

## Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes

Julien Alexandre Dit Sandretto, Alexandre Chapoutot

## ► To cite this version:

Julien Alexandre Dit Sandretto, Alexandre Chapoutot. Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes. [Research Report] ENSTA ParisTech. 2015. hal-01107685v3

## HAL Id: hal-01107685 https://ensta-paris.hal.science/hal-01107685v3

Submitted on 27 Jan 2015 (v3), last revised 13 Mar 2015 (v6)

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## Validated Solution of Initial Value Problem for Ordinary Differential Equations based on Explicit and Implicit Runge-Kutta Schemes<sup>1</sup>

Julien Alexandre dit Sandretto, Alexandre Chapoutot ENSTA ParisTech, Palaiseau, France

julien.alexandre-dit-sandretto@ensta-paristech.fr alexandre.chapoutot@ensta-paristech.fr

January 27, 2015

<sup>1</sup>This research benefited from the support of the "Chair Complex Systems Engineering – Ecole Polytechnique, THALES, DGA, FX, DASSAULT AVIATION, DCNS Research, ENSTA ParisTech, Télécom ParisTech, Fondation ParisTech, FDO ENSTA"

#### Abstract

We present in this report our tool based on Ibex library which provides an innovative and generic procedure to simulate an ordinary differential equation with any Runge-Kutta scheme (explicit or implicit). Our validated approach is based on the classical two steps integration: the Picard-Lindelöf operator to enclose all the solutions on a one step, and the computation of the approximated solution and its Local Truncating Error. This latter is computed with a generic and elegant approach using interval arithmetic and Fréchêt derivatives. We perform a strong experimentation through many numerical experiments coming from three different benchmarks and the results are shown and compared with competition.

## Chapter 1

# Introduction

Many scientific applications in physical fields such as mechanics, robotics, chemistry or electronics require differential equations. This kind of equations appears when only the velocity and/or the acceleration are available in the modeling of a system. In the general case, these differential equations cannot be formally integrated, i.e., closed form solution are not available, and a numerical integration scheme is used to approximate the state of the system. In this report, we focus on ordinary differential equations for which we develop a new method to solve them and validate the solution.

**Notations**  $\dot{y}$  denotes the time derivative of the function y, i.e.,  $\frac{dy}{dt}$ . x denotes a real values while  $\mathbf{x}$  represents a vector of real values. [x] represents an interval values and  $[\mathbf{x}]$  represents a vector of interval values.

### 1.1 Solving ODE with Numerical Methods

An ordinary differential equation (ODE for short) is a relation between a function  $y : \mathbb{R} \to \mathbb{R}^n$  and its derivative  $\dot{y} = \frac{dy}{dt}$ , written as  $\dot{y} = f(t, y)$ . An *initial value problem* (IVP for short) is an ODE together with an initial condition and a final time

$$\dot{y} = f(t, y)$$
 with  $y(0) = y_0, y_0 \in \mathbb{R}^n$  and  $t \in [0, t_{end}]$ . (1.1)

We do not address here the problem of existence of the solution and we shall always assume that  $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$  is continuous in t and globally Lipschitz in y, so Equation (1.1) admits a unique solution on  $\mathbb{R}$ , see [10] for more details. As the exact solution y(t) of Equation (1.1) is usually unknown, numerical methods are used to approximate y(t) on a time grid.

### **1.2** Classical Runge-Kutta methods

We now recall the principles of numerical integration of ordinary differential equations. Solving the IVP means finding a continuous and differentiable function  $y_{\infty}$  such that  $y_{\infty}(0) = y_0$  and

$$\forall t \in [0, t_{\text{end}}], \quad \dot{y}_{\infty}(t) = f(t, y_{\infty}(t))$$
.

Note that, higher order differential equations can be translated into first-order ODEs by introducing additional variables for the derivatives of y. We denote the solution at time t of Equation (1.1) with initial condition  $y_0$  at t = 0 by  $y(t; y_0)$ .

