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Abstract

This paper addresses the propagation of high amplitude acoustic pulses
through a 1D lattice of Helmholtz resonators connected to a waveguide.
Based on the model proposed by Sugimoto (J. Fluid. Mech., 244 (1992),
55-78), a new numerical method is developed to take into account both the
nonlinear wave propagation and the different mechanisms of dissipation: the
volume attenuation, the linear visco-thermic losses at the walls, and the non-
linear absorption due to the acoustic jet formation in the resonator necks.
Good agreement between numerical and experimental results is obtained,
highlighting the crucial role of the nonlinear losses. Different kinds of soli-
tary waves are observed experimentally with characteristics depending on
the dispersion properties of the lattice.

Keywords: nonlinear acoustics, solitary waves, Helmholtz resonator,
fractional derivatives, shock-capturing schemes

1. Introduction1

The dynamics of nonlinear waves in lattices has been the object of a great2

interest in the scientific community. This theme has stimulated researches in3
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a wide range of areas, including the theory of solitons and the dynamics of4

discrete networks. Works have been led in electromagnetism and optics [29],5

and numerous physical phenomena have been highlighted, such as dynamical6

multistability [63, 25, 36], chaotic phenomena [22, 64], discrete breathers7

[34, 6, 20] and solitons or solitary waves [37, 38]; for a review, see [28].8

Solitary waves have been observed and studied firstly for surface wave in9

shallow water [53]. These waves can propagate without change of shape10

and with a velocity depending of their amplitude [50]. This phenomenon11

has been studied in many physical systems, for instance in fluid dynamics,12

optics, plasma physics. For a review, see [19] and the citations in [14].13

In the field of acoustics, numerous works have shown the existence of14

solitary waves in uniform or inhomogeneous rods [12, 31, 3], periodic chains15

of elastics beads [33, 2, 11, 13, 44], periodic structures such as lattices or16

crystals [9, 23, 26], elastic layers [32, 41, 42], layered structures coated by17

film of soft material [30] and microstructured solids [18]. As we can see, most18

studies concern elastic waves in solids. Indeed, only a few works deal with19

acoustic waves in fluid, even if experimental observations of solitary waves20

have been made in the atmosphere [10, 48, 17] or in the ocean [61, 39, 1].21

One reason of this lack originates from the fact that the intrinsic disper-22

sion of acoustic equations is too low to compete with the nonlinear effects,23

preventing from the occurence of solitons. To observe the latter waves, geo-24

metrical dispersion must be introduced. It has been the object of the works25

of Sugimoto and his co-authors [59, 56, 58, 60], where the propagation of non-26

linear waves was considered in a tube connected to an array of Helmholtz res-27

onators. A model incorporating both the nonlinear wave propagation in the28

tube and the nonlinear oscillations in the resonators has been proposed. The-29

oretical and experimental investigations have shown the existence of acoustic30

solitary waves [59].31

The present study extends the work of Sugimoto. We examine the valid-32

ity of his theoretical model to describe the propagation of nonlinear acous-33

tic waves in a tunnel with Helmholtz resonators. For this purpose, we de-34

velop both a new numerical method and real experiments. Compared with35

our original methodology presented in [40], improvements are introduced to36

model numerically the attenuation mechanisms. The combination of highly-37

accurate numerical simulations and experimental results enables to study38

quantitatively the generation of solitary waves, and also to determine the39

role of the different physical phenomena (such as the linear and nonlinear40

losses) on wave properties.41
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The paper is organized as follows. Section 2 introduces the model of Sug-42

imoto [60]. Section 3 presents the evolution equations. The nonlocal frac-43

tional derivatives modeling the viscothermic losses are transformed into a set44

of memory variables satisfying local-in-time ordinary differential equations.45

Sugimoto’s model is then transformed into a first-order system of partial dif-46

ferential equations. Section 4 details the numerical methods. The coefficients47

of the memory variables are issued from a new optimization procedure, which48

ensures the decrease of energy. A splitting strategy is then followed to inte-49

grate the evolution equations. Compared with [40], another novelty concerns50

the integration of a nonlinear differential equation describing the nonlinear51

losses. Section 5 introduces the experimental setup, the acquisition chain,52

and some validation tests. Section 6 compares the experimental results and53

the simulated results, confirming the validity of the theoretical model [56]54

and the existence of acoustic solitary waves.55

2. Problem statement56

2.1. Configuration57

D

L

H 2rh
2r

2R

Figure 1: Sketch of the guide connected with Helmholtz resonators.

The configuration under study is made up of an air-filled tube connected58

with uniformly distributed cylindrical Helmholtz resonators (figure 1). The59

geometrical parameters are the radius of the guide R; the axial spacing be-60

tween resonators D; the radius of the neck r; the length of the neck L; the61
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radius of the cavity rh; and the height of the cavity H. The cross-sectional62

area of the guide is A = π R2 and that of the neck is B = π r2, the volume of63

each resonator is V = π r2h H. Corrected lengths are introduced: L
′

= L+2 r64

accounts for the viscous end corrections, and the corrected length Le = L+η65

accounts for the end corrections at both ends of the neck, where η ≈ 0.82 r66

is determined experimentally [56].67

The physical parameters are the ratio of specific heats at constant pressure68

and volume γ; the pressure at equilibrium p0; the density at equilibrium ρ0;69

the Prandtl number Pr; the kinematic viscosity ν; and the ratio of shear70

and bulk viscosities µv/µ. The linear sound speed a0, the sound diffusivity71

νd, the dissipation in the boundary layer C, and the characteristic angular72

frequencies of the resonator ω0 and ωe, are given by:73

a0 =

√

γ p0
ρ0

, νd = ν

(

4

3
+

µv

µ
+

γ − 1

Pr

)

, C = 1 +
γ − 1√

Pr
,

ω0 = a0

√

B

LV
= a0

r

rh

1√
LH

, ωe =

√

L

Le

ω0.

