �
u ,

�5�
� · u = 0,

where p is the pressure normalized by the constant density.

As the base state is uniform along the y axis, the pertur-

bations can be decomposed into normal modes,

�u,�,p��x,y,z,t� = �ũ,�̃, p̃��x,z,t�eikyy + c.c., �6�

where ky is the axial wavenumber and c.c. denotes the com-

plex conjugate.

C. Numerical method

The linearized Navier–Stokes equation �5� are integrated

using the pseudospectral method in Cartesian coordinates

with periodic boundary conditions described in Delbende

et al.
26

The velocity, vorticity, and pressure perturbations are

expressed in Fourier space by application of the Fourier

transform:

�ũ,�̃, p̃��x,z,t� =� � �û,�̂, p̂��kx,kz,t�e
i�kxx+kzz�dkxdkz.

�7�

In spectral space, the linear Navier–Stokes equation �5�
becomes

−1.8

−1.5

−1

−0.5

0

0.5

1

1.5

1.8

x

z

(a)

1

2

3

4

5

6

7

8

x

z

(b)

FIG. 1. �Color� Isovalues of �a� the axial vorticity of the base state �By2�a2
/� and �b� the local strain �2�b2

/� in the �x ,z� plane for a /b=0.206 and

Re�0
=�0 /�=2400. The stars represent the two hyperbolic points of the base state and the arrowed lines sketch the streamlines of the base state. The size of

the domain shown is 3b	3b where b is the separation distance between the two vortex centers.
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�û

�t
= P�k��uB 	 � + û 	 �B� − �k

2
û , �8�

where k= �kx ,ky ,kz� is the total wavevector and P�k� is the

projection operator on the space of divergence-free fields

which, in Fourier space, may be expressed as a tensor with

components Pij =�ij −kik j /k
2. Introduction of this operator

suppresses the term ��p+u ·uB�. The cross-product terms

uB	�+u	�B are evaluated in the physical space. Time

integration is performed with a second-order Adams–

Bashforth scheme whereas the dissipative term �
u is inte-

grated exactly in the Fourier space.

The eigenmodes are computed independently for each

axial wavenumber ky. For kya larger than 0.3, the domain

size in the x and z directions is half that used to compute the

base state �uB ,�B� �see Appendix A�, i.e., Lx=Lz=3b with a

Cartesian grid of 256	256. The accuracy and the conver-

gence of the results have been tested by taking a larger box

size and a finer resolution �see Appendix B for details�. For

wavenumbers kya smaller than 0.3, the size of the computa-

tional domain has been kept the same as that of the base flow

Lx=Lz=6b with 512	512 grid points. Indeed, away from

the vortex dipole, the perturbation with an axial wavenumber

ky decreases exponentially with an evanescent length scale

proportional to ky
−1. Assuming periodicity in the relatively

small box Lx=Lz=3b has negligible effect when kya is larger

than 0.3 but affects the results for kya�0.3 whereas, down to

kya=0.1, the size Lx=Lz=6b is sufficiently large. The time

step is set to �t=10−3, with b=2 and �=2�. The three-

dimensional perturbation has been initialized either by

divergence-free white noise or by an eigenmode computed

previously for a slightly different axial wavenumber in order

to speed up the time convergence.

A Krylov method similar to the one described in

Edwards et al.
27

is implemented in order to retrieve with a

reasonable precision the three leading eigenmodes. After an

initial integration over a time T=70 obtained from a simula-

tion initialized by white noise, six perturbation velocity fields

ũ are saved, at six successive times separated by 
T=10 in

order to construct an orthonormalized basis which spans a

six dimension Krylov subspace. The eigenvalues of the evo-

lution operator projected in this subspace
28

are computed.

D. Three-dimensional unstable modes

Since the base state is symmetric versus x→−x, the

eigenmodes can be decomposed into symmetric �same sym-

metry as the base state�

�ũx, ũy, ũz��x,z� = �− ũx, ũy, ũz��− x,z� ,

�9�
��̃x,�̃y,�̃z��x,z� = ��̃x,− �̃y,− �̃z��− x,z�

and into an antisymmetric family �opposite symmetry to the

base state�

�ũx, ũy, ũz��x,z� = �ũx,− ũy,− ũz��− x,z� ,

�10�
��̃x,�̃y,�̃z��x,z� = �− �̃x,�̃y,�̃z��− x,z� .

Symmetric and antisymmetric eigenmodes are calculated

separately, the symmetries being imposed at each time step

during the time evolution. This procedure improves the pre-

cision on the eigenvalues when their growth rate is small but

is not essential since we have checked that eigenvalues and

eigenmodes are similar by either imposing the symmetry at

posteriori on the Krylov subspace if the integration is run

without imposing the symmetry or by not imposing the sym-

metry but by increasing the dimension of the Krylov sub-

space to 12 in order to retrieve simultaneously the modes

without assuming the symmetries of the modes �Eqs. �9� and

�10��.
Figure 2 shows the real part of the dimensional growth

rate r scaled by 2�b2
/�, the strain imposed by one vortex

on the other, of symmetric and antisymmetric modes as func-

tion of the dimensional axial wavenumber ky scaled by the

vortex radius a for Reynolds numbers Re�=105 �Fig. 2�a��
and Re�=2000 �Fig. 2�b��.

The different instability bands corresponding to the clas-

sical Crow, elliptical instabilities, and to oscillatory modes

are described below.

1. Crow instability

The first band on the left of Figs. 2�a� and 2�b�, at small

wavenumber between kya=0 and kya=0.3, corresponds to

the long-wavelength Crow instability, with a maximum

growth rate r2�b2
/�=0.74 for Re�=105 and 0.73 for

Re�=2000 at the wavenumber kya=0.19, corresponding to

kyb=0.92. This instability is symmetric, antisymmetric

modes being all stable for kya smaller than 0.5 for

Re�=105 and 1.9 for Re�=2000. The dashed line in Fig. 2

represents the theoretical inviscid predictions of Crow
1

for a

pair of vortex filaments with an equivalent radius ae=1.36a,

for long-wavelength disturbances, the coefficient 1.36 being

derived from the bending mode dynamics taking into ac-

count the present Gaussian vorticity distribution �Widnall
29�.

The predicted maximum growth rate at the wavenumber

kya=0.19 is 0.79 which is in very good agreement with the

numerical value. The axial vorticity �̃y of the eigenmode

�Fig. 3� at the maximum of the Crow instability band

kya=0.19 is odd with respect to x=0 since the mode is

symmetric.

