
HAL Id: hal-01056216
https://ensta-paris.hal.science/hal-01056216v1

Submitted on 18 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Lazy Spilling for a Time-Predictable Stack Cache:
Implementation and Analysis

Sahar Abbaspour, Alexander Jordan, Florian Brandner

To cite this version:
Sahar Abbaspour, Alexander Jordan, Florian Brandner. Lazy Spilling for a Time-Predictable Stack
Cache: Implementation and Analysis. 14th International Workshop on Worst-Case Execution Time
Analysis, Jul 2014, Madrid, Spain. pp.83-92. �hal-01056216�

https://ensta-paris.hal.science/hal-01056216v1
https://hal.archives-ouvertes.fr

Lazy Spilling for a Time-Predictable Stack Cache:
Implementation and Analysis
Sahar Abbaspour1, Alexander Jordan1, and Florian Brandner2

1 Department of Applied Mathematics and Computer Science
Technical University of Denmark {sabb,alejo}@dtu.dk

2 Computer Science and System Engineering Department
ENSTA ParisTech florian.brandner@ensta-paristech.fr

Abstract
The growing complexity of modern computer architectures increasingly complicates the prediction
of the run-time behavior of software. For real-time systems, where a safe estimation of the
program’s worst-case execution time is needed, time-predictable computer architectures promise
to resolve this problem. A stack cache, for instance, allows the compiler to efficiently cache a
program’s stack, while static analysis of its behavior remains easy. Likewise, its implementation
requires little hardware overhead.

This work introduces an optimization of the standard stack cache to avoid redundant spilling
of the cache content to main memory, if the content was not modified in the meantime. At first
sight, this appears to be an average-case optimization. Indeed, measurements show that the
number of cache blocks spilled is reduced to about 17% and 30% in the mean, depending on the
stack cache size. Furthermore, we show that lazy spilling can be analyzed with little extra effort,
which benefits the worst-case spilling behavior that is relevant for a real-time system.

1998 ACM Subject Classification C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems

Keywords and phrases Lazy Spilling, Stack Cache, Real-Time Systems, Program Analysis

Digital Object Identifier 10.4230/OASIcs.WCET.2014.83

1 Introduction

In order to meet the timing constraints in systems with hard deadlines, the worst-case
execution time (WCET) of real-time software needs to be bounded. This WCET bound
should never underestimate the execution time and should be as tight as possible. Many
features of modern processor architectures, such as pipelining, caches, and branch predictors,
improve the average performance, but have an adverse effect on WCET analysis. Time-
predictable computer architectures propose alternative designs that are easier to analyze.

Memory accesses are crucial for performance. This also applies to time-predictable
alternatives. Analyzable memory and cache designs as well as their analysis thus recently
gained considerable attention [13, 8, 9]. One such alternative cache design is the stack
cache [1, 5], i.e., a specialized cache dedicated to stack data, which is intended as a complement
to a regular data cache. This design has several advantages. Firstly, the number of accesses
going through the regular data cache is greatly reduced, promising improved analysis precision.
For instance, imprecise information on access addresses can no longer interfere with the
analysis of stack accesses (and vice verse). Secondly, the stack cache design is simple and
thus easy to analyze [5]. The WCET analysis of traditional caches requires precise knowledge
about the addresses of accesses [13] and has to take the (from an analysis point of view

© Sahar Abbaspour, Alexander Jordan, and Florian Brandner;
licensed under Creative Commons License CC-BY

14th International Workshop on Worst-Case Execution Time Analysis (WCET 2014).
Editor: Heiko Falk; pp. 83–92

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.WCET.2014.83
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

84 Lazy Spilling for a Time-Predictable Stack Cache: Implementation and Analysis

complex) replacement policy into account. The analysis of the stack cache on the other hand
is much easier and amounts to a simple analysis of the cache’s fill level (occupancy) [5].

In this paper we propose an optimization to improve the performance of the stack cache’s
reserve operation based on the following observation: in many cases, the actual data spilled
by a reserve has exactly the same value as the data already stored in main memory. This
may happen in situations where data is repeatedly spilled, e.g., due to calls in a loop, but
not modified in the meantime. Thus, the main idea is to track the amount of data that is
coherent between the main memory and the cache. The cache can then avoid to needlessly
spill coherent data. We show that this tracking can be realized efficiently using a single
pointer, the so-called lazy pointer. We furthermore show that the existing analysis [5] can be
easily adapted to this optimization, by simply refining the notion of occupancy, to account
for the coherent space defined by the lazy pointer.