(1)

2.2. Model of Sugimoto74

Given a characteristic angular frequency ω, the main assumptions under-75

lying Sugimoto’s model are [56]:76

• low-frequency propagation (ω < ω∗ = 1.84 a0
R

), so that only the plane77

mode propagates and the 1D approximation is valid [7];78

• weak acoustic nonlinearity in the tube (small Mach number) [24];79

• continuous distribution of resonators (λ ≫ D, where λ = 2 π a0/ω).80

The wave fields are split into simple right-going waves (denoted +) and left-81

going waves (denoted -) that do not interact together during their propa-82

gation. The variables are the axial velocity of the gas u± and the excess83

pressure in the cavity p±. The excess pressure in the tube is denoted by p
′±.84

In the linear theory, it is related to u± by85

p
′± = ±ρ0 a0 u

±. (2)
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Each simple wave is modeled by a coupled system of a partial differential
equation (PDE) and a ordinary differential equation (ODE):























∂u±

∂t
+

∂

∂x

(

±au± + b
(u±)2

2

)

= ±c
∂−1/2

∂t−1/2

∂u±

∂x
+ d

∂2u±

∂x2 ∓ e
∂p±

∂t
, (3a)

∂2p±

∂t2
+ f

∂3/2p±

∂t3/2
+ gp± −m

∂2(p±)2

∂t2
+ n

∣

∣

∣

∣

∂p±

∂t

∣

∣

∣

∣

∂p±

∂t
= ±hu±, (3b)

with the coefficients86

a = a0, b =
γ + 1

2
, c =

C a0
√
ν

R∗ , d =
νd
2
, e =

V

2 ρ0 a0 AD
,

f =
2
√
ν

r

L
′

Le

, g = ω2
e , h = ω2

e

γ p0
a0

, m =
γ − 1

2 γ p0
, n =

V

B Le ρ0 a
2
0

.

(4)
The PDE (3a) models nonlinear acoustic waves in the tube (coefficients a87

and b). Viscous and thermal losses in the boundary layer of the tube are88

introduced by the coefficient c [8]. The diffusivity of sound in the tube is89

also introduced by the coefficient d.90

The ODE (3b) models the air oscillation in the neck of the resonators91

thanks to the coefficients f and g [45, 46]. Compared to the ODE used in92

[40], the following modifications have been introduced:93

• the natural angular frequency of the resonator ω0 has been replaced by94

the corrected angular frequency ωe (1),95

• f has been multiplied by L
′

/Le,96

• new coefficients m and n have been introduced, describing nonlinear97

attenuation processes.98

The coefficient m models the nonlinearity due to the adiabatic process in99

the cavity, whereas the semi-empirical coefficient n accounts for the jet loss100

resulting from the difference in inflow and outflow patterns [56, 60]. As it101

will be illustrated later, these nonlinear losses need to be be included to get102

good agreement with the experimental measurements.103

The coupling between (3a) and (3b) is done by the coefficients e and h. If104

the resonators are suppressed (H → 0 and thus V → 0), then the coefficient105

e → 0: no coupling occurs, and the classical Chester’s equation is recovered106

[43].107
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Fractional operators of order -1/2 and 3/2 are involved in the system (3),108

via the coefficients c and f . These operators model the viscothermal losses109

in the tube and in the resonators, respectively proportional to 1/(i ω)1/2 and110

(i ω)3/2 in the frequency domain. In (3a), the Riemann-Liouville fractional111

integral of order 1/2 of a causal function w(t) is defined by112

∂−1/2

∂t−1/2
w(t) =

H(t)√
π t

∗ w =
1√
π

∫ t

0

(t− τ)−1/2w(τ) dτ, (5)

where * is the convolution product in time, and H(t) is the Heaviside step113

function [47]. The Caputo fractional derivative of order 3/2 in (3b) is ob-114

tained by applying (5) to ∂2p±/∂t2.115

2.3. Dispersion regimes116

Sugimoto’s model (3) relies on a low-frequency assumption. In this case,117

the set of discrete Helmholtz resonators separated by portions of tube are118

replaced by a continuous surfacic distribution of resonators. To examine the119

validity of this model in our experimental configuration, one can compare120

the dispersion relations obtained respectively by the continuous model and121

by the discrete one, the latter being deduced from a Floquet-Bloch analysis122

[57].123

In the linear regime, the lossy continuous model proposed by Sugimoto124

leads to the following dispersion relation [57]:125

(QD)2 =

(

1−
√
2 (1− i)

C

R∗

( ν

ω

)1/2

+ i
νd ω

a20

)−1(

1− κ

Z2(ω)

)(

ωD

a0

)2

,

(6)
where Q is the Bloch wave number, κ = V/(AD) and

Z2(ω) =

(

ω

ωe

)2

− 1 +

√
2 (1− i)

r

L′

Le

(

ν

ωe

)1/2 (
ω

ωe

)3/2

.