This vorticity perturbation, when added to the base flow,

induces a symmetric displacement of the base flow vortices

along lines inclined at an angle of 45° as predicted by the

theory.
1

2. Elliptic instability

For Re�=105, Fig. 2�a� shows three dominant branches

of instability, with maximum nondimensional growth rate

equal to 1.32 at wavenumber kya=2.26,1.29 at kya=3.96

and 1.24 at kya=5.64, which correspond to the elliptic insta-

bility and are well predicted by the inviscid theory of

094102-4 Donnadieu et al. Phys. Fluids 21, 094102 �2009�
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Le Dizès and Laporte.
10,30

Each of these branches are double

with family of symmetric and antisymmetric mode with al-

most identical growth rates, showing that the present value

of a /b=0.206 is already small enough for the coupling be-

tween the elliptic instability that affect each vortex core to be

negligible as assumed in Le Dizès and Laporte.
10

The axial

vorticity �̃y of the eigenmode at the maximum of the two

first instability branches kya=2.26 and kya=3.96 have been

represented for both symmetries in Fig. 4.

For the low Reynolds number Re�=2000 shown in Fig.

2�b�, only the first band with a maximum growth rate

r2�b2
/�=0.5 at wavenumber kya=2.26 is unstable. The

present finite Reynolds number stability analysis shows that

the viscous prediction proposed by Le Dizès and Laporte
10

�not shown on the figure� is not valid since it predicts that

this mode should be stable for Re�=2000 with a growth rate

r2�b2
/�=−0.33 at the maximum of the instability band. In

Le Dizès and Laporte,
10

the viscous damping is derived from

the asymptotic formula of Landman and Saffman
31

�ky
2
/cos2 � valid at large ky for any inertial wave with a local

wavevector k, with a ky component along the rotation axis y

and making the angle � with the y axis. The angle � is then

obtained from the numerically computed frequency of the

resonant Kelvin mode m=1 which, for the different

branches, gives the fitted formula

cos � =
1

2
−

�2.26 + 1.69n� − kya

14.8 + 9n
,

where n=0,1 ,2 , . . . is the index of the branch. The present

direct stability analysis shows that such a procedure,

probably legitimate for large axial wavenumbers, strongly

overestimates �by nearly a factor of 2� the viscous damping

of the first elliptic instability branches. Their viscous theory

has not been displayed in Fig. 2�b�. Instead, the solid curve

reported in Fig. 2�b� is the present viscous prediction �Eq.

�C2�� computed as a perturbation of the full evolution opera-

tor via a method presented in Appendix C. This new method

takes into account the very spatial structure of the eigenmode

by the use of the adjoint mode of the elliptic instability in-

stead of assuming a plane wave expansion.

x

z

FIG. 3. Crow instability: Contours of the axial vorticity �̃y of the eigenmode

in the �x ,z� plane for Re�=105 at the leading wavenumber of the Crow

instability branch: kya=0.19. The contour levels �̃y / ��̃y max� shown are

�0.2, �0.4, �0.6, and �0.8. Continuous lines correspond to positive vor-

ticity and dashed lines correspond to negative vorticity. The heavy dashed

lines correspond to the isocontours �By / ��Bymax
�= �exp�−1� of the base

state. The size of the domain shown is 2b	2b whereas the computation

domain is 6b	6b.
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FIG. 2. Nondimensional growth rates r2�b2
/� of symmetric ��� and antisymmetric ��� modes as function of the nondimensional axial wavenumber kya for

�a� Re�=105 and �b� Re�=2000. Dashed line corresponds to the theory of Crow �Ref. 1� for a pair of vortex filaments. Continuous lines of �a� correspond to

the inviscid theory of Le Dizès and Laporte �Ref. 10� for a pair of Lamb–Oseen vortices with a Gaussian vorticity profile in the inviscid limit and the

continuous line of �b� is the present viscous prediction �C2�, derived in Appendix C.
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3. Oscillatory instabilities

At large Reynolds number Re�=105, the other unstable

branches with smaller growth rate are visible in Fig. 2�a�,
between kya=0.5 and kya=2.5 with a maximum growth rate

of 0.24 at kya=1.09 and between 2.8 and 5.6 with a maxi-

mum of 0.32 at 4.2, they will be thereafter referred to as

oscillatory instabilities since the growth rates have an imagi-

nary part. They exist for both symmetric and antisymmetric

modes with extremely close growth rates. Figure 5 shows the

axial vorticity of the antisymmetric oscillatory modes for the

most unstable wavenumber of each unstable bands, the sym-

metric oscillatory modes are not shown, since their eigen-

function is similar except that its vorticity perturbation field

is antisymmetric. The vorticity perturbation at kya=1.09

�Fig. 5�a� for the real part and Fig. 5�b� for the imaginary

part� consists of a central maximum located inside the core

of each base flow vortex and two lobes of opposite signs at

the periphery. The vorticity perturbation in each vortex core

may schematically be constructed by superposition of a

m=0 and �m�=2 azimuthal perturbation and may be inter-

preted as the elliptic instability mode resulting from a reso-

nance between the strain and Kelvin waves of azimuthal

wavenumbers m=0 and �m�=2 as proposed by Billant et al.
8

in the case of the Lamb–Chaplygin dipole and investigated in

details by Eloy and Le Dizès
12

for the Rankine vortex.

The frequency of the most unstable oscillatory mode of

the first branch has been compared to the frequency of the

resonant Kelvin waves of azimuthal wavenumbers m=0 and

�m�=2 on a Rankine vortex obtained by solving the disper-

sion relation given by Saffman
32 �see also Billant et al.

8�.
The first resonance occurs at the wavenumber kyar=1.24 for

a frequency i /�=0.8, where ar is the radius and � the

rotation rate of the Rankine vortex. Since the sampling fre-

quency 2� /
T used to retrieve the eigenmodes with the

Krylov method explained in Sec. II C is very small compared

to the frequency of the oscillatory modes, the imaginary

parts of the eigenvalues of these modes computed with this

method are not the very frequency but its harmonic with the

sampling frequency. Therefore, the frequency of the propa-

gative mode at the maximum of the first unstable band

kya=1.09 has been computed directly from the temporal evo-

lution of the energy E of the perturbation sample at high

frequency 2� /10−3. The energy oscillates at a period T while

it grows, giving a measured value i /��r=0�=i2�a2
/�

=0.6 at kya=1.09 for both symmetries, ��r=0� being the

rotation rate at the center of the vortex. The agreement, with

the predicted value i /�=0.8, is satisfactory, since the

theory is valid at small ellipticity and considers Rankine vor-

tices, whereas the deformation is large and the vorticity dis-

tribution Gaussian �Lamb–Oseen vortices� in the present

case.