Section 2 introduces the stack cache, followed by a discussion of related work. Section 4
presents the motivation for our work. In Section 5, we explain lazily spilling and its static
analysis. We finally present the results from our experiments in Section 6.

2 Background

The original stack cache [1] is implemented as a kind of ring buffer with two pointers: stack
top (ST) and memory top (MT). The former points to the top of the logical stack, which
consists of all the stack data that is either stored in the cache or main memory. The latter
points to the top element present in main memory only. For simplicity, we herein assume a
hardware implementation1 with a stack growing towards lower addresses.

The difference MT − ST represents the amount of occupied space in the stack cache.
Clearly, this value cannot exceed the total size of the stack cache’s memory |SC|, thus
0 ≤ MT− ST ≤ |SC|. The stack control instructions hence manipulate the two stack pointers,
while preserving this equation, and initiate the corresponding memory transfers as needed.
A brief summary is given below (details are available in [1]):

sres x: Subtract x from ST. If this violates the equation from above, i.e., the stack cache size
is exceeded, a spill is initiated, which lowers MT until the invariant is satisfied again.

sfree x: Add x to ST. If this results in a violation of the invariant, MT is incremented accordingly.
Memory is not accessed.

sens x: Ensure that the occupancy is larger than x. If this is not the case, a fill is initiated,
which increments MT accordingly so that MT − ST ≥ x holds.

Using these three instructions, the compiler generates code to manage the stack frames of
functions, quite similar to other architectures with exception of the ensure instruction. For
brevity, we assume a simplified placement of these instructions. Stack frames are allocated
upon entering a function (sres) and freed immediately before returning from a function
(sfree). The content of a function’s stack frame might be evicted from the cache upon
function calls. The compiler thus ensures a valid stack cache state, immediately after each
call site (sens). This simplified placement can be relaxed as discussed in Section 5.2. We
furthermore restrict functions to only operate on their locally allocated stack frames. Any
stack data shared between functions, or exceeding the stack cache’s size, is allocated on the
so-called shadow stack outside the stack cache.

1 Note that the stack control instructions could also be implemented by means of software.

S. Abbaspour, A. Jordan, and F. Brandner 85

3 Related Work

Static analysis [12, 3] of caches typically proceeds in two phases: (1) potential addresses of
memory accesses are determined, (2) the potential cache content for every program point
is computed. Through its simpler analysis model, the stack cache does not require the
precise knowledge of addresses, thus eliminating a source of complexity and imprecision. It
has been previously shown that the stack cache serves up to 75% of the dynamic memory
accesses [1]. Our approach to compute the worst-case behavior of the stack cache has
some similarity to techniques used to statically analyze the maximum stack depth [2]. Also
related to the concept of the stack cache, is the register-window mechanism of the SPARC
architecture, for which limited WCET analysis support exists in Tidorum Ltd.’s Bound-T
tool [11, Section 2.2].

Alternative caching mechanisms for program data exist with the Stack Value File [6] and
several solutions based on Scratchpad Memory (SPM) (e.g. [7]), which manage the stack in
either hardware or software.

4 Motivating Example

Figure 1 shows a function bar using the stack cache allocating a stack frame of two words
(l. 2) on a stack cache of size of 8 words. The stack frame is freed before returning from the
function (l. 16). The loop (l. 5–14), repeatedly calls function foo. We assume function foo
reserves 8 words, thus evicts the entire stack cache content and displaces 8 words.

Assuming no stack data has been allocated so far, the stack cache is entirely empty. The
MT and ST pointers are pointing to the top of the stack at address 256. The sres instruction
of function bar (l. 2) decrements ST by two, without any spilling. At this point, MT points to
address 256 and ST to 248 resulting in an occupancy of 2 words.