On the contrary, the dispersion relation of the discrete model writes [52]126

cosQD = cos(kD) +
U(k)

2k
sin(kD), (7)

where k = ω/a0 is the wave number and U(k) is the equivalent potential of127

the Helmholtz resonators given by128

U(k) =
B

Ak

tan(k Le) + α tan(kH)

1− α tan(kLe) tan(kH)
, (8)
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with α = (rh/r)
2. The losses in the waveguide and resonators are modeled129

by introducing an imaginary part in the wavenumber k as presented in [57].130

Results from equations (6) and (7) will be compared in section 5.3.131

3. Evolution equations132

3.1. Diffusive approximation133

The fractional integral (5) is non local in time and relies on the full history134

of w(t), which is numerically memory-consuming. An alternative approach135

is based on a diffusive representation of fractional derivatives, and then on136

its approximation. This method has already been presented in [40] and we137

just recall the main steps: following [15], equation (5) is recast as138

∂−1/2

∂t−1/2
w(t) =

∫ +∞

0

φ(t, θ) dθ, (9)

where the diffusive variable φ satisfies the local-in-time ordinary differential139

equation140






∂φ

∂t
= −θ2 φ+

2

π
w,

φ(0, θ) = 0.
(10)

To approximate the integral (9), a quadrature formula on Nq points is used,141

with weights µℓ and nodes θℓ:142

∂−1/2

∂t−1/2
w(t) ≃

Nq
∑

ℓ=1

µℓ φℓ(t), (11)

where the diffusive variables φℓ(t) = φ(t, θℓ) satisfy the ODE (10). Similarly,143

the derivative of order 3/2 is written144

∂3/2

∂t3/2
w(t) ≃

Nq
∑

ℓ=1

µℓ

(

−θ2ℓ ξℓ +
2

π

dw

dt

)

, (12)

where the ξℓ(t) = ξ(t, θℓ) satisfy the ODE145







∂ξ

∂t
= −θ2 ξ +

2

π

dw

dt
,

ξ(0, θ) = 0.
(13)

The determination of weights and nodes µℓ and θℓ is discussed in section 4.1.146
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3.2. First-order systems147

Equations (3), (11), (10), (12) and (13) governing the evolution of right-148

going and left-going simple waves are put together. On obtains two first-order149

systems150











































































∂u±

∂t
+

∂

∂x

(

±au± + b
(u±)2

2

)

= ±c

Nq
∑

ℓ=1

µℓ φ
±
ℓ + d

∂2u

∂x2 ∓ eq±,

∂p±

∂t
= q±,

∂q±

∂t
=

1

1− 2mp±

(

±hu± − gp± − f

Nq
∑

ℓ=1

µℓ

(

−θ2ℓ ξ
±
ℓ +

2

π
q±
)

+ 2m(q±)2 − n|q±| q±
)

,

∂φ±
ℓ

∂t
− 2

π

∂u±

∂x
= −θ2ℓ φ

±
ℓ , ℓ = 1 · · ·Nq,

∂ξ±ℓ
∂t

= −θ2ℓ ξ
±
ℓ +

2

π
q±, ℓ = 1 · · ·Nq,

(14)
with null initial conditions. A source term at x = 0 models the acoustic151

source of right-going wave152

u+(0, t) = s(t). (15)

The rigid end of the tube is modeled by Dirichlet conditions on the velocity153

u−(L, t) = −u+(L, t), (16)

hence u+(L, t) acts as a source for the system of left-going waves. In the third154

equation of (14), a division by 1− 2mp± occurs. In practice, this terms does155

not vanish: in the low-frequency regime, one has from (3b) that gp± ≈ hu±
156

which leads to p±/p0 ≈ γu±/a0. From the definition of m in (4), it follows157

that158

2mp± ≈ (γ − 1)
u±

a0
, (17)

which is lower than 1 under the hypothesis of weak nonlinearity (|u±| ≪ a0).159

The (3 + 2Nq) unknowns for each simple waves are gathered in the two160

vectors161

U± =
(

u±, p±, q±, φ±
1 , · · · , φ±

Nq
, ξ±1 , · · · , ξ±Nq

)T

. (18)
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Then the nonlinear systems (14) can be written in the form162

∂

∂t
U± +

∂

∂x
F±(U±) = G

∂2

∂x2U
± + S±(U±), (19)

where F± are the flux functions163

F± =

(

±au± + b
(u±)2

2
, 0, 0, − 2

π
u±, · · · , − 2

π
u±, 0, · · · , 0

)T

. (20)

The Jacobian matrices ∂F±

∂U± in (20) are diagonalizable with real eigenvalues:164

±a+ b u±, and 0 with multiplicity 2Nq + 2, which ensures propagation with165

finite velocity. These eigenvalues do not depend on the quadrature coeffi-166

cients µℓ and θℓ. The diagonal matrix G = diag(d, 0, · · · , 0) incorporates167

the volume attenuation. Lastly, S± are the source terms168

S± =





































±c

N
∑

ℓ=1

µℓ φ
±
ℓ ∓ e q±

q±

1

1− 2mp±

(

±hu± − gp± − f

N
∑

ℓ=1

µℓ

(

−θ2ℓ ξ
±
ℓ +

2

π
q±
)

+ 2m(q±)2 − n|q±|q±
)

−θ2ℓ φ
±
ℓ , ℓ = 1 · · ·Nq

−θ2ℓ ξℓ +
2

π
q±, ℓ = 1 · · ·Nq





































.