Eloy and Le Dizès
12

showed that the inviscid growth

rates of the resonant Kelvin modes combination m=0 and

m=2 and the helical modes m= �1 are comparable for the

Rankine vortex. These oscillatory instabilities were not

found by Sipp and Jacquin
7

in their inviscid analysis. These

authors put forward the presence of a viscous critical layer

since, for the Lamb–Oseen vortex, the Kelvin waves for
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FIG. 4. Elliptic instability: Same as Fig. 3 but for the first band of the

elliptic instability at kya=2.26 ��a� and �b�� and for the second band at

kya=3.96 ��c� and �d��. ��a�–�c�� Antisymmetric modes. ��b�–�d�� Symmetric

modes. The contour levels �̃y / ��̃y max� shown are �0.1, �0.3, �0.5, �0.7,

and �0.9 for �a� and �b� and �0.05, �0.1, �0.3, �0.5, �0.7, and �0.9 for

�c� and �d�.
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FIG. 5. Oscillatory instability: Same as Fig. 3 except that only the antisym-

metric mode is presented. ��a� and �b�� kya=1.09 and ��c� and �d��
kya=4.2. Since the growth rate is complex, the eigenmode is complex. �a�–
�c� show the real part of the eigenmode axial vorticity. ��b�–�d�� Imaginary

part of the modes. The contour levels �̃y / ��̃y max� shown are �0.02, �0.1,

0.2, �0.3, �0.5, and �0.7.
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m=2 with frequencies between 0 and 2�max ��max the maxi-

mum of the angular velocity at the center of the vortex�,
presents a critical layer at the radius where the azimuthal

phase velocity of the perturbation equals the angular velocity

��r� of the base state, i.e., � /m=��r�. This viscous critical

layer induces a finite damping of the Kelvin waves when the

Reynolds number goes to infinity. In the present stability

analysis, this resonance is however observed for large Rey-

nolds number suggesting that, for the present case, with finite

ellipticity, the damping due to the critical layer induces a

reduction of the growth rate, not sufficient to stabilize the

mode. The possibility that finite ellipticity effects might

dominate the viscous effects and change the nature of the

critical layer is presently a conjecture that would deserve

further analysis.

III. NON-NORMALITY AND ADJOINT MODES

The stability analysis presented above considers the

eigenmode of the linearized evolution operator. For each

axial wavenumber ky, it is known that, starting from random

initial condition, the flow will eventually converge toward

the leading eigenmode and experience an exponential growth

when this mode is unstable. This exponential longtime be-

havior should be complemented by examining the fate of the

perturbations at short time since, as the Navier–Stokes op-

erator linearized around the base flow is non-normal �Schmid

and Henningson
33�, they may exhibit transient growth of

their energy. A standard technique to compute transient

growth requires the resolution of the adjoint of linearized

Navier–Stokes equations.
34

The inner product used to con-

struct the adjoint is chosen as

�f��f� = �
0

� �
0

Lx �
0

Lz

f�
�T · fdxdzdt

= �
0

� �
0

Lx �
0

Lz

�u�
�T · u + p�

�p�dxdzdt , �11�

where f�= �u� , p�� and f= �u , p� are two complex state vec-

tors, the superscripts � and T denote the complex conjugate

and the transposition, and Lx, Lz defined on Sec. II C. The

kinetic energy is then given by

E�t� = �u�u� = �
0

Lx �
0

Lz

�u�T · u�dxdz . �12�

A. Adjoint equations and adjoint eigenmodes

The adjoint of the linearized Navier–Stokes equations, is

deduced from Eq. �5� using the Lagrange identity �Ince,
35

Hill
36� and rewritten as

�u
+

�t�
= �B 	 u

+ − � 	 �uB 	 u
+� − �p+ + �
u

+,

�13�
� · u

+ = 0,

where �u+ , p+��x ,y ,z , t� are the adjoint velocity and pressure

perturbations and t�=−t. These equations are integrated with

a pseudospectral technique similar to the technique used to

solve the direct problem in Sec. II C, where the advection

term is replaced by �B	u
+−�	 �uB	u

+�. The size of the

box and the time step are the same as for the direct linear

Navier–Stokes equations. The leading eigenmodes of the ad-

joint operator are computed using the same Krylov method,

the symmetries being imposed either at each time step or

a posteriori as for the direct equations. For all ky, the com-

puted spectrum of the adjoint operator is equal to the direct

spectrum with a fifth digit precision. It verifies also the bior-

thogonality property with the same accuracy: all adjoint and

direct eigenmodes corresponding to different eigenvalues

are orthogonal for the inner product defined in Eq. �12�
�see Grosch and Salwen

37
for a demonstration in the two

dimensional�.
Figure 6 displays the axial vorticity and the enstrophy of

the antisymmetric and symmetric adjoint eigenmodes at the

peak of the first elliptic instability branch for Re�=2000. The

spatial distribution of the adjoint eigenmodes differs for both

symmetries. For the antisymmetric mode, the vorticity per-

turbation of the adjoint elliptic mode is intense inside the

core of the vortices and on the contracting manifold of both

the upper and lower hyperbolic stagnation points. The sym-

metric mode is intense inside the core and on the contracting
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FIG. 6. Adjoint modes for the elliptic instability: Contours of axial vorticity

�̃y ��a� and �b�� and square root of enstrophy ��̃� ��c� and �d�� of adjoint

eigenmodes in the �x ,z� plane for Re�=2000 at the elliptic instability

maximum kya=2.26. ��a�–�c�� Antisymmetric mode. ��b�–�d�� Symmetric

mode. Continuous lines correspond to positive vorticity and dashed

lines correspond to negative vorticity. The contour levels shown in �a�
and �b� are �̃y / ��̃y max�= �0.1, �0.3, �0.7, �0.9 and ��̃� / ��̃max�
=0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 in �c� and �d�. The heavy dashed

lines mark the vortex core of the base state like in Fig. 3. The stars represent

the stagnation points of the base state and the dotted lines with arrows

correspond to the streamlines of the base state. The size of the domain

shown is larger than in previous figures: 3b	3b.
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manifold of the lower hyperbolic stagnation point only, with

no contribution of the upper stagnation point.

B. Large time behavior

We investigate now the initial condition which maxi-

mizes the energy gain at large time t defined by

G�t� =
E�t�

E�0�
=

�u�t��u�t��

�u�0��u�0��
, �14�

where E�0� is the initial kinetic energy of the perturbation

and E�t� is its value at time t. Figures 7�a� and 7�b� show the

logarithm of the energy gain as function of time for a single

axial wavenumber at the peak of the elliptic instability

kya=2.26, for different initial conditions and for two differ-

ent Reynolds numbers Re�=2000 and Re�=105.