The stack store and load instructions (l. 4, 7) do not modify the MT and ST pointers.
After the function call to foo, an sres execution reserves 8 words. Decrementing ST by 32
with an unmodified MT would result in an occupancy of 10 words (256− 216), exceeding the
stack cache size. Two words are thus spilled and bar’s stack frame is transferred to the
main memory (addresses [248, 255]). Before returning from foo, its stack frame is freed, by
incrementing ST by 32 (ST = MT = 248), meaning that the stack cache is empty. The sens
instruction (l. 11) executed next, is required to ensure that bar’s stack frame is present in
the cache for the load of the next loop iteration. Therefore, a cache fill operation increments
the MT pointer to 256. The current cache state is identical to the state before the function
call. For subsequent loop iterations, the stack cache states change in exactly the same way.
An interesting observation at this point is that the values of the respective stack slots are
loop-invariant and do not change. Consequently, during every iteration the exact same values

1 function bar ()
2 sres 2
3 // store loop - invariant stack data
4 sws [1] = ...
5 loop:
6 // load loop - invariant stack data
7 lws ... = [1]
8 // displaces entire stack cache
9 call foo

10 // reload local stack frame
11 sens 2
12 cmp ...
13 // jump to beginning of loop
14 bt loop
15 // exit function
16 sfree 2
17 ret

Figure 1 foo evicts the entire stack cache, bar’s stack data is thus spilled on each iteration.

WCET 2014

86 Lazy Spilling for a Time-Predictable Stack Cache: Implementation and Analysis

are written to the main memory. Even more, the respective memory cells already hold these
values for all loop iterations except for the first. A standard stack cache obviously lacks the
means to avoid this redundant spilling of stack data that is known to be coherent.

5 Lazy Spilling

We propose to introduce another pointer, which we call lazy pointer (LP), that keeps track of
the stack elements in the cache that are known to be coherent with main memory. The lazy
pointer only refers to the data in the stack cache, thus the invariant ST ≤ LP ≤ MT holds.

The LP divides the reserved space in the stack cache into two regions: (a) a region between
the ST and LP and (b) a region between the LP and MT. The former region defines the effective
occupancy of the stack cache, i.e., it contains potentially modified data. The data of the
second region is coherent between the main memory and the stack cache. Whenever the
ST moves up past the LP or the MT moves down below the LP, the LP needs to be adjusted
accordingly. When a stack store instruction writes to an address above the LP, some data
potentially becomes incoherent. Hence, the LP should move up along with the effective
address of the store.

5.1 Implementation

Following the above observations, we need to adapt the stack control instructions and the
stack store instructions to support lazy spilling. Note, however, that lazy spilling does not
impact the ST and the MT, i.e., their respective values are identical to a standard stack cache.

sres x: The stack cache’s sres instruction decrements the ST. Moreover, the reserve
potentially spills some stack cache data to the main memory and thus may decrement the
MT. To respect the invariant from above, this may require an adjustment of the LP to stay
below the MT. We can, in addition, exploit the fact that the newly reserved cache content
is uninitialized – and thus can be treated as coherent with respect to the main memory.
For instance, when ST = LP before the reserve, all the stack cache content is known to be
coherent, which allows us to retain the equality ST = LP even after the sres instruction.
Moreover, when the space allocated by the current sres covers the entire stack cache, all the
data in the stack cache is uninitialized. In this case it is again safe to assume ST = LP after
the reserve. Apart from updating the LP, the spilling mechanism itself requires modifications.
Originally, the MT pointer is used to compute the amount of data to spill. However, when
lazy spilling is used, the amount of data to spill does not depend on the MT anymore. Instead,
the LP has to be used to account for the coherent data present in the stack cache. With
respect to spilling, the LP effectively replaces the MT – hence the term effective occupancy for
the region between the ST and the LP.

sfree x: The stack cache’s sfree instruction increments the ST. The MT may potentially
increase as well. To satisfy the invariant from above, the LP is incremented in case it is below
the ST. No further action is required.

sens x: The stack cache’s sens instruction does not modify the ST and may only increase
the MT. The invariant is thus trivially respected. Moreover, coherency of the data loaded into
the cache is guaranteed. The sens instruction thus requires no modification.

store: The stack store instruction writes to the stack cache and may thus change the
value of previously coherent data. Therefore, the LP needs an adjustment whenever the
effective address of the store is larger than the LP, i.e., the LP needs to be greater than the
effective address of the store instruction.