(21)
As soon as m 6= 0 and n 6= 0, S±(U±) is no longer a linear operator (m =169
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0 = n has been considered in [40]). The Jacobian matrices T± = ∂S±

∂U± are170

T± =











































0 0 ∓e ±c µ1 · · · ±c µN 0 · · · 0

0 0 1 0 · · · 0 0 · · · 0
±h

∆± − g

(∆±)2
T±
22 0 · · · 0

f

∆± µ1 θ
2
1 · · · f

∆± µN θ2N

0 0 0 −θ21
...

...
...

. . .

0 0 0 −θ2N

0 0
2

π
−θ21

...
...

...
. . .

0 0
2

π
−θ2N











































,

(22)
with171

∆± = 1− 2mp±, T±
22 =

1

∆±

(

4mq± − 2n|q±| − 2

π
f

Nq
∑

ℓ=1

µℓ

)

. (23)

4. Numerical methods172

4.1. Quadrature coefficients173

In [40], a detailed discussion on the possible strategies to compute the174

2Nq quadrature coefficients µℓ and θℓ in (21) has been proposed, and a175

linear optimization was preferred. The nodes θℓ were distributed linearly on176

a logarithmic scale on the frequency range of interest, and then the weights177

were determined by a simple least-squares method. One drawback is that178

negative weights µℓ may be obtained, which may yield a non-physical increase179

of energy [4].180

Here we improve the optimization procedure to get positive weights µℓ.181

Dispersion analysis shows that the original model of Sugimoto (3) and its182

diffusive counterpart (14) differ only in their symbols183



















χ(ω) = (i ω)−1/2,

χ̃(ω) =
2

π

Nq
∑

ℓ=1

µℓ

θ2ℓ + i ω
.

(24)
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For a given numberKq of angular frequencies ωk, one introduces the objective184

function185

J ({(µℓ, θℓ)}ℓ ;Nq, Kq) =

Kq
∑

k=1

∣

∣

∣

∣

χ̃(ωk)

χ(ωk)
− 1

∣

∣

∣

∣

2

=

Kq
∑

k=1

∣

∣

∣

∣

∣

2

π

Nq
∑

ℓ=1

µℓ
(iωk)

1/2

θ2ℓ + iωk

− 1

∣

∣

∣

∣

∣

2

(25)
to be minimized w.r.t parameters {(µℓ, θℓ)}ℓ for ℓ = 1, . . . , Nq. A nonlinear186

optimization with the positivity constraints µℓ ≥ 0 and θℓ ≥ 0 is chosen187

for this purpose. The additional constraint θℓ ≤ θmax is also introduced to188

avoid the algorithm to diverge. These 3Nq constraints can be relaxed by189

setting µℓ = µ
′

ℓ

2
and θℓ = θ

′

ℓ

2
and solving the following problem with only190

Nq constraints191

min
{(θ

′

ℓ
,µ

′

ℓ
)}

ℓ

J
(

{(µ′

ℓ

2
, θ

′

ℓ

2
)}ℓ ;Nq, Kq

)

with θ
′

ℓ

2 ≤ θmax for ℓ = 1, . . . , Nq.

(26)
As problem (26) is nonlinear and non-quadratic w.r.t. nodes θ

′

ℓ, we implement192

the algorithm SolvOpt [27, 49] based on the iterative Shor’s method [54].193

Initial values used in the algorithm must be chosen with care; for this purpose194

we propose to use the coefficients obtained by the modified Jacobi approach195

[5]: see method 3 of [40]. Finally, the angular frequencies ωk for k = 1, ..., Kq196

in (25) are chosen linearly on a logarithmic scale over a given optimization197

band [ωmin, ωmax], i.e.198

ωk = ωmin

(

ωmax

ωmin

)
k−1

Kq−1

. (27)

The choice of ωmin and ωmax depends on the configuration under study (tube199

alone or coupled system with resonators) and has been detailed in [40]. Be-200

sides the positivity of the quadrature coefficients, a great improvement of201

accuracy is observed numerically when using the nonlinear optimization de-202

scribed above.203

4.2. Numerical scheme204

In order to integrate the systems (19), a grid is introduced with a uniform205

spatial mesh size ∆x = L/Nx and a variable time step ∆tn. The approxi-206

mation of the exact solution U±(xj = j∆x, tn = tn−1 + ∆tn−1) is denoted207

by Un±
j . A splitting strategy is followed here, ensuring both simplicity and208
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efficiency. Instead of integrating the original equations (19), propagative209

equations210

∂

∂t
U± +

∂

∂x
F±(U±) = G

∂2

∂x2U
± (28)

and forcing equations211

∂

∂t
U± = S± (U±) (29)

are solved successively. The discrete operators to solve (28) and (29) are212

denoted by H±
a and H±

b , respectively. Strang splitting [62] is then used213

between tn and tn+1, solving successively (28) and (29) with adequate time214

increments:215

• U
(1)±
j = H±

b (
∆ tn
2
)Un±

j ,

• U
(2)±
j = H±

a (∆ tn)U
(1)±
j ,

• U
(n+1)±
j = H±

b (
∆ tn
2
)U

(2)±
j .