An exact solution of Equation (1.1) is rarely computable so that in practice, approximation algorithms are used. The goal of an approximation algorithm is to compute a sequence of n + 1 time instants

$$0 = t_0 < t_1 < \dots < t_n = t_{\text{end}}$$

and a sequence of n + 1 values  $y_0, \ldots, y_n$  such that

$$\forall i \in [0, n], \quad y_i \approx y_\infty(t_i; y_0)$$

There is a huge set of numerical methods to solve Equation (1.1). In this report, we focus on single-step methods member of the Runge-Kutta family, that is these methods only use  $y_i$  and approximations of  $\dot{y}(t)$  to compute  $y_{i+1}$ .

A Runge-Kutta method, starting from an initial value  $y_n$  at time  $t_n$  and a finite time horizon h, the *step-size*, produces an approximation  $y_{n+1}$  at time  $t_{n+1}$ , with  $t_{n+1} - t_n = h$ , of the solution  $y(t_{n+1}; y_n)$ . Furthermore, to compute  $y_{n+1}$ , a Runge-Kutta method computes s evaluations of f at predetermined time instants. The number s is known as the number of *stages* of a Runge-Kutta method. More precisely, a Runge-Kutta method is defined by

$$y_{n+1} = y_n + h \sum_{i=1}^{s} b_i k_i \quad , \tag{1.2}$$

with  $k_i$  defined by

$$k_{i} = f\left(t_{0} + c_{i}h, y_{0} + h\sum_{j=1}^{s} a_{ij}k_{j}\right) \quad .$$
(1.3)

The coefficient  $c_i$ ,  $a_{ij}$  and  $b_i$ , for  $i, j = 1, 2, \dots, s$ , fully characterize the Runge-Kutta methods and their are usually synthesized in a *Butcher tableau* of the form

In function of the form of the matrix A, made of the coefficients  $a_{ij}$ , a Runge-Kutta method can be

- *explicit*, e.g., the classical Runge-Kutta method of order 4 given in Figure 1.1(a). In other words, the computation of an intermediate  $k_i$  only depends on the previous steps  $k_j$  for j < i;
- diagonally implicit, e.g., a diagonally implicit method of order 4 given in Figure 1.1(b). In this case, the computation of an intermediate step  $k_i$  involves the value  $k_i$  and so non-linear systems in  $k_i$  must be solved;
- fully implicit, e.g., the Runge-Kutta method with a Lobatto quadrature formula of order 4 given in Figure 1.1(c). In this last case, the computation of intermediate steps involves the solution of a non-linear system of equations in all the values  $k_i$  for  $i = 1, 2, \dots, s$ .

Figure 1.1: Different kinds of Runge-Kutta methods

Note that in case of implicit Runge-Kutta methods the non-linear systems of n equations must be solved at each integration step. Usually, a Newton-like method is used for this purpose. Nevertheless, such implicit methods have very good stability properties, see [10, Chap. II] for more details, which make them very useful in case of *stiff* ODE.

### 1.3 Computing with Sets

To take into account numerical approximation coming from floating-point arithmetic and approximation due to numerical integration scheme, set-based computation is required. In this case, we transform an IVP into an interval initial value problem (IIVP for short) that is

$$\dot{y} = f(t, y)$$
 with  $y(0) = \mathcal{Y}_0, \ \mathcal{Y}_0 \subseteq \mathbb{R}^n$  and  $t \in [0, t_{end}]$ . (1.4)

In Equation (1.4), the initial value is given by a set  $\mathcal{Y}_0$  of values, i.e., we do not know exactly the initial value. In other terms, we want to compute the set of solutions  $\mathcal{Y}_{\infty}(t;\mathcal{Y}_0)$  of IIVP such that

$$\mathcal{Y}_{\infty}(t;\mathcal{Y}_0) = \{y_{\infty}(t;y_0) : \forall y_0 \in \mathcal{Y}_0\} .$$

Note that the set  $\mathcal{Y}_{\infty}$  should guarantee to contain the true solution  $y_{\infty}$ . For the past decades IIVP have been solved using tools coming from interval analysis. The guaranteed solution of IIVP using interval arithmetic is mainly based on two kinds of methods:

- i) Interval Taylor series methods [14, 13, 1, 15, 11, 18, 6, 12],
- ii) Interval Runge-Kutta methods [8, 3, 2].