S. Abbaspour, A. Jordan, and F. Brandner 87

Result: Construct SCA Graph G

initialize worklist W with entry context (s, 0);
while unhandled context c in W do

f ← function of c;
e← effective occupancy of c;
foreach call instruction i in f calling f ′ do

e′ ← min(e + r, oeff[i]));
c′ ← (f ′, e′);
add edge c→ c′ to G;
if c′ is a new context then

add new node to G;
add context c′ to W

Algorithm 1: Construct Spill Cost Analysis Graph

I Example 1. Consider again the program from Figure 1. The stack cache is initially empty
and the ST, the MT, and the LP point to address 256. As before, the sres instruction moves
the ST down to address 248. The LP moves along with the ST, since ST = LP and we assume
that the newly reserved and uninitialized space is coherent with the main memory. Next, the
store instruction (l. 4) modifies some data present in the stack cache. The LP consequently
has to move upwards and now points to address 252. The first call to function foo causes
two words to be spilled (see Section 4) and the MT is thus decremented to 248. As the LP is
larger than the MT at this point, the LP would normally require an adjustment. However,
since we assume that foo reserves the entire stack cache, it is safe to set the LP to the value
of ST (216). Any stores within foo then automatically adjust the LP as needed. The stack
cache is again empty after returning from function foo. All three pointers of the stack cache
then point to address 248. The sens reloads the stack frame of function bar (l. 11), leaving
both ST and LP unmodified, but incrementing MT to 256. The occupancy of the normal stack
cache at this point is 8 (2 words), while the effective occupancy of the stack cache with lazy
spilling is 0, i.e., the entire cache content is known to be coherent. The effective occupancy
for the next call to foo as well as for subsequent iterations of the loop, stays at 0. The reserve
within foo thus finds the entire stack cache content coherent and avoids spilling completely.
Finally, when the program exits the loop, the sfree instruction (l. 16) increments ST to 256.
In order to satisfy the invariant, LP also has to be incremented.

5.2 Static Analysis
With the restrictions from Section 2 in place, the analysis algorithms assume that reserve
and free instructions appear at a function’s entry and exit; this may be relaxed, given the
program remains well-formed regarding its stack space. Due to space restrictions, we refer
to [5], which describes the relaxation and the analysis of the original stack cache design.

The filling behavior of ensure instructions is not affected by lazy spilling, therefore, the
context-insensitive ensure analysis remains unchanged compared to its original. The spilling
behavior of a reserve instruction depends on the state of the stack cache at function entry,
which in turn depends on a nesting of stack cache states of function calls reaching the current
function. To fully capture this context-sensitive information, we can represent spill cost in
the spill cost analysis graph (SCA graph). An example SCA graph is depicted in Figure 2b.
The effective spill cost for an sres instruction in a specific calling context is computed from
the occupancy of the context and the locally reserved space x (in sres x). This value is then
multiplied with the timing overhead of the data transfer to external memory.

WCET 2014

88 Lazy Spilling for a Time-Predictable Stack Cache: Implementation and Analysis

Without lazy spilling, the construction of the SCA graph depends on the notion of stack
cache occupancy, i.e., the utilized stack cache region of size MT − ST. In order to benefit
from the reduced overhead of lazy spilling, we need to consider the possibly smaller region
LP− ST. Bounds for this effective occupancy of the stack cache are propagated through the
call graph during reserve analysis, which constructs the SCA graph as shown in Algorithm 1.
The oeff-bound used by the algorithm improves the overestimation still present in context-
sensitive reserve analysis. It can be computed by an intra-procedural data-flow analysis,
which considers minimum displacement and the destinations of stack cache stores. For every
point within a function, but most interestingly before calls, oeff represents a local upper
bound on the effective occupancy.

As a pre-requisite for the intra-procedural analysis, minimum displacements for all
functions in the program are computed. This is achieved by several shortest-path searches in
the program’s call graph. The resulting values are bounded by the size of the stack cache
disp(i) = min(|SC |, dmin(i)) and used in the data-flow transfer functions of the analysis:

OUT (i) =

min(IN (i), |SC | − disp(i)) if i = call (1a)
max(IN (i), blocks(n)) if i = sws n (1b)
IN (i) otherwise (1c)

After returning from a call instruction i, the LP cannot have moved upwards with respect to
its location before the call. In fact, a function call can only leave the LP unchanged or move it
downwards. I.e., if stack contents of the current function are spilled, this potentially increases
the coherent region of the stack cache and thus decreases the effective occupancy (1a).
The amount of spilling is represented by the previously computed (worst-case) minimum
displacement disp(i).