(30)

Provided that H±
a and H±

b are second-order accurate and stable operators,216

the time-marching (30) gives second-order accurate approximations of the217

original equations (19).218

As explained in [40], the propagative equation (28) is solved by a standard219

second-order TVD scheme for nonlinear hyperbolic PDE [35] combined with220

a centered finite-difference approximation. The discrete operatorHa is stable221

under a usual CFL condition.222

Contrary to [40] where S± was a constant linear operator, the forcing223

equations (29) can no longer be solved exactly. Here, they are solved by a224

second-order implicit trapezoidal method [62]225

U(n+1)± = Un± +
τn
2

(

S±(Un±)) + S±(U(n+1)±)
)

, (31)

with τn = ∆tn/2. The nonlinear systems (31) are solved iteratively by the226

Newton-Raphson method. In practice, a single iteration is accurate enough.227

Linearizing the equations and using the Jacobian (22), the discrete operator228

H±
b recovers the semi-implicit trapezoidal scheme229

U(n+1)± = Un± + τn

(

I− τn
2
Tn±

)−1

S±(Un±), (32)

which is unconditionnally stable.230
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Once time-marching is completed, the source terms (15) and (16) are231

updated at the grid nodes 0 (for the right-going wave) and Nx (for the left-232

going wave). The forcing term s(tn) in (15) is obtained from (2) and from233

the pressure p
′

(0, tn) measured experimentally by the first microphone: see234

section 5 for details on that topic.235

5. Experimental set-up and validation236

5.1. Lattice sample237

Figure 2: experimental set-up; all the dimensions are detailed in mm. (a): description of
the Helmholtz resonators lattice. (b): description of one Helmholtz resonator.

The experimental set-up shown in figure 2-(a) consists in a 6.2 m long238

cylindrical waveguide connected to an array of 60 Helmholtz resonators pe-239

riodically distributed. All the cavities have the same height H, which may240
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varies between 0 and Hmax = 0.165 m, as described in figure 2-(b). The241

physical and geometrical parameters are given in table 1. The physical data242

correspond to air at 15 ◦C.243

γ p0 (Pa) ρ0 (kg/m3) Pr ν (m2/s) µv/µ

1.403 105 1.177 0.708 1.57 10−5 0.60

R (m) D (m) r (m) L (m) rh (m) Hmax (m)

0.025 0.1 0.01 0.02 0.0215 0.165

Table 1: physical parameters of air at 15 ◦C, and geometrical data.

The first resonator lies 0.2 m after the beginning of the tube. The end of244

the lattice is closed by a rigid cork located at D/2 after the last resonator.245

Then, the waves impinging the lattice end are reflected and travel in the246

opposite direction (keeping the cell length constant) into the lattice, allowing247

to increase the lattice length from 6 m to 12 m. Numerical modeling of this248

configuration amounts to solve (3) by considering a 0.2 m long waveguide249

with no resonator, connected to a 5.95 m long lattice of resonators closed by250

a rigid end, in accordance with the experimental set-up.251

A second experimental system, consisting in a waveguide with no array252

of resonator, is used in section 5.4 to highlight the influence of the Helmholtz253

resonators in the nonlinear process. This waveguide has exactly the same254

features than the previous one. Numerical modeling of this configuration255

amounts to solve (3a) on a 6.15 m long waveguide closed by a rigid end, with256

e = 0.257

5.2. Source and acquisition258

The input signal is generated by the explosion of a balloon. The latter259

is introduced into a 20 cm long waveguide connected to the main tube and260

is inflated until its explosion. The shape of the generated impulsion (width261

and amplitude) depends on the balloon length at the explosion time, varying262

slightly from one experiment to the other.263

The excess pressure p
′

= p
′+ + p

′− is measured with 3 PCB 106B micro-264

phones. They are located at the beginning of the system (20 cm before the265

first resonator) and at 2 different positions into the lattice, depending on the266

experiment. The sensibility of the microphones is 0.045 V/kPa, and a PCB267

441A101 conditioning amplifier is used for each of them. The acquisition is268

made by a National Instrument BNC 2110 card with a sample frequency of269

250 kHz, connected to a computer.270

14



The input signal shown in the figure 3-(a) can be described by a gate-271

signal with a high amplitude around 30 kPa, and a width around 1.5 ms272

with the presence of a tail caused by reflexion at the end of the source tube.273

The initial excess pressure consists of a compression wave. The figure 3-(b)274

shows the spectrum of the input signal and points out that the frequency275

range excited by the source is mostly included in [0 − 650] Hz. This input276

signal, generated by the balloon explosion, is measured at each experiment.277

It is then injected in the numerical scheme and acts as a forcing term s: see278

section 4.2. In other words, our resolution method requires only the input279

data signal as initial conditions to solve the system (3). It is an important280

difference with the resolution method in [60] which requires the fitting of the281

experimental signal after some distance of propagation.282

Figure 3: acoustic source measured at the entry of the tube. (a): time history of the
excess pressure p

′
+(0, t). (b): Fourier transform of the signal.