The heavy �thin� dashed line corresponds to the amplifi-

cation factor in the symmetric �antisymmetric� case with the

direct eigenmode taken as initial condition. The dependence

of ln�G� for kya=2.26 as function of t is linear and the slope

is twice the growth rate computed previously, i.e.,

s2�b2
/�=0.49 for the symmetric case and a2�b2

/�

=0.5 for the antisymmetric case, for Re�=2000. Since the

difference between the growth rate of the symmetric and

antisymmetric modes is small, their energy differs only by

12% for Re�=2000 and less than 6.5% for Re�=105 at time

t� /2�b2=5. For Re�=105 and large time, the growth rate of

the energy which is the slope of ln�G� 2�b2
/�=1.32, is in

good agreement with the prediction of Waleffe
6 �dashed-

dotted line on Fig. 7�b��. Effectively, theoretical prediction of

energy growth for an elliptic flow, in the framework of local

inviscid theory, is 9 /8�=1.39, with nondimensional �

evaluated in the core of the primary vortices �see Fig. 1�b��.
At large time and for kya=2.26 dynamics �Figs. 4�a� and

4�b��, and growth rate �Fig. 7�b�� are triggered by elliptic

instability.

The heavy �thin� continuous line corresponds to the gain

in the symmetric �antisymmetric� case when the initial con-

dition is the adjoint eigenmode. The final energy gain at time

t� /2�b2=5, when initialized by the adjoint instead of the

direct eigenmode, is larger by a factor of 4 �antisymmetric�
and 2 �symmetric� for Re�=2000 and by a factor of 2.5

�antisymmetric� and a factor of 2 �symmetric� for Re�=105.

The antisymmetric mode is therefore more sensitive to initial

perturbation than the symmetric one, particularly at small

Reynolds number. The adjoint eigenmode is the initial con-

dition that maximizes the energy gain at large times �Hill
36�.

Effectively, any initial condition u with �u1
+ �u��0, where u1

+

is the leading adjoint mode, is dominated at large time by the

leading eigenmode u1 with an amplitude equal to

�u1
+ �u� / �u1

+ �u1�e�1t which is the largest when u=u1
+. There-

fore, when both u1
+ and u1 are normalized, 1 / ��u1

+ �u1��2 mea-

sures the extra gain obtained, at large time, by initializing by

the adjoint mode u1
+ instead of by the direct mode u1. Pres-

ently, for Re�=2000 �for Re�=105�, its value is

ln�1 / ��u1
+ �u1��2�=1.6 �0.85� in the antisymmetric case and

ln�1 / ��u1
+ �u1��2�=1.1 �0.71� in the symmetric case, in close

agreement with the numerical results of Fig. 7�a� �for Fig.

7�b�� obtained by direct time integration of the perturbation

equation. The scalar 1 / �u1
+ �u1� indicates the sensitivity to

initial perturbation of the leading eigenmode and quantifies

therefore its non-normality. However, at finite times, several

eigenmodes may interfere to give large transient and the

knowledge of the leading adjoint mode is not sufficient to

characterize the finite time behavior of perturbations.
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FIG. 7. Energy gain of the symmetric �heavy lines and �� and antisymmetric �thin lines and �� modes as function of the time t nondimensionalized by the

advection time of the dipole 2�b2
/� for different initial conditions. �a� Re�=2000; �b� Re�=105. Dashed lines: initial condition is the direct eigenmode.

Continuous lines: initial condition is the adjoint eigenmode, optimal at large times. Open symbols: optimal gain at each instant. In �b�, heavy dashed-dotted

lines: theoretical prediction of the energy gain at short times; dotted line: hyperbolic instability prediction of Caulfield and Kerswell �Ref. 38�. Dashed-dotted

line: elliptic instability prediction of Waleffe �Ref. 6�.
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C. Short time behavior

Transient growths are first computed for a single axial

wavenumber kya=2.26 corresponding to the maximum of the

first elliptic instability branch. We look for the optimal initial

condition at finite time �, for both symmetries which maxi-

mizes the energy gain equation �14�. Following Corbett and

Bottaro,
34

we define a propagator ����,

u��� = ����u�0� , �15�

where ���� expresses the evolution of an initial condition

until t=�, u���, obtained by integration of Eq. �5� with the

initial condition u�0�, hence the explicit form of the propa-

gator is not required. The optimal gain at t=� becomes from

definition �14�,

G��� = maxu�0�	 �u����u����

�u�0��u�0��



= maxu�0�	 ��+�������u�0��u�0��

�u�0��u�0��

 , �16�

with �+���, the adjoint of ���� for the inner product �12�. It

can be shown that �+��� is the propagator associated to

the backward integration in time of Eq. �13� with the initial

condition u
+�t�=0�=u�t=�� �see Andersson et al.

39
in the

spatial case�. Therefore looking for the optimal initial condi-

tion and the optimal gain G��� �16� consists in finding the

largest eigenvalue of the self-adjoint and positive operator

�+�������, called the direct-adjoint propagator P. The opti-

mal initial condition is the corresponding eigenvector, and

the optimal response the solution of Eq. �15� with u�0� the

eigenvector.

The optimal perturbations can be computed by different

techniques. We use here the direct-adjoint iterative procedure

introduced by Luchini
20

to determine the optimal initial con-

dition and the optimal response at finite time for both sym-

metries. The direct equation �5� are integrated with the ad-

joint velocity perturbation taken as a guess value for the

optimal initial condition: u�t=0�=u1
+ until time t=�. The

backward in time integration of the adjoint equation �13� is

then performed by taking the direct velocity perturbation at

t=� as initial condition: u
+�t�=0�=u�t=��, where t�=�− t.

The adjoint equation �5� is then integrated until t�=�. Then,

the procedure is reiterated taking as initial condition for the

direct integration, the adjoint field at the final time �, normal-

ized to unit energy: u�t=0�=u
+�t�=�� / �u+�t=���. The succes-

sive integrations of direct and adjoint equations are repeated

until the convergence is obtained, i.e., the variation of

ln�G���� is less than 10−2. This is usually achieved in about

three to ten iterations. The choice of the adjoint eigenmode

as an initial condition instead of a random noise, simply

speeds up the convergence but does not change the final

result. The optimal energy gains of symmetric ��� and anti-

symmetric ��� optimal perturbations obtained independently

for each symmetry at time � are displayed on Fig. 7 for

Re�=2000 and Re�=105. They are very close for both sym-

metries. The optimal gains depart from the gain obtained

with the adjoint mode as an initial condition, only until

t� /2�b2�2.5, that may be therefore considered as the dura-

tion of the transient regime. Two different leading mecha-

nisms, explaining this transient behavior, may be identified,

depending on the time for which the perturbation is

optimized.

1. Finite time dynamics

The spatial distribution of the optimal initial perturbation

and optimal response t� /2�b2=1 are shown in Figs. 8 and 9

for Re�=2000 and are different for both symmetries. For the

antisymmetric case, the axial vorticity of the initial optimal

perturbation at t� /2�b2=1 is intense on the contracting

manifold of the upper stagnation point �Figs. 8�a� and 8�c��
whereas in the symmetric case it is strong between the two

vortices, i.e., on the contracting manifold of the lower stag-

nation point �Figs. 9�a� and 9�c��. The axial vorticity of the

optimal response at t� /2�b2=1 �Figs. 8�b� and 9�b�� is in

both cases localized in the core of the vortices but, when

comparing to Fig. 4, it has not yet converged toward the

eigenmode with in particular, large enstrophy perturbation

�Figs. 8�d� and 9�d�� outside the core of the vortices, con-

firming that the instant t� /2�b2=1 considered here, is still

in the transient regime. This optimal response is associated

kya = 2.26, OPTIMIZATION TIME tΓ/2πb2 = 1
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FIG. 8. Antisymmetric case, optimal initial perturbation ��a� and �b�� and

optimal response ��c� and �d�� at t� /2�b2=1 for the antisymmetric case.