The former is the oldest method used in this context. Indeed, R. Moore [14] already applied this method in the sixties and until now it is the most used method to solve Equation (1.4). The latter is more recent, see in particular [3, 2], but Runge-Kutta methods have many interesting properties as strong stability that we would like to exploit in the context of validated solution of ODEs.

We present new guaranteed numerical integration schemes based on implicit Runge-Kutta methods. This work is an extension of [3, 2] which only considered explicit Runge-Kutta methods.

#### **1.3.1** Interval arithmetic

The simplest and most common way to represent and manipulate sets of values is *interval arithmetic* [14]. An interval  $[x_i] = [\underline{x_i}, \overline{x_i}]$  defines the set of reels  $x_i$  such that  $\underline{x_i} \leq x_i \leq \overline{x_i}$ . IR denotes the set of all intervals. The size or the width of  $[x_i]$  is denoted by  $w([x_i]) = \overline{x_i} - \underline{x_i}$ . The center of an interval is denoted by Mid([x]) denotes the middle of [x]. A vector of intervals, or a *box*,  $[\mathbf{x}]$  is the Cartesian product of intervals  $[x_1] \times \ldots \times [x_i] \times \ldots \times [x_n]$ . The width of a box is defined by  $w([\mathbf{x}_i]) = \max_i w([x_i])$ .

Interval arithmetic [14] extends to  $\mathbb{IR}$  elementary functions over  $\mathbb{R}$ . For instance, the interval sum (i.e.,  $[x_1] + [x_2] = [\underline{x_1} + \underline{x_2}, \overline{x_1} + \overline{x_2}]$ ) encloses the image of the sum function over its arguments, and this enclosing property basically defines what is called an *interval extension* or an *inclusion function*.

**Definition 1** (Extension of a function to  $\mathbb{IR}$ ). Consider a function  $f : \mathbb{R}^n \to \mathbb{R}$ , then  $[f] : \mathbb{IR}^n \to \mathbb{IR}$  is said to be an extension of f to intervals if

$$\forall [x] \in \mathbb{IR}^n, \quad [f]([x]) \supseteq \{f(x), \ x \in [x]\},\\ \forall x \in \mathbb{R}^n, \quad f(x) = [f](x) \ .$$

In our context, the expression of a function f is always a composition of elementary functions. The **natural extension**  $[f]_N$  is then simply a composition of the corresponding interval operators.

**Definition 2** (Overestimation of a set). Consider the set  $\mathcal{F} = \{f(x), x \in [x]\}$ , the interval extension [f]([x]) is an overestimation of  $\mathcal{F}$  and we note

$$[f]([x]) = \Box \mathcal{F} \ .$$

**Definition 3** (Integration). Let  $f : \mathbb{R}^n \to \mathbb{R}^n$  be a continuous function and  $[a] \subset \mathbb{IR}^n$ , then the components of  $\int_a^{\overline{a}} f(s) ds$  are

$$\left\{\int_{\underline{a}}^{\overline{a}} f(s)ds\right\}_{i} = \int_{\underline{a}}^{\overline{a}} \left\{f(s)\right\}_{i} ds$$

where  $\{\}_i$  denotes the *i*-th component of a vector. Obviously, see [14],

$$\int_{\underline{a}}^{\underline{a}} f(s)ds \in (\underline{a} - \overline{a})f([a]) = w([a])[f]([a]) .$$

The *interval arithmetic* is a powerful tool to deal with sets. Nevertheless, this representation usually produces too much over-approximated results, because it cannot take dependencies between variables in account: for instance, if x = [0, 1], then  $x - x = [-1, 1] \neq 0$ . More generally, it can be shown for most integration schemes that the width of the result can only grow if we interpret sets of values as intervals.