5.3. Linear dispersion in a Helmholtz resonator lattice283

The goal of this section is to examine the validity of the model (3) to284

describe the experimental configuration under study. For this purpose, figure285

4 compares the dispersion curves obtained with the continuous description of286

resonators (6) and with the discrete description (7). Three different heights of287

resonators are considered: H = 16.5 cm (f0 = 345 Hz), H = 7 cm (f0 = 586288

Hz), and H = 2 cm (f0 = 1027 Hz). In each case, f0 = ω0/(2π) is the289

resonance frequency of the Helmholtz resonators (1).290
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Good agreement between these two families of dispersion curves is ob-291

tained on a large frequency domain, up to the Bragg band gap at 1800292

Hz. Because of the continuous approximation, equation (6) cannot predict293

the Bragg band gap due to the lattice periodicity. However, the first hy-294

bridization band gap (due to Helmholtz resonance) is well described by the295

continuous model.296

A second observation deduced from figure 4 concerns the dispersive be-297

havior of the medium under study. Recall that the upper limit of the source298

frequency range fmax is around 650 Hz. If f0 ≫ fmax (i.e. H = 2 cm),299

we observe a linear frequency dependance of QD in [0, fmax], which implies300

that the dispersion is weak (figure 4-(c)). On the contrary, when f0 lies in301

the source frequency range (figure 4-(a) for H = 16.5 cm and figure (4b) for302

H = 7 cm), the dispersion is strong. This impacts strongly the shape of the303

waves, as detailed in section 6.4.304
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Figure 4: dispersion relation of an array of Helmholtz resonators for H = 16.5 cm (a),
H = 7 cm (b) and H = 2 cm (c). The open circles correspond to the continuous model
(6). The continuous red line corresponds to the discrete model (7).
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5.4. Tube without resonators305

Before considering the interaction of waves with the lattice of resonators,306

we consider the simple case of a uniform tube. Figure 5 shows the profiles307

of the measured and simulated excess pressure p′/ps at the position x = 6.15308

m in a waveguide without resonator, where ps is the magnitude of the input309

signal. The blue and red lines correspond to the simulated and experimental310

results, respectively. The initial pressure wave has evolved to a triangular311

shape wave during the propagation, due to a well-known nonlinear process312

[24, 43].313

Figure 5: time history of the excess pressure p′/ps in a tube with no array of resonators,
at x = 6.15 m. The blue and red lines represent the experimental and simulated profiles,
respectively.

The good agreement between the simulated and measured pressure high-314

lights the validity of the lossy nonlinear model for the waveguide propagation315

described by the equation (3a) where the coupling term with the resonators316

is canceled. The model describing the losses in the waveguide propagation by317

fractional derivatives is verified by this comparison and will not be discussed318

further. Note lastly that the volume attenuation and the viscothermic losses319

in the tube are insufficient to prevent from the occurence of shocks [55].320

6. Experiments in a tube with resonators321

6.1. Existence of solitary waves322

Figure 6 presents the experimental and simulated temporal profiles p′/ps323

at x = 2.1 m, in a waveguide connected to an array of Helmholtz resonators.324
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Figure 6: time history of the excess pressure p′/ps at x = 2.1 m in a tube with an array
of resonators. The heights of resonators are: H = 7 cm (a), H = 13 cm (b). The blue
line represents the experimental pressure. The red and black lines represent the simulated
pressure, with (red) or without (black) nonlinear losses.

The heights of resonators are H = 7 cm (figure 6-(a)) and H = 13 cm (figure325

6-(b)), respectively. In the case H = 7 cm (resp. H = 13 cm), the resonance326

frequency f0 of the Helmholtz resonators is f0 ≃ 586 Hz (resp. f0 ≃ 414327

Hz). The blue line depicts the experimental results. The red line depicts the328

numerical results where all the physical phenomena are incorporated, leading329

to the full system (3). The black line depicts the numerical solution obtained330

without incorporating the nonlinear losses in the resonator necks: m = n = 0331

in (3b).332

Unlike the waveguide without resonators, where a triangular wave is ob-333

tained (figure 5), the lattice produces a wave with a smooth and symmetrical334

shape (figure 6). This constitutes a signature of solitary waves.335

Good agreement between experimental and simulated waves is obtained336
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when the nonlinear losses are taken into account. On the contrary, the lin-337

ear viscothermic losses alone are insufficient to predict the right amplitude,338

which is overestimated compared to the experimental results. Moreover, spu-339

rious oscillations are observed in the linear case, that are suppressed when340

nonlinear losses are incorporated.341

In addition, the comparison between the heights H = 7 cm (figure 6-(a))342

and H = 13 cm (figure 6-(b)) highlights the influence of the resonators on the343

evolution of the pulse. The solitary wave being the result of a competition344

between the nonlinearity and the dispersion in the media, it is very sensitive345

to the cavity length. The decrease of the Helmholtz resonance frequency346

leads to an increase of the wave attenuation, an increase of the pulse width,347

and a decrease of the wave celerity. These results corroborate the theoretical348

analysis performed in [60] and confirm the existence of an acoustic solitary349

wave.350

6.2. Spatio-temporal evolution351

In this section, we illustrate the evolution of solitary waves during their352

propagation, in the case H = 13 cm. Figure 7 displays the experimental353

results (top panel) and the simulated results with nonlinear lossy attenuation354