Contours of ��a�–�c�� axial vorticity �̃y and ��b�–�d�� square root of enstro-

phy ��̃� in the �x ,z� plane for Re�=2000 at kya=2.26 for the antisymmetric

case at t� /2�b2=1. In �a�–�c�, the continuous lines correspond to positive

vorticity and the dashed lines correspond to negative vorticity. The contour

levels shown are �̃y / ũ�t=0�= �0.01, �0.05, �0.09, �0.13, and 0.17 in

�a�, �̃y / ũ�t=0�= �0.01, �0.05, �0.09, �0.13, and �0.17 in �c�,
��̃� / ũ�t=0�=0.02, 0.05, 0.08, 0.11, 0.14, 0.17, and 0.2 in �b� and

��̃� / ũ�t=0�=0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.4 in �d�. Same as Fig. 6, for

other characteristics.
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with the formation of streamwise vortices �along z� on the

symmetry axis in the antisymmetric case, i.e., along the

stretching manifold of the upper hyperbolic point �Fig. 8�d��.
In the symmetric case, it corresponds to streamwise vortices

nearly parallel to the x axis, along the stretching manifold of

the lower hyperbolic point �Fig. 9�d��. For a pure inviscid

extensional flow, Caulfield and Kerswell
38

showed that the

growth rate of the streamwise perturbation is equal to the

strain �h evaluated at the hyperbolic point Fig. 1�b�. This

predicted slope has been plotted as a dotted line in Fig. 7�b�
and compares well with the slope of ln�G�t�� for Re�=105

close to t� /2�b2=1 �Fig. 7�b��, where Figs. 8 and 9 show

that indeed one of the two hyperbolic points leads the opti-

mal perturbation dynamics.

2. Short time dynamics

The perturbations, optimal at very early time, t� /2�b2

=0.025, present identical features for symmetric and anti-

symmetric perturbations and only the later will be discussed

�Fig. 10�.
At very short times, the shape of the optimal initial per-

turbation is very similar to the optimal response since the

flow has little time to evolve �Fig. 10�. The enstrophy of the

optimal perturbation and optimal response are concentrated

very close to the points of maximal strain indicated by the

black dots in Figs. 10�a� and 10�b� �the full strain field being

plotted on Fig. 1�b��. This localization of the optimal short

time perturbation can be understood by extending the work

of Caulfield and Kerswell
38

who have shown, on an inviscid

infinite flow model with hyperbolic streamlines and uniform

strain, that the maximal energy gain at short times depends

only on the strain � of the flow. If we neglect the pressure as

in Caulfield and Kerswell,
38

the direct equation �5� and ad-

joint equation �13� read

�u

�t
= − LB�u�,

�u
+

�t
= − LB

+�u+� , �17�

with LB�u�=uB	�+u	�B and LB
+�u+�=�B	u

+−�	 �uB

	u
+�. At short times, Eqs. �17� integrate into

u�t� = �1 − tLB�u�0� + O�t2�,

�18�
u

+�t� = �1 − tLB
+�u+�0� + O�t2�

the direct ��t� and adjoint �+�t� defined in Eq. �15� are then

approximately known at short time. The energy gain writes

G�t� = 1 −
t��LB + LB

+�u�0��u�0��

�u�0��u�0��
+ O�t2�

= 1 − 2t
�SBu�0��u�0��

�u�0��u�0��
+ O�t2� , �19�

since �LB+LB
+�u�t�=2SBu�t�, with SB the symmetric part of

the base flow velocity gradient tensor. At each location �x ,z�,
SB admits two eigenvalues ���x ,z� which correspond to the

local strain of the base flow represented in Fig. 1�b�. The

initial condition which maximizes the energy gain at short

times is thus given by u�0� localized at the point where

��x ,z� is maximum and the gain is then

ln�G�t�� = − 2 max���t + O�t2� . �20�

This theoretical prediction of the energy gain at short times is

reported in Fig. 7�b� by a heavy dashed-dotted line. At

t� /2�b2=0.025, for Re�=2000, the theory predicts ln�G�
=0.43 whereas the numerical calculations give ln�G�=0.23

kya = 2.26, OPTIMIZATION TIME tΓ/2πb2 = 0.025

Optimal perturbation Optimal response

x

z

(a)

|ω̃|

x

z

(b)

|ω̃|

FIG. 10. Antisymmetric case: optimal initial perturbation �a� and optimal

response �b� at t� /2�b2=0.025. Contours of the square root of enstrophy

��̃� in the �x ,z� plane for Re�=2000 at kya=2.26. The contour levels shown

in �a� and �b� are ��̃� / ũ�t=0�=0.01, 0.04, 0.07, 0.09, and 0.12. The black

dots correspond to the points of maximum strain of the base state.

kya = 2.26, OPTIMIZATION TIME tΓ/2πb2 = 1
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FIG. 9. Symmetric case, optimal initial perturbation and optimal response

at t� /2�b2=1. Same legend as Fig. 8. The contour levels shown are

�̃y / ũ�t=0�= �0.01, �0.05, �0.09, and �0.13 in �a�, �̃y / ũ�t=0�
= �0.015, �0.03, �0.045, and �0.06 in �c�, ��̃� / ũ�t=0�=0.02, 0.06, 0.1,

0.14, 0.18, 0.22, and 0.26 in �b� and ��̃� / ũ�t=0�=0.1, 0.25, 0.4, 0.55, 0.7,

0.85, and 1 in �d�.
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for the antisymmetric mode and ln�G�=0.26 for the symmet-

ric mode and, for Re�=105, ln�G�=0.30 for the antisymmet-

ric mode and ln�G�=0.32 for the symmetric mode. At

t� /2�b2=0.025, the optimal perturbation and response �Fig.

10� are not totally concentrated on the points of maximal

strain. The discrepancy certainly comes from the fact, that

the theory is asymptotically valid for large kya since, to ne-

glect pressure at leading order, the perturbation should varies

more rapidly along the y direction than in the �x ,z� plane

�approximation of the so-called pressureless dynamics
40�.

For finite ky, the pressure term in the expression of LB and LB
+

cannot be neglected and it is already satisfactory that the

asymptotic theory gives a decent agreement both in the lo-

calization of the perturbation and on the value of the gain.