Opposite to calls, the LP moves up when i is a store instruction (1b). Since the number
of data words per stack cache block is fixed, the number of blocks that become incoherent
due to a store, only depends on its destination n (in blocks(n) = dn/words-per-blocke).

Note that while an sens instruction can impact the original analysis of occupancy bounds,
it does not influence the effective occupancy and thus plays no role during reserve analysis in
the presence of lazy spilling.

In order to safely initialize the oeff bound and propagate it between instructions (i.e.,
from the OUT -values of the predecessors of an instruction to its IN -value (2b)), we define
the following transfer functions:

IN (i) =
{ |SC | if i is entry (2a)

max
p ∈Preds(i)

(OUT (p)) otherwise (2b)

It is further worth noting that in practice not all stack store instructions need to be analyzed.
As long as the effective occupancy value exceeds the stack cache size reserved by the current
function (i.e., the coherent region does not overlap with the current stack frame), a particular
store has no effect on the analysis state.

I Example 2. Consider the program from Figure 1, where two additional function calls to
function baz are performed. The first call appears right before entering the loop, while the
other appears right after exiting the loop.

The call graph for this program is shown in Figure 2a. This graph also shows the size
of the stack frame reserved by each function on the outgoing call edges. For functions
without calls (baz and foo), call edges to an artificial sink node t are introduced. Using these
annotations, the minimum and maximum displacement of each function can be determined

S. Abbaspour, A. Jordan, and F. Brandner 89

s
bar()

foo()

baz()

t0

2

2

2

8

4

(a) Call graph (edges annotated with sres size
of source node)

bar(), 0 baz(), 2

foo(), 2

baz(), 0

(b) SCA Graph (each node represents a
stack cache context: name followed by the
context’s effective occupancy level)

Figure 2 Call graph and SCA Graph for the program of Example 2.

using a shortest and longest path search respectively. The minimum displacements for the
three functions are 8, 6, and 4; for foo, bar, and baz respectively.

The analysis of this program results in the SCA graph shown by Figure 2b. The analysis
starts with an empty stack cache and finds that bar allocates 2 words (8 bytes), initializes
the respective stack slots and then calls baz. Since bar’s stack content was not spilled before,
the effective occupancy when entering baz evaluates to 2. Assuming a stack cache size of 8
words, the function can be executed without spilling. The analysis thus can deduce that the
LP was not modified with regard to bar’s stack frame. Propagating this information to the
function call of foo within the loop results in a context for foo with the same occupancy of 2.
Once the program exits the loop, another call to baz is executed. Due to foo displacing the
full stack cache and the lack of relevant stores, the data-flow analysis is able to propagate the
effective occupancy of 0 down to this call. This is reflected in the SCA graph by containing
a node for baz annotated with its effective 0-occupancy.

6 Experiments

We use the Patmos processor [10] to evaluate the impact of lazy spilling on hardware costs,
average program performance, and worst-case spilling bounds. The hardware model of the
processor was extended and statistics were collected on the speed and resource requirements
after synthesis (Altera Quartus II 13.1, for Altera DE2-115). The average performance
measurements were performed using the MiBench [4] benchmarks suite. The programs
were compiled using the Patmos LLVM compiler (version 3.4) with full optimizations (-O3)
and executed on a cycle-accurate simulator. We compare five configurations utilizing (a)
a standard data cache combined with a lazily spilling stack cache having a size of 128 or
256 bytes (LP128, LP256), (b) a standard data cache combined with a standard stack cache
(SC128, SC256), and (c) a standard data cache alone (DC). The stack caches perform spilling
and filling using 4 byte blocks. The data cache is configured to have a size of 2 KB, a 4-way
set-associative organization, with 32 byte cache lines, LRU replacement, and a write-through
strategy (recommended for real-time systems [13]). In addition to data caches, the simulator
is configured to use a 16 KB method cache for code. The main memory is accessed in 16
byte bursts and 7 cycles latency.