(bottom panel), in the space × time plane.355

Experimentally (figure 7-(a)), the signals have been recorded at 15 dif-356

ferent positions of microphones regularly spaced, from 0.2 m to 4.4 m inside357

the lattice with a spacing 0.3 m. Since only two microphones were available,358

acquisition was performed during 8 successive experiments, the pair of micro-359

phones being successively shifted. A new source was used in each experiment,360

leading to small deviations from one experiment to the other. These 8 sources361

were used as initial data for the corresponding numerical simulations. For362

both experiments and simulations, we present the ratio between the excess363

pressure in the waveguide and the source amplitude p′/ps.364

Figure 7 clearly shows the propagation of a solitary wave without change365

of shape and with a constant velocity characterized by a constant slope in the366

space × time plane, both experimentally and numerically. The symmetry of367

figure 7 with respect to time t = 29 ms illustrates the reflexion of the solitary368

wave at the closed end of the tube. A second reflexion at the opposite closed369

end is visible in the experimental case, but it is not simulated numerically.370

The experimental and simulated results are in good agreement, for both the371

shape and the velocity of the waves.372
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Figure 7: spatio-temporal evolution of the waves in a waveguide with an array of resonators
of height H = 13 cm. (a) experiments, (b) simulations. The horizontal axis represents the
time t.

6.3. Attenuation373

Figure 8 illustrates the attenuation of acoustic solitary waves during their374

propagation, in the case of resonators with height H = 13 cm. Experimen-375
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Figure 8: magnitude of the solitary wave in terms of the propagation distance in the lattice,
with Helmholtz resonators of height H = 13 cm. Blue line presents the experimental
results. Red and black lines present the numerical results obtained with the full model
(red) and without the nonlinear attenuation (black).

tal results are shown in blue line, and simulated results are shown in red376

and black lines. The red line has been computed by incorporating all the377

mechanisms of attenuation (in particular the nonlinear attenuation in the378

neck), whereas the black line incorporates only the linear viscothermic losses379

(m = n = 0 in (3b)). All these results are deduced from the experimental380

and simulated data presented in the previous section. Good agreement be-381

tween experiments and simulations is obtained when the nonlinear absorption382

processes are taken into account.383

The evolution of the attenuation in terms of the distance highlights two384

regimes in the wave propagation: a strong attenuation during the first 2385

meters (50 %), followed by a weaker attenuation during the remaining prop-386

agation. Two different mechanisms are involved in the attenuation process387

to explain this observation. Firstly, the nonlinear absorption taking place in388

the resonators is preponderant during the first meters, due to the high am-389

plitude of the initial pulse, which leads to a strong decrease. Secondly and390

owing to the weaker amplitude, the cumulative effects of linear losses during391

the propagation prevails, resulting in a lower attenuation. These mechanisms392
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are deduced from the simulations without the nonlinear absorption: in the393

first regime, the attenuation is largely underestimated while for the second394

regime the slope of the decay is well found.395

Figure 9: time history of the excess pressure p′/ps measured experimentally in the case of
Helmholtz resonators of height H = 13. The measures are done from x = 0.2 m to x = 2.6
m, with a spacing 0.3 m.

To highlight these two different regimes, figure 9 shows the time evolution396

of the wave recorded during the first 3 meters. The shape of the initial high397

amplitude pulse is greatly modified, leading to a symmetrical and smooth398

shape after 2 m of propagation. In addition, a strong attenuation is observed399

(50 % of amplitude decay). After, the wave shape remains constant and the400

attenuation becomes weaker. Again, these results show the crucial role of401

nonlinear absorption process in the evolution of a high amplitude pulse to a402

solitary wave.403

6.4. Influence of the dispersion404

Here we study the influence of the Helmholtz resonance frequency on the405

features of the solitary waves (velocity, amplitude and shape). Experimental406
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and simulated time evolutions of p′/ps are compared in figure 10 in the case407

of heights H = 2 cm (figure 10-(a)) and H = 16.5 cm (figure 10-(b)). Three408

waves are observed from the left to the right, corresponding successively to409

the direct wave at the receivers x = 2.8 m and 5.95 m, and to the reflected410

wave at x = 2.8 m. In the case H = 2 cm (f0 = 1027 Hz), the dispersion is411

weak in the frequency range of the source (see figure 4), contrary to the case412

H = 16.5 cm (f0 = 345 Hz) where the dispersion is strong. Comparing these413

two cases shows the essential role of the dispersion on the characteristics of414

the wave.415

Figure 10: time history of the excess pressure p′/ps at x = 2.8 m and x = 5.95 m. (a)
H = 2 cm, corresponding to f0 = 1027 Hz. (b) H = 16.5 cm, corresponding to f0 = 345
Hz.

Weak dispersion combined with nonlinear propagation (figure 10-(a))416

leads to a narrow, compact and less attenuated solitary wave with a high417

velocity. In this case, the velocity and the shape are well recovered by the418

simulation. For strong dispersion (figure 10-(b)), the wave is more attenuated419

and its shape becomes larger. The simulated half-width and the amplitude420

of the wave are in good agreement with the experimental ones. However, a421

slight shift of the positions of waves is observed.422
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Figure 11: (a) velocity, (b) attenuation factor and (c) half-width of the pulse versus
resonance frequencies of the resonators. Experimental and numerical results are shown in
red line and black line, respectively.