IV. OPTIMAL ENERGY GAIN FOR DIFFERENT
WAVENUMBERS

Up until now, the optimal gain has been presented only

for the most unstable wavenumber kya=2.26, but the proce-

dure may be repeated for any ky. The task is then formidable,

since the optimal energy gain may be computed for each kya

at each time for both symmetries of the perturbation. We

restrict ourselves to the intermediate Reynolds number

Re�=2000 and close to, the maximum of the Crow instabil-

ity kya=0.2, and on both sides of the first elliptic instability

peak where the flow is stable for Re�=2000 for kya=1.09

and kya=2.6 �Fig. 2�b��. Each of Figs. 11�a�–11�c� are simi-

lar to Fig. 7�a� but for these three new values of kya;

Fig. 11�d� being a close up for early time of the optimal gain
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FIG. 11. Transient growth for different wavenumbers—��a�–�c�� same as Fig. 7�a�. Energy gain at Re�=2000 of the symmetric �bold lines and �� and

antisymmetric �thin lines and �� modes as function of the time t nondimensionalized by 2�b2
/� for different initial conditions. �a� kya=0.2, �b� kya=1.09,

and �c� kya=2.6. �d� Close-up view of the optimal energy gain for the antisymmetric case ��� at short times for kya=0.2 �¯·�, kya=1.09 �– – –�,
kya=2.26 �—�, and kya=2.6 �−·−�. The bold dashed-dotted line corresponds to the theoretical prediction for the early instant optimal growth.
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for the four wavenumbers plotted on Figs. 7�a� and 11�a�–
11�c�. For all the stable wavenumbers, the maximum gain is

reached around t� /2�b2=2 with an energy increase by a

factor close to 50. At very short time, Fig. 11�d� shows that

all the wavenumbers computed experience a similar transient

growth, no matter if they are stable or unstable at large time.

This demonstrates that the sharp selection of unstable wave-

numbers, predicted by the modal analysis �Fig. 2�b�� prevails

only at very long time, but not at finite time when the shorter

the optimization time considered, the smaller the difference

in energy gain between different wavenumbers �Fig. 11�d��.
In particular, all the wavenumbers considered here are still

experiencing an energy gain greater than one at time

t� /2�b2=10. In experiments, instabilities are observed at

relatively short times.
19

They may be still affected by tran-

sient effects, and therefore may not yet reflect the modal

frequency selection valid at large time.

Brion et al.
23

investigated the energy gain of the Crow

instability for the particular wavenumber kya=0.2 and

Re�=3600, when the initial condition is the adjoint symmet-

ric mode. They pointed out the importance of the lower hy-

perbolic point in the dynamics at large time, since the adjoint

eigenmode is intense along the contracting manifold of that

point. We retrieve these large time results,
23

with an energy

about 50 times larger when initialized by the adjoint mode

than by the direct mode �Fig. 11�a��, and an instantaneous

growth rate larger than its asymptotic value until t� /2�b2

=1.5. Presently, we compute also the optimal gain of energy

for the antisymmetric mode, not considered in.
23

Remark-

ably, up to t� /2�b2=2.5, the transient growth of antisym-

metric perturbation, marked by an open circle in Fig. 11�a�,
is intense and nearly as large as the one of symmetric per-

turbation, even though they are stable at large time and de-

cays, whereas the symmetric mode keeps increasing at large

time when the Crow instability develops. At early instant up

to t� /2�b2=1, optimal energy gain for antisymmetric per-

turbations is even equal or larger than the symmetric one

�Fig. 11�a��.
The enstrophy of the symmetric optimal perturbation,

leading to the optimal energy gain at t� /2�b2=1, repre-

sented on Fig. 12�c�, is intense in the contracting manifold of

the lower hyperbolic point as already pointed out by.
23

How-

ever, axial vorticity, Fig. 12�a� exhibits spirals of vorticity

surrounding the base vortices, suggesting the influence of a

mechanism similar to that observed for a single vortex by

Antkowiak and Brancher
21 �comparison with Ref. 21 is post-

poned at the concluding section�. The perturbation then

evolves toward the usual Crow instability mode �Fig. 12�b��
whose axial vorticity is comparable to the one obtained at

long time �Fig. 3�. The antisymmetric dynamics is triggered

by the upper hyperbolic point as observed in Figs. 13�a� and

13�c� which induces an antisymmetric displacement of the

base flow vortices �Fig. 13�b��. Optimal perturbations in the

antisymmetric case place emphasis on the role of the upper

hyperbolic point, not observed by Brion et al.
23

who inves-

tigated the behavior of Crow instability only at large time

and for the symmetric case.

V. DISCUSSION AND CONCLUSION

For a spanwise homogeneous vortex dipole with rela-

tively concentrated vorticity �a /b=0.2�, the long time and

the transient growth given by the linear stability theory has

been analyzed for all the spanwise wavenumbers. Long time

dynamics is determined by the unstable modes that have

been determined with a linear three-dimensional stability

analysis based on a Krylov technique. The long-wavelength

Crow instability has been retrieved. This instability is sym-

metric with respect to the plane separating the two vortices

and the most unstable wavelength is 6.8b, which is in good

agreement with Crow’s theory. Both symmetric and antisym-

metric modes of the elliptic instability with nearly identical

growth rates have been found. These instability modes are

nonoscillatory and very selective, with thin unstable band in

wavenumber space well predicted by Tsai and Widnall,
3

theory refined by Le Dizès and Laporte.
10

The present results

for Re�=105 are comparable with the inviscid linear stability

analysis of Sipp and Jacquin
7

but differs for the novel oscil-

latory modes, which has been obtained here for both symme-

tries, that were not observed in Ref. 7 but which is reminis-

cent to the one obtained by Billant et al.
8

for the Lamb–

Chaplygin dipole. Those unstable branches encompass

broad ranges of wavenumbers, with a growth rate approxi-

mately one third of the leading elliptic modes which

therefore dominate the leading instabilities of many

kya = 0.2, OPTIMIZATION TIME tΓ/2πb2 = 1
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FIG. 12. Symmetric case, optimal initial perturbation ��a� and �b�� and op-

timal response ��c� and �d�� at t� /2�b2=1 for kya=0.2 and Re�=2000.

Axial vorticity ��a� and �b�� and square root of enstrophy ��̃� ��c� and �d��.
The contour levels shown for �a� �̃y / ũ�t=0�= �0.01, �0.02, �0.03,

�0.04, �0.05, and �0.06; in �b� are �̃y / ũ�t=0�= �0.02, �0.08, �1.2,

�0.16, and �12, �0.9 and ��̃� / ��̃max�=0.02,0.06,0.1,0.14,0.18 in �c� and

0.2, 0.4, 0.6, and 0.8 1 in �d�.
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wavevectors. This oscillatory instability seems to result

from the resonance between the strain and Kelvin waves

of azimuthal wavenumbers m=0 and �m�=2 even though

the latter is, in the absence of strain, strongly damped due to

the presence of critical layers �Fabre et al.
41�. The present

results suggest that for finite strain, the critical layer might be

modified and not regularized by the viscosity but by the

strain.