**Example 1.3.1.** Consider the ordinary differential equation  $\dot{x}(t) = -x$  solved with the Euler's method with an initial value ranging in the interval [0,1] and with a step-size of h = 0.5. For one step of integration, we have to compute with interval arithmetic the expression  $e = x + h \times (-x)$  which produces as a result the interval [-0.5, 1]. Rewriting the expression e such that e' = x(1-h), we obtain the interval [0,0.5] which is the exact result. Unfortunately, we cannot in general rewrite expressions with only one occurrence of each variable. More generally, it can be shown that for most integration schemes the width of the result can only grow if we interpret sets of values as intervals [16].

#### 1.3.2 Affine arithmetic

To avoid or limit the problem of dependency, we use an improvement over interval arithmetic named *affine arithmetic* [7] which can track linear correlations between variables.

A set of values in this domain is represented by an *affine form*  $\hat{x}$ , which is a formal expression of the form

$$\hat{x} = \alpha_0 + \sum_{i=1}^n \alpha_i \varepsilon_i,$$

where the coefficients  $\alpha_i$  are real numbers,  $\alpha_0$  being called the *center* of the affine form, and the  $\varepsilon_i$  are formal variables ranging over the interval [-1, 1] called *noise symbols*.

Obviously, an interval  $a = [a_1, a_2]$  can be seen as the affine form  $\hat{x} = \alpha_0 + \alpha_1 \varepsilon$  with  $\alpha_0 = (a_1 + a_2)/2$ and  $\alpha_1 = (a_2 - a_1)/2$ . Moreover, affine forms encode linear dependencies between variables: if  $x \in [a_1, a_2]$ and y is such that y = 2x, then x will be represented by the affine form  $\hat{x}$  above and y will be represented as  $\hat{y} = 2\alpha_0 + 2\alpha_1 \varepsilon$ .

Usual operations on real numbers extend to affine arithmetic in the expected way. For instance, if we have two affine forms  $\hat{x} = \alpha_0 + \sum_{i=1}^n \alpha_i \varepsilon_i$  and  $\hat{y} = \beta_0 + \sum_{i=1}^n \beta_i \varepsilon_i$ , then with  $a, b, c \in \mathbb{R}$ , we have

$$a\hat{x} \pm b\hat{y} \pm c = (a\alpha_0 \pm b\beta_0 \pm c) + \sum_{i=1}^n (a\alpha_i \pm b\beta_i)\varepsilon_i$$

However, unlike the affine operations, most operations create new noise symbols. Multiplication for example is defined by

$$\hat{x} \times \hat{y} = \alpha_0 \alpha_1 + \sum_{i=1}^n (\alpha_i \beta_0 + \alpha_0 \beta_i) \varepsilon_i + \nu \varepsilon_{n+1},$$

where

$$\nu = \left(\sum_{i=1}^{n} |\alpha_i|\right) \times \left(\sum_{i=1}^{n} |\beta_i|\right),\,$$

over-approximates the error between the linear approximation of multiplication and multiplication itself.

Other operations, as sin or exp, are evaluated using two kinds of algorithm: *min range* method and *Tchebychev* method, see [7] for more details. Note that more recent work exists on increasing the accuracy of affine arithmetic [9, 17] but it is not mandatory to consider them in this work.

**Example 1.3.2.** Consider again  $e = x + h \times (-x)$  with h = 0.5 and x = [0,1] which is associated to the affine form  $\hat{x} = 0.5 + 0.5\varepsilon_1$ . Evaluating e with affine arithmetic without rewriting the expression, we obtain [0,0.5] as a result.

The set-based evaluation of an expression only consists in interpreting all the mathematical operators (such as + or sin) by their counterpart in affine arithmetic. We will denote by Aff(e) the evaluation of the expression e using affine arithmetic, see [4] for practical implementation details.