6.1 Implementation Overhead
The standard stack cache of Patmos is implemented by a controller, which executes spill and
fill requests, and control instructions (sres, sfree, sens) sending requests to that controller.
The controller is independent from the extensions presented here. It thus suffices to extend the
sres, sfree, and stack store instruction as indicated in Section 5.1. The Patmos processor

WCET 2014

90 Lazy Spilling for a Time-Predictable Stack Cache: Implementation and Analysis

has a five-stage pipeline (fetch, decode, execute, memory access, write back). The stack
cache reads the ST and the MT in the decode stage and immediately computes the amount to
spill/fill. The LP is read in the decode stage as well, which allows us to perform all LP-related
updates in the decode and execute stages. That way additional logic on the critical path in
the memory stage, where the cache is actually accessed, is avoided. This applies in particular
to the store instruction, whose effective address only becomes available in the execute stage.
For lazy spilling, a single additional register is needed (LP). Updating the LP in the sres
instruction adds two multiplexers to the original implementation. The sfree and stack store
instructions each need an additional multiplexer. The area overhead is, therefore, very low.
Moreover, these changes do not affect the processing frequency.

6.2 Average Performance
Table 1 (columns Spill) shows the reduction in the number of blocks spilled in comparison to
the standard stack cache. Note that results for rawcaudio and rawdaudio are not shown, as
they never spill due to their shallow call nesting depth. The best result for LP128 is achieved
for bitcnts, where lazy spilling practically avoids spilling. In the mean, spilling is reduced
to just 17%. The worst result is attained for qsort-small, where 62% of the blocks are
spilled. For LP256 spilling is reduced to 30% in the mean. The best result is observed for
search-large, where essentially all spilling is avoided. For crc-32, drijndael, erijndael,
and sha only marginal improvements are possible, since these benchmarks already spill little
in comparison to the other benchmarks. The worst result of those benchmarks with a relevant
amount of spilling is obtained for qsort-small, where 76% of the blocks are spilled.

Miss rates are not suitable for comparison against standard data caches. We thus compare
the number of bytes accessed by the processor through a cache in relation to the number of
stall cycles it caused, i.e., #RD+#W R

#Stalls . A high value in Table 1 (columns SC and DC) means
that the cache is efficient, as data is frequently accessed without stalling. The data cache
alone gives values up to 3.3 only. Ignoring benchmarks with little spilling, the best result for
SC128 is achieved by dbf (477.4). For SC256, bitcnts gives the best result (17054.7). Lazy

Table 1 Bytes accessed per stall cycle and reduction in spilling for the various configurations.
SC128 LP128 SC256 LP256 DC

Benchmark SC DC Spill LP-SC DC SC DC Spill LP-SC DC
basicmath-tiny 2.3 1.1 0.17 4.0 1.1 26.4 1.1 0.53 34.0 1.1 1.1

bitcnts 4.6 191.6 0.00 12.2 191.6 17054.7 193.7 0.71 19201.4 193.7 1.2
cjpeg-small 116.9 1.0 0.51 148.4 1.0 3470.7 1.0 0.09 6154.4 1.0 1.1

crc-32 9.0 0.9 0.03 21.3 0.9 814.9 0.9 1.00 814.9 0.9 0.9
csusan-small 11.3 2.2 0.16 18.6 2.2 1218.8 2.3 0.72 1430.0 2.3 1.5

dbf 477.4 1.0 0.47 623.0 1.0 – 1.0 – – 1.0 1.0
dijkstra-small 19.5 1.4 0.20 32.8 1.4 335.2 1.4 0.54 433.7 1.4 1.4

djpeg-small 9.0 0.8 0.34 13.5 0.8 293.4 0.8 0.66 361.5 0.8 0.8
drijndael 15.8 0.9 0.20 28.7 0.9 185620.0 0.9 1.00 185620.0 0.9 0.9

ebf 172.5 1.0 0.44 224.6 1.0 – 1.0 – – 1.0 1.0
erijndael 32.6 0.9 0.57 43.3 0.9 258340.0 0.9 1.00 258340.0 0.9 0.9

esusan-small 15.9 3.4 0.25 25.3 3.4 70.7 3.6 0.02 139.5 3.6 1.5
fft-tiny 3.1 1.1 0.08 5.8 1.1 85.0 1.1 0.56 103.4 1.1 1.1

ifft-tiny 3.1 1.2 0.08 5.9 1.2 83.1 1.1 0.56 101.0 1.1 1.1
patricia 2.5 1.0 0.27 4.2 1.0 26.4 1.0 0.55 31.9 1.0 1.0