A systematic study is then performed by considering six cavity heights:423

H = 2, 3, 7, 10, 13, 16.5 cm. The experimental and simulated excess pressure424

p
′

is measured at x = 2.8 m and 5.95 m in the lattice. The velocity is deduced425

from the traveltime of the maximum of the wave. The attenuation factor is426

given by the ratio of the maximum amplitudes at the two receivers. The427

shape is characterized by the half-width of the solitary wave at x = 5.95 m.428

All the results are displayed in the figure 11-(a,b,c), where the experi-429

mental results and the numerical results are shown in red and black line,430

respectively. Experiments and simulations are in good agreement, denot-431

ing the good description of the physics by the model and the efficiency of432

the numerical method. As expected, the features of the solitary wave are433
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highly dependent on the Helmholtz resonance frequencies. High resonance434

frequency (small H) yields large velocity, low attenuation (attenuation fac-435

tor close to 1) and narrow wave. The velocity of the wave is close to the436

sound speed. For low resonance frequency, conversely, the velocity decreases437

and the attenuation and the width of the wave increases. These observations438

confirm the main properties of the solitary waves, theoretically analyzed in439

[58].440

7. Conclusion441

We have studied numerically and experimentally the propagation of high442

amplitude pulses in a lattice of Helmholtz resonators. We have proposed443

a new time-domain numerical method to describe the linear viscothermic444

losses in the waveguide and the nonlinear absorption due to the acoustic jet445

formation in the necks of resonators. The comparisons between numerical446

and experimental results has validated the theoretical model (3) proposed447

by Sugimoto, as long as the dissipation processes are correctly incorporated.448

Two different regimes of propagation have been observed. Firstly, a strong449

attenuation regime, dominated by the nonlinear absorption process, reduces450

largely the amplitude of waves and reshapes the acoustic pulses to generate451

a solitary wave. Secondly, linear losses in the waveguide produce a lower452

mitigation of the solitary wave leading to an almost-constant shape.453

The properties of the acoustic solitary waves have been studied in terms454

of the dispersion of the lattice. In the case of low dispersion, the solitary wave455

is compact with a narrow shape. Its velocity is close to the sound celerity456

and its attenuation is weak. In the case of a strong dispersion, the shape457

of the solitary wave is broader, its velocity is smaller and its attenuation is458

large.459

The numerical and the experimental studies show the great importance460

of losses in the generation of acoustic solitary waves in periodic locally reso-461

nant structures. It contributes to promising research in the field of nonlinear462

acoustic propagation in metamaterials and acoustic transmission filters. Fu-463

ture works will be devoted to the study of nonlinear acoustic propagation464

in disordered systems. In particular, our numerical and experimental set-465

ups will be used to investigate the competition between nonlinear dynamics,466

dispersion processes and disorder effects.467
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tion, Birkhäuser-Verlag (1992).558

28



[36] Q. Li, C. T. Chan, K. M. Ho, C. M. Soukoulis, Wave propa-559

gation in nonlinear photonic band-gap materials, Phys. Rev. B, 53-23560

(1996), 15577–1585.561

[37] Q. Li, C. M. Soukoulis, S. Pnevmatikos, E. N. Economou,562

Scattering properties of solitons in nonlinear disordered chains, Phys.563

Rev. B, 38-16 (1988), 11888–11891.564

[38] Q. Li, S. Pnevmatikos, E. N. Economou, C. M. Soukoulis,565

Lattice-soliton scattering in nonlinear atomic chains, Phys. Rev. B,566

37-7 (1988), 3534–3541.567

[39] Y. Li, F. Raichlen, Non-breaking and breaking solitary wave run-up,568

J. Fluid Mech., 456 (2002), 295-318.569

[40] B. Lombard, J.F. Mercier, Numerical modeling of nonlinear acous-570

tic waves in a tube with Helmholtz resonators, J. Comput. Phys., 259571

(2014), 421-443.572

[41] A. M. Lomonosov, P. Hess, Nonlinear surface acoustic waves: Re-573

alization of solitary pulses and fracture, Ultrasonics, 48 (2008), 482-487.574

[42] A. P. Mayer, Nonlinear surface acoustic waves: Theory, Ultrasonics,575

48 (2008), 478-481.576

[43] L. Menguy, J. Gilbert, Weakly nonlinear gas oscillations in air-577

filled tubes; solutions and experiments, Acta Acustica united with Acus-578

tica, 86-5 (2000), 798-810.579

[44] M. Moleron, A. Leonard, C. Daraio, Solitary waves in chain of580

repelling magnets, J. Appl. Phys., 115 (2014), 184901.581

[45] P. Monkewitz, N. M. Nguyen-Vo, The response of Helmholtz582

resonators to external excitation. Part 1. Single resonators, J. Fluid583

Mech., 151 (1985), 477-497.584

[46] P. Monkewitz, The response of Helmholtz resonators to external ex-585

citation. Part 2. Arrays of slit resonators, J. Fluid Mech., 156 (1985),586

151-166.587

[47] I. Podlubny, Fractional Differential Equations, Academic Press588

(1999).589

29



[48] M. P. Rao, P. Castracane, S. Casadio, D. Fuà, G. Fiocco,590
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