## 1.4 Scope of the report

In next chapter, we will describe the tool. After a short overview on the verified simulation process (Section 2.1), we will explain our new way to compute the truncating error in Section 2.2. Then, the algorithm used to compute the implicit Runge-Kutta schemes is described (Section 2.3). The chapter 3 gathers a large experimentation in order to compare us to the competition and validated our approach.

## Chapter 2

## Description of the tool

We describe in this chapter the main contribution of this article that is a new validated method to compute solution of Equation (1.1). Before presenting this new result we recall some results of the validated numerical integration based on Taylor series.

### 2.1 Overview on verified simulation process

In the classical approach [13, 15] to define validated method for IVP, each step of an integration scheme consists in two steps: a priori enclosure and solution tightening. Starting from a valid enclosure  $[y]_j$  at time  $t_j$ , the two following steps are applied

- **Step 1.** Compute an *a priori* enclosure  $[\tilde{y}]_j$  of the solution using Banach's theorem and the Picard-Lindelöf operator. This enclosure has the three major properties:
  - $y(t, [y]_j)$  is guaranteed to exist for all  $t \in [t_j, t_{j+1}]$ , i.e., along the current step, and for all  $y_j \in [y]_j$ .
  - $y(t, [y_j]) \subseteq [\tilde{y}]_j$  for all  $t \in [t_j, t_{j+1}]$ .
  - the step-size  $h_j = t_{j+1} t_j$  is as larger as possible in terms of accuracy and existence proof for the IVP solution.
- Step 2. Compute a tighter enclosure of  $[y]_{j+1}$  such that  $y(t_{j+1}, [y]_j) \subseteq [y]_{j+1}$ . The main issue in this phase is how to counteract the well known wrapping effect [14, 13, 15]. This phenomenon appears when we try to enclose a set with an interval vector (geometrically a box). The arising overestimation creates a false dynamic for the next step, and, with accumulation, can lead to intervals with an unacceptably large width.

The different enclosures computed during each step are shown on Figure 2.1.



Figure 2.1: Enclosures appeared during one step

Some algorithms useful to perform these two steps are described in the following.

#### 2.1.1 A priori solution enclosure

In order to compute the *a priori* enclosure, we use the Picard-Lindelöf operator. This operator is based on the following theorem.

**Theorem 2.1.1** (Banach fixed-point theorem). Let (K, d) a complete metric space and let  $g : K \to K$  a contraction that is for all x, y in K there exists  $c \in ]0, 1[$  such that

$$d\left(g(x), g(y)\right) \le c \cdot d(x, y)$$

then g has a unique fixed-point in K.

In context of IVP, we consider the space of continuously differentiable functions  $C^0([t_j, t_{j+1}], \mathbb{R}^n)$  and the Picard-Lindelöf operator

$$P_f(y) = t \mapsto y_j + \int_{t_n}^t f(s, y(s)) ds \quad . \tag{2.1}$$

Note that this operator is associated to the integral form of Equation (1.1). So the solution of this operator is also the solution of Equation (1.1).

The Picard-Lindelöf operator is used to check the contraction of the solution on a integration step in order to prove the existence and the uniqueness of the solution of Equation (1.1) as stated by the Banach's fixed-point theorem. Furthermore, this operator is used to compute an enclosure of the solution of IVP over a time interval  $[t_j, t_{j+1}]$ .

#### Rectangular method for a priori enclosure

Using interval analysis and with a first order integration scheme we can define a simple interval Picard-Lindelöf operator such that

$$P_f([R]) = [y]_j + [0, h] \cdot f([R]), \qquad (2.2)$$

with  $h = t_{j+1} - t_j$  the step-size. Theorem 2.1.1 says that if we can find [R] such that  $P_f([R]) \subseteq [R]$  then the operator is contracting and Equation (1.1) has a unique solution. Furthermore,

$$\forall t \in [t_j, t_{j+1}], \quad \{y(t; y_j) : \forall y_j \in [y]_j\} \subseteq [R],$$

then [R] is the *a priori* enclosure of the solution of Equation (1.1).