qsort-small 3.1 1.0 0.62 3.7 1.0 7.8 1.0 0.76 8.6 1.0 1.0
rsynth-tiny 16.0 1.9 0.08 29.9 1.9 1096.1 1.9 0.48 1539.8 1.9 1.3

search-large 2.9 0.8 0.48 3.9 0.8 26.3 0.8 0.00 52.5 0.8 0.9
search-small 2.9 0.8 0.49 3.7 0.8 28.1 0.8 0.02 54.8 0.8 0.9

sha 8.3 1.6 0.20 14.1 1.6 668.7 1.6 0.91 700.6 1.6 1.6
ssusan-small 29.2 17.1 0.20 43.9 17.1 4313.5 17.1 0.80 4678.0 17.1 3.3

S. Abbaspour, A. Jordan, and F. Brandner 91

spilling leads to consistent improvements over all benchmarks. An interesting observation is
that for most benchmarks the presence of a stack cache improves the performance of the data
cache. The best example for this is bitcnts, but also csusan and ssusan profit considerably,
where the data cache alone delivers 1.2 bytes per stall cycle. When a stack cache is added to
the system, this value jumps up to 192.4 and 196.1 respectively.

Our measurements show that lazy spilling eliminates most spilling in comparison to a
standard stack cache. Also the efficiency of the standard data cache is improved in many
cases. Due to the low memory latency assumed here, this translates to run-time gains of up
to 21.8% in comparison to a system with a standard stack cache. In the mean, the speedup
amounts to 8% and 9.2% in comparison to a system only equipped with a data cache.

6.3 Static Analysis

We evaluate the impact of lazy spilling on the static analysis by comparing its bounds on
the worst-case spilling with the actual spilling behavior observed during program execution.
In order to be considered safe, the analysis’ bounds always need to be larger or equal to
the observed spilling of an execution run. Apart from a safe result, the analysis should also
provide tight bounds. Note that the observed spilling relates to the average-case behavior of
the programs, which does not necessarily trigger the worst-case stack cache behavior (the
same inputs as in Section 6.2 have been used). However, we still report the estimation gap
between worst case and average case, to show the effect of lazy spilling in the analysis.

We extended the Patmos simulator and first verified that the actual spilling of all sres
instructions executed by a benchmark program is safely bounded by the analysis. We
then measured the maximum difference between statically predicted and observed spilling
(Max-Spilling-∆) for each sres in every of its contexts (i.e., considering all nodes of the
SCA graph reachable by execution). Table 2 shows the results for the 128-byte stack cache
configuration and allows for a comparison between statically predicted and dynamically
observed spill costs. A first look reveals that static spill cost is reduced for all programs in
our benchmark set (down to 12% for rsynth-tiny). Furthermore, when the estimation gap
is initially low, lazy spilling tends to widen the gap between static and dynamic spill cost

Table 2 Analysis precision: static worst-case compared to observations from dynamic execution
(bytes spilled based on maximum spilling per stack cache context)

SC128 Max-Spilling-∆ LP-SC128 Max-Spilling-∆
Benchmark Static Dynamic Gap Static Dynamic Gap

basicmath-tiny 68,128 32,040 2.13× 10,052 8,080 1.24×
bitcnts 892 684 1.30× 768 320 2.40×
crc-32 844 652 1.29× 684 372 1.84×
csusan 5,404 2,592 2.08× 2,420 1,196 2.02×

dbf 684 456 1.50× 564 324 1.74×
dijkstra-small 10,220 5,796 1.76× 6,676 2,608 2.56×

drijndael 1,172 664 1.77× 1,024 488 2.10×
ebf 684 456 1.50× 564 324 1.74×

erijndael 880 400 2.20× 752 292 2.58×
esusan 4,724 1,888 2.50× 2,256 1,024 2.20×
fft-tiny 32,484 9,476 3.43× 5,804 3,712 1.56×

ifft-tiny 32,224 9,256 3.48× 5,620 3,548 1.58×
patricia 1,996 1,672 1.19× 1,804 984 1.83×

qsort-small 3,804 1,492 2.55× 2,432 840 2.90×
rsynth-tiny 109,864 15,320 7.17× 13,504 3,140 4.30×

search-large 840 740 1.14× 668 340 1.96×
search-small 828 728 1.14× 708 312 2.27×

sha 1,160 660 1.76× 1,032 448 2.30×
ssusan 6,608 1,824 3.62× 2,452 1,060 2.31×

WCET 2014

92 Lazy Spilling for a Time-Predictable Stack Cache: Implementation and Analysis

slightly. But for those benchmarks that exhibit large estimation gaps with a standard stack
cache, lazy spilling can even improve analysis precision.