Transient growth has been computed solving an optimi-

zation loop by integrating alternatively the direct and adjoint

linearized Navier–Stokes equation.
34

For all the wavenum-

bers, the transient regime lasts until the slope of the optimal

gain versus time reaches the asymptotic slope given by the

stability theory and where the optimal response is close to

the unstable mode; t� /2�b2=2.5 for unstable and nonoscil-

latory modes and larger time for oscillatory and stable modes

�about t� /2�b2=12 for stable oscillatory modes�. For

shorter optimization instant and depending upon the time at

which the gain is computed, different regions of the base

flow are active. For very short time compared to the advec-

tion time of the dipole, optimal perturbations are localized

around the points of maximum strain, which are situated in-

side the cores in nontrivial locations, off the center, and are

where perturbations grows the fastest, experiencing the

strongest stretching. For time comparable to the advection

time, the optimal growth is due to the transient hyperbolic

instability of the upper �trailing� hyperbolic point for the

antisymmetric case and the lower �leading� hyperbolic point

for the symmetric mode: the perturbations are intensified by

a stretching when trajectories pass close to one of the hyper-

bolic points. Optimal perturbations and response are then

respectively on the contracting and stretching manifolds of

the hyperbolic point.

It is interesting to compare the present results for two

Lamb–Oseen vortices with a /b=0.2 with the newly transient

growth mechanism identified on a single vortex.
21

Antkow-

iak and Brancher
21

found an intense amplification of kinetic

energy for a wavenumber around kya=1.4 and large Rey-

nolds number. The optimal initial perturbation is a set of

spirals at the periphery of the Lamb–Oseen vortex, corre-

sponding to a m=1 disturbance. During the evolution, until

the optimal nondimensional time �, corresponding here to

�� /2�b2=2, a mechanism similar to Orr mechanism leads

an intensification for the velocity perturbation link to the

unfolding of the spirals followed by a contamination of the

core through velocity induction. In the present case of two

vortices, at time t� /2�b2=2 and for kya=1.09, which is one

of the closest value to kya=1.4 computed here, and at large

Reynolds number Re�=105, the asymptotic behavior corre-

sponding here to the oscillatory mode, Figs. 5�a� and 5�b�, is

not yet reached and the dynamics is still in the transient

regime. To compare the instability mechanism of a single

vortex and a vortex dipole, we have computed not only the

leading optimal perturbation but the second optimal pertur-

bation �with a lower energy gain� proceeding as follows:

for kya=1.09, during the iterative procedure �Sec. III C� used

to compute the optimal gain �16� at time t� /2�b2=2 the

series of fields �u�0� ,Pu�0� ,P2
u�0� , . . . ,Pn

u�0��, where

P=�+������� the direct-adjoint propagator, �16� ����
propagator �15�, and n the number of iteration, are used to

built a Krylov space and an Arnoldi procedure is imple-

mented in order to retrieve approximations of leading eigen-

values of P. The axial vorticity of the most amplified eigen-

vector of P, corresponding to the optimal initial perturbation

is represented in Fig. 14�a�. The contribution of the hyper-

bolic point is dominant with large perturbations amplitude on

the contracting manifold of the hyperbolic point but weak

spirals around the primary vortices are also observed. The

associated optimal response Fig. 14�c�, is a dipolar structure

corresponding at leading order to a m=1 perturbation of the

core of each vortex. Therefore if the optimal perturbation

differs between a dipole and a single vortex, the optimal

response is similar, showing that for that particular instant

and at that particular wavenumber away from the m=1 ellip-

tic resonance, the mechanism described by Refs. 21 and 22 is

active but modified, since the spiral initial perturbation

wrapped around the single vortex and spirals out to reach the

contracting manifold of the hyperbolic point for the dipole.

The eigenmode of the direct-adjoint propagator P with the

second largest eigenvalue corresponding to the second lead-

ing transient mode is less amplified �ln�G�=0.68 for the

dominant transient mode and ln�G�=0.62 for the second

transient mode�, and is plotted in Fig. 14�b�. This subdomi-

nant mode resembles the dominant one except that going

around one of the two vortices the initial and final perturba-

kya = 0.2, OPTIMIZATION TIME tΓ/2πb2 = 1
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FIG. 13. Antisymmetric case, optimal initial perturbation ��a� and �b�� and

optimal response ��c� and �d�� at t� /2�b2=1 for kya=0.2 and Re�=2000.

Axial vorticity in �a� and �b� and square root of enstrophy ��̃� ��c� and �d��.
The contour levels shown in �a� are �̃y / ũ�t=0�= �0.05, �0.1, �0.15,

�0.2, �0.25, and �0.3; in �b� are �̃y / ũ�t=0�= �0.02, �0.08, �1.2,

�0.16, and �12 and ��̃� / ��̃max�=0.02,0.06,0.1,0.14,0.18 in �c� and

0.2,0.35, 0.5, 0.65, and 0.8 in �d�.
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tions oscillate twice instead of one. More precisely, the axial

vorticity of the initial perturbation consists of a double spiral

surrounding each base flow vortex. The response Fig. 14�d�,
is made of a m=0 perturbation inside the core of each vortex

surrounded by four lobes of alternate sign of vorticity, which

may be identified as a m=2 perturbation. The initial pertur-

bation is similar to the optimal spiral found by Ref. 21, but

here for m=2 and not m=1, and the optimal response is more

complex than the one discussed by Pradeep and Hussain
22

since both m=0 and m=2 are present, probably coupled by

the ellipticity of the base flow �which is absent for a single

vortex�. The fact that the growth is lower for this disturbance

is in good agreement with Ref. 22 who found for the Oseen

vortex a decrease of growth of energy when increasing the

azimuthal wavenumber.

APPENDIX A: NUMERICAL METHOD FOR
COMPUTING THE 2D BASE STATE AND DOMAIN
REDUCTION FOR THE STABILITY PROBLEM

The evolution of the velocity, the vorticity, and the pres-

sure of the base state �uB ,�B , pB��x ,z , t� is governed by the

2D Navier–Stokes equations:

�uB

�t
= uB 	 �B − �	pB +

u
B

2

2

 + �
uB,

�A1�
� · uB = 0.

These equations are solved with a pseudospectral method in

Cartesian coordinates with periodic boundary conditions.