Remark that the operator defined in Equation (2.2) can also define a contractor (in a sens of interval analysis [5]) on [R] after the fixed-point reached such that

$$[R] \leftarrow [R] \cap [y]_j + [0, h].f([R]) \quad . \tag{2.3}$$

Hence, we can reduce the width of the *a priori* enclosure in order to increase the accuracy of the integration.

The operator defined in Equation (2.2) and its associated contractor defined in Equation (2.3) can be defined over a more accurate integration scheme (at the condition that it is a guaranteed scheme like the interval rectangle rule). For example, the evaluation of  $\int_{t_j}^t f(s) ds$  can be easily improved with a Taylor or a Runge-Kutta scheme.

#### A priori enclosure with Taylor series

Interval version of Taylor series for ODE integration gives

$$[y]_{j+1} \subset \sum_{k=0}^{N} f^{[k]}([y]_j)h^k + f^{[N+1]}([\tilde{y}]_j)h^{N+1},$$
(2.4)

with  $f^{[0]} = [y]_j$ ,  $f^{[1]} = f([y]_j), \ldots, f^{[k]} = \frac{1}{k} \left( \frac{\partial f^{[k-1]}}{\partial y} f \right) ([y]_j)$ . By replacing *h* with interval [0, h], this scheme becomes an efficient Taylor Picard-Lindelöf operator,

By replacing h with interval [0, h], this scheme becomes an efficient Taylor Picard-Lindelöf operator, with a parametric order N such that

$$y_{j+1}([t_j, t_{j+1}]; [R]) = y_j + \sum_{k=0}^{N} f^{[k]}([y]_j)[0, h^k] + f^{[N+1]}([R])[0, h^{N+1}]$$
(2.5)

In consequence, if  $[R] \supseteq y_{j+1}([t_j, t_{j+1}], [R])$ , [R] then Equation (2.5) defined a contraction map and Theorem 2.1.1 can be applied.

In our tool, we use it at order 3 by default, it seems to be a good compromise between efficiency and computation quickness.

Note that the scheme defined in Equation (2.4) is usually evaluated in a centered form for a more accurate result

$$[y]_{j+1} \subset \sum_{k=0}^{N} f^{[k]}(\hat{y}_j)h^k + f^{[N+1]}([\tilde{y}]_j)h^{N+1} + \left(\sum_{k=0}^{N} J(f^{[k]}, [y]_j)h^i)([y]_j - \hat{y}_j\right),$$
(2.6)

with  $\hat{y}_j \in [y]_j \ J(f^{[k]}, [y]_j)$  is the Jacobian of  $f^{[k]}$  evaluated at  $[y]_j$ . This scheme can also be combined with a QR-factorization to increase stability and counteract wrapping [15]. These two "tricks", with a strong computational cost, can be avoided by using the affine arithmetic.

Picard-Lindelöf operator, as defined in Equation (2.5), gives an *a priori* enclosure [R], using Theorem 2.1.1. Picard-Lindelöf operator is proven to be contracting on [R], we can then use this operator to contract the box [R] till a fixpoint is reached

In our tool, the default contractor uses a Taylor expansion as follow

$$[R] \cap x_j + \sum_{k=0}^{N} f^{[k]}([x]_j)[0, h^k] + f^{[N+1]}([R])[0, h^{N+1}]$$

It is very important to contract as much as possible this box [R] because the Taylor remainder is function of [R] and the step-size is function of the Taylor remainder.

#### A priori enclosure with Runge-Kutta

A novelty of our approach is that we can define a new *a priori* enclosure based on Runge-Kutta methods. The main challenge is to be able to express a formula for the local truncation error (LTE in short). Assuming, we has such formula, we can define a new enclosure such that scheme such that

$$k_i(t, y_j) = f\left(t_j + c_i(t - t_j), y_j + (t - t_j)\sum_{n=1}^s a_{in}k_n\right),$$
  
$$y_{j+1}(t, \xi) = y_j + (t - t_j)\sum_{i=1}^s b_i k_i(t, y_j) + \text{LTE}(t, y(\xi)) .$$

An inclusion function with  $h = t_{j+1} - t_j$  is then defined with

$$y_{j+1}([t_j, t_{j+1}], [R]) = x_j + [0, h] \sum_{i=1}^s b_i k_i ([t_j, t_{j+1}], y_j) + \text{LTE}([t_j, t_{j+1}], [R])$$
.