7 Conclusion

From our experiments, we conclude that the benefits of lazy spilling extend from the average
case performance to worst-case behavior, where it can even benefit analysis precision. In
future work, we plan to introduce loop contexts and a limited notion of path-sensitivity to
the analysis, to better capture occupancy states and thus spilling behavior.

Acknowledgment. This work was partially funded under the EU’s 7th Framework Pro-
gramme, grant agreement no. 288008: Time-predictable Multi-Core Architecture for Embed-
ded Systems (T-CREST).

References
1 S. Abbaspour, F. Brandner, and M. Schoeberl. A time-predictable stack cache. In Proc. of

the Workshop on Software Techn. for Embedded and Ubiquitous Systems. IEEE, 2013.
2 Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen. Static memory and timing

analysis of embedded systems code. In Proc. of Symposium on Verification and Validation
of Software Systems, pages 153–163. Eindhoven Univ. of Techn., 2007.

3 Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior prediction
for real-time systems. Real-Time Systems, 17(2-3):131–181, 1999.

4 Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin, Trevor Mudge,
and Richard B. Brown. MiBench: A free, commercially representative embedded bench-
mark suite. In Proc. of the Workshop on Workload Characterization, WWC’01, 2001.

5 A. Jordan, F. Brandner, and M. Schoeberl. Static analysis of worst-case stack cache be-
havior. In Proc. of the Conf. on Real-Time Networks and Systems, pages 55–64. ACM,
2013.

6 Hsien-Hsin S. Lee, Mikhail Smelyanskiy, Gary S. Tyson, and Chris J. Newburn. Stack value
file: Custom microarchitecture for the stack. In Proc. of the International Symposium on
High-Performance Computer Architecture, HPCA’01, pages 5–14. IEEE, 2001.

7 Soyoung Park, Hae woo Park, and Soonhoi Ha. A novel technique to use scratch-pad
memory for stack management. In In Proc. of the Design, Automation Test in Europe
Conference, DATE’07, pages 1–6. ACM, 2007.

8 J. Reineke, I. Liu, H.D. Patel, S. Kim, and E.A. Lee. PRET DRAM controller: Bank
privatization for predictability and temporal isolation. In Proc. of the Conference on Hard-
ware/Software Codesign and System Synthesis, pages 99–108. ACM, 2011.

9 Martin Schoeberl, Benedikt Huber, and Wolfgang Puffitsch. Data cache organization for
accurate timing analysis. Real-Time Systems, 49(1):1–28, 2013.

10 Martin Schoeberl, Pascal Schleuniger, Wolfgang Puffitsch, Florian Brandner, Christian
W. Probst, Sven Karlsson, and Tommy Thorn. Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach, volume 18, pages 11–21. OASICS, 2011.

11 BoundT Time and Stack Analyzer – Application Note SPARC/ERC32 V7, V8, V8E. Tech-
nical Report TR-AN-SPARC-001, Version 7, Tidorum Ltd., 2010.

12 Randall T. White, Christopher A. Healy, David B. Whalley, Frank Mueller, and Marion G.
Harmon. Timing analysis for data caches and set-associative caches. In Proceedings of the
Real-Time Technology and Applications Symposium, RTAS’97, pages 192–203, 1997.

13 Reinhard Wilhelm, Daniel Grund, Jan Reineke, Marc Schlickling, Markus Pister, and Chris-
tian Ferdinand. Memory hierarchies, pipelines, and buses for future architectures in time-
critical embedded systems. Trans. Comp.-Aided Des. Integ. Cir. Sys., 28(7):966–978, 2009.

	Introduction
	Background
	Related Work
	Motivating Example
	Lazy Spilling
	Implementation
	Static Analysis

	Experiments
	Implementation Overhead
	Average Performance
	Static Analysis

	Conclusion

