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Appendix I

The number densities of molecules non-bonded on one site (A or B), σAk

and σBk
and the number density of the free molecules σ0k at equilibrium

are determined by minimizing the Helmholtz energy. The differentiation of
the expression for the association Helmholtz energy (eq. (1) of the current
article)
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with respect to σAk
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and σ0k leads to the following three conditions for
each component k
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Note that eq. 1 of the current article is expressed in terms of the homoge-
nous scalar number densities after having performed some assumptions for
the computation of the integrals ∆AiBk

and Φik, while the original expression
of the free energy is expressed in terms of number density distribution func-
tions.1,2 The minimization of the Helmholtz energy should then be obtained
by performing functional differentiation with respect to the number density
distributions. Here the minimization is performed with respect to the scalars
σAk

, σBk
and σ0k for the sake of simplicity.

The two sums in the last equation are identical if Φij = Φji. One can
express the equilibrium conditions (eqs. 2) to 4) in terms of the fractions
of molecules non-bonded at a given site (A or B) (XAk

= σAk
/σΓk,XBk

=
σBk

/σΓk , and in terms of the fraction of free molecules, X0k = σ0k/σΓk ), as
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This set of conditions that determine the composition at equilibrium can be
solved by using the numerical method described in Appendix II. In order
to eliminate the integrals ∆AiBj and Φij from the association contribution of
the Helmholtz energy, one can multiply eqs. 2 and 3 by σAk

/2, and by σBk
/2,

respectively, and sum the conditions over all components k. This leads to
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After changing the summation indices in the right-hand side of eqs. 8 and 9,
and adding these two equations, one can express the second term of eq. 1)
as
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By multiplying eq. 4 by σ0k and summing up for all components, one can
show that

−

1

2

∑

i

∑

j

σ0iσ0jΦij =
1

2

∑

i

(

σAi
σBi

σ0i

− σΓi

)

. (11)

By inserting eqs. 10 and 11 into eq. 1, the association contribution of the
Helmholtz energy density can be written as
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The final relation for the association Helmholtz energy
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is obtained by employing the fractions of non bonded molecules instead of
the number densities in eq. 12, and by dividing eq. 12 by the total number
density and replacing σΓi

by xiρ.
An extension of the DBD association scheme to groups (molecules) con-

taining more than two association sites can be done in a way analogous to
the extension of the classical approach. For mixture containing components
i, each with set of sites ia, the association Helmholtz energy is expressed as
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For the DBD model analogous generalization can be written in terms of ’pairs
of association sites’,
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where the inner summation runs over all pairs ip located at molecule of
component i. The compressibility factor can be obtained from the derivative
of the Helmholtz energy with respect to the total number density ρ. The
association contribution to the compressibility factor is given by
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The association contribution to the chemical potential of component k is
given by
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The derivatives of the association Helmholtz energy with respect to molar
fractions, which are required for the calculation of the association contribu-
tion to the chemical potential, are given by
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The partial derivatives of the fractions of molecules non bonded at a given
site and of the fractions of free molecules, can be obtained by solving a set of
3n linear equations. This set of equations is obtained from the derivative of
the equilibrium conditions (eqs. 5, 6 and 7) with respect to the total number
density (compressibility factor) or with respect to a particular molar fraction
(chemical potential), by keeping the remaining variables fixed. Note that the
association strengths ∆AiBj and Φij depend on both density and composition
through the contact values of the radial distribution functions.

Appendix II

The fractions XAk
and XBk

and X0k , are the solutions of the equilibrium
conditions (eqs. 5, 6 and 7 of the current article) that are linked together
through the sums over all associating components. It is convenient to write
these conditions as
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For compounds k which do not form doubly bonded dimers, i.e., for com-
pounds k with Φjk = 0 for all compounds j, eq. 21) reduces to X0k =
XAk

XBk
. The first two equations then turn into the equilibrium conditions

for the classical association approach:
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This set of equations is solved by using an iterative self-substitution proce-
dure: The left-hand side is taken as the new approximation that is inserted
back into the right-hand side until the desired accuracy is reached. Thus, the
new estimates of XAk

/X0k and XBk
/X0k for each component k are calculated

as
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Because of the non-trivial form of eq. 21), we proposed another self substitu-
tion iterative approach for X0k . By multiplying eq. 21) by X0k and inserting

the new estimated values
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The quadratic equation has two real roots, and the only root between 0 and
1 is taken as the new estimated values of X0k . New estimates of XAk

and
XBk

are then obtained from

(XAk
)new = (X0k)

new

(

XAk

X0k

)new

. (26)

The new values of XAk
and XBk

are reinserted into eqs. 23) and 24) until
convergence is reached. For compounds that do not form DBD, the new
estimates of XAk

and XBk
are directly obtained at the first iteration step,

because of the relation X0k = XAk
XBk

.
The initial values for XAk

and XBk
are obtained from the solutions of the

classical 2B association term, by using Φij = 0 for all components. The initial
value for X0k is then given by X0i = XAi

XBi
. We have tested the procedure

to a prototype mixture of six associating compounds forming DBDs, with
different values of bonding energy and volume such that XAk

> 0.99 for some
components and XAk

< 0.01 for some others. Convergence was reached with
less than 100 iterations.
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