The velocity, the vorticity and the pressure are expressed in

kya = 1.09, OPTIMIZATION TIME tΓ/2πb2 = 2
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FIG. 14. �Color� Optimal initial perturbation ��a� and �b�� and optimal response ��c� and �d�� at t� /2�b2=2 in the antisymmetric case. Contours of axial

vorticity �̃y in the �x ,z� plane for Re�=105 at kya=1.09 for the antisymmetric case at t� /2�b2=2. The continuous black lines correspond to primary vortices

of positive vorticity and the dashed black lines correspond to negative vorticity of the primary vortices. Perturbation and response �a�–�c� for the leading

optimal mode, and �b�–�d� for the second suboptimal mode.
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Fourier space by application of the two-dimensional Fourier

transform:

�uB,�B,pB��x,z,t� =� �ûB,�̂B, p̂B�

	�kx,kz,t�e
i�kxx+kzz�dkxdkz, �A2�

where kx and kz are the components of the wavevector k2D.

In spectral space, the Navier–Stokes equations �A1� become

�ûB

�t
= P�k2D��uB 	 �B

̂� − �k2D
2 
ûB, �A3�

where P�k2D� is the projection operator on the space of

divergence-free fields which, in Fourier space, may be ex-

pressed as a tensor with components Pij =�ij −kik j /k2D
2 . The

term uB	�B is evaluated in the physical space. Time inte-

gration is carried out with a second-order Adams–Bashforth

scheme whereas the dissipative term �
uB is integrated

exactly.

The size of the periodic box Lx=Lz=12 is large enough

to minimize the effects of periodic boundary conditions

�Lx=Lz=60a0� and to adapt to the downward descent of the

dipole. The mesh is Cartesian with 512	512 �and 1024

	1024 in some cases� collocation points equally spaced in

the x and z directions with �x=�z=0.023. This number al-

lows approximately 16 points in each vortex core. The time

step is set to �t=10−3, which is small enough to fulfill the

Courant–Friedrich–Levy condition: �x /�t=23�Umax, with

the maximum velocity here equal to Umax��0 /2�a0=5. For

the linear stability analysis performed in Sec. II, the eigen-

modes have been computed in a smaller box by cropping the

velocity and vorticity of the base state �uB ,�B��x ,z�. There

is no periodicity problem since the perturbation alone is pe-

riodic in the small box.

APPENDIX B: COMPUTATIONAL ACCURACY

The accuracy and the convergence of the results have

been tested in a larger box size: Lx=Lz=6b with 512	512

grid points and with a finer resolution: Lx=Lz=3b with 512

	512 for three typical axial wavenumbers: the first maxi-

mum of the elliptic instability kya=2.26, the first maximum

of the oscillatory instability kya=1.09 and the maximum of

the Crow instability kya=0.2 for Re�=105. The results of the

tests are displayed in Table I. We observe that doubling the

size of the computational domain without changing the res-

olution does not change the growth rate and doubling the

resolution changes the value of the growth rate by less than

1% for the wavenumbers kya=2.26 and kya=1.09. For the

smaller wavenumber kya=0.2, widening the periodic box to

L=6b and keeping the same resolution changes the value of

the growth rate by 12%.

APPENDIX C: VISCOUS DAMPING ESTIMATE
OF THE ELLIPTIC INSTABILITY

In Sec. II D 2, we have observed that the viscous theory

of Le Dizès and Laporte
10

predicts that all the modes of the

elliptic instability are stable for Re�=2000. However, the

present direct linear stability analysis gives a band of un-

stable modes corresponding to the elliptic instability with a

maximum growth rate r2�b2
/�=0.5 at the wavenumber

kya=2.26. This discrepancy suggests that the viscous damp-

ing proposed by Le Dizès and Laporte
10

overestimate the

actual one by nearly a factor of 2 when figures are analyzed.

In this section, we give an estimate of the viscous damping

using the adjoint eigenmode at the maximum of the elliptic

instability at large Reynolds number. The viscosity is consid-

ered as a perturbation of the large Reynolds number linear

Navier–Stokes operator �Schmid and Henningson
33�:

L�L�0�+�L�1�, where L is the viscous linear Navier–Stokes

operator, L�0� the inviscid linear Navier–Stokes operator,

L�1�=
2D−ky
2 the perturbation operator. Asymptotic expan-

sion of the leading eigenvalue 1�
1

�0�
+�

1

�1�
and eigen-

mode �1��
1

�0�
+��

1

�1�
, where 

1

�0� ��
1

�0�� corresponds to the

inviscid leading eigenvalue �eigenmode� and 
1

�1� ��
1

�1�� cor-

responds to the leading order modification of the leading

eigenvalue �eigenmode� due to perturbation by the viscous

operator, gives

1
�1� =

��1
�0�+�L�1��1

�0��

��1
�0�+��1

�0��
=

��1
�0�+�
2D�1

�0��

��1
�0�+��1

�0��
− ky

2, �C1�

where �
1

�0�+
is the adjoint eigenmode. The estimate of the

viscous damping of the elliptic instability, for a Reynolds

number based on the circulation Re�=2000 has been com-

puted using Eq. �C1�. The growth rate nondimensionalized

by the strain 2�b2
/� is given by

1

2�b2

�
= 1

�0�2�b2

�
−

2�

Re�

	b

a

2

��kya�2 − Ckym
a2� , �C2�

where 
1

�0�
2�b2

/� is the inviscid prediction of Le Dizès and

Laporte
10

and the constant Ckym

TABLE I. Computational accuracy of the growth rate �=r2�b2
/� with respect to the size of the box

L=Lx=Lz and the resolution �=L /N, with N=Nx=Nz for three axial wavenumbers: kya=2.26 �antisymmetric

mode�, kya=1.09 �antisymmetric mode�, and kya=0.2 �symmetric mode�. The Reynolds number is Re�=105.

The bold values correspond to the reference values, which have been chosen for the computation of the modes

in Sec. II D.

kya=2.26 kya=1.09 kya=0.2

L 3b 6b 3b 3b 6b 3b 3b 6b 12b

N 256 512 512 256 512 512 256 512 1024

� 0.0234 0.0234 0.0117 0.0234 0.0234 0.0117 0.0234 0.0234 0.0234

�
1.3189 1.3189 1.3196 0.2429 0.2427 0.2430 0.6223 0.7470 0.7447
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Ckym
=

��1m
�0�+�
2D�1m

�0��

��1m
�0�+��1m

�0��
= −

6.71

a2
,

has been computed for kyma=2.26, the maximum of the first

elliptic instability band using the direct eigenmode �
1m

�0�
and

the adjoint eigenmode �
1m

�0�+
obtained for Re�=105 �which is

close enough to the inviscid limit�. This estimate predicts

12�b2
/�=0.5 for Re�=2000 for the antisymmetric mode,

which is equal to the growth rate of the antisymmetric mode

r2�b2
/�=0.5 obtained in Sec. II D 2. Prediction �C2�, plot-

ted in Fig. 2�b�, is in very good agreement with the results of

the linear stability analysis.
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