Proving the contraction of such scheme, that is

$$[R] \supseteq x_{j+1} ([t_j, t_{j+1}], [R])$$

can prove the existence and the uniqueness of the solution of Equation (1.1) using Theorem 2.1.1. In the sequel of this chapter we present a computable formula of the LTE for any explicit or implicit Runge-Kutta formula.

#### 2.1.2 Tighter enclosure and truncating error

Suppose that Step 1 has been done for the current step and that we dispose of the enclosure  $[\tilde{y}]_j$  such that

$$y(t, t_j, [y]_j) \subseteq [\tilde{y}]_j \quad \forall t \in [t_j, t_{j+1}]$$

In particular, we have  $y(t_{j+1}, t_j, [y]_j) \subseteq [\tilde{y}]_j$ . The goal of Step 2 is thus to compute the tighter enclosure  $[y]_{j+1}$  such that

$$y(t_{j+1}, t_j, [y]_j) \subseteq [y]_{j+1} \subseteq [\tilde{y}]_j$$

One way to do that consists in computing an approximate solution  $y_{j+1} \approx y(t_{j+1}, t_j, [y]_j)$  with an integration scheme  $\Phi(t_{j+1}, t_j, [y]_j)$ , and then the associated local truncating error  $LTE_{\Phi}(t, t_j, [y]_j)$ . Indeed, a guaranteed integration scheme has the property that there exists a time  $\xi \in [t_j, t_{j+1}]$  such that

$$y(t_{j+1}, t_j, [y]_j) \subseteq \Phi(t_{j+1}, t_j, [y]_j) + LTE_{\Phi}(\xi, t_j, [y]_j) \subseteq [\tilde{y}]_j$$
.

So  $[y]_{j+1} = \Phi(t_{j+1}, t_j, [y]_j) + LTE_{\Phi}(\xi, t_j, [y]_j)$  is an acceptable tight enclosure.

#### 2.1.3 Wrapping effect

The problem of reducing the wrapping effect has been studied in many different ways. One of the most known and effective is the QR-factorization [13]. This method improves the stability of the Taylor series in the Vnode-LP tool [15]. An other way is to modify the geometry of the enclosing set (parallelepipeds with Eijgenram and moore, ellipsoids with Neumaier, convex polygons with Rihm and zonotopes with Stewart and chapoutot).

An efficient affine arithmetic allows us to counteract the wrapping effect as shown in Figure 2.1.3 while keeping a fast computation.

Example 2.1.1. Consider the following IVP

$$\dot{y} = \left(\begin{array}{c} y_2\\ -y_1 \end{array}\right) \tag{2.7}$$

with initial values:  $[y_0] = ([-1,1], [10,11])$ . The exact solution of Equation (2.7) is

$$y(t) = A(t)y_0 \text{ with } A(t) = \left( \begin{array}{c} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{array} \right)$$

We compute periodically at  $t = \frac{\pi}{4}n$  with  $n = 1, \ldots, 4$  the solution of Equation (2.7).



Figure 2.2: Wrapping effect comparison (black: initial, green: interval, blue: interval from QR, red: zonotope from affine)

#### Truncating error with elementary derivatives and rooted 2.2trees

#### 2.2.1The local truncating error

The local truncating error, or LTE, is the error due to the integration scheme on one step i, i.e.,

$$\parallel y(t_j; y_{j-1}) - y_j \parallel$$

This error can be bound on each step of integration [10]. The truncating error of a Runge-Kutta scheme  $\phi(t) = x_n + (t - t_n) \sum_{i=1}^s b_i k_i(t)$  is obtained by the order condition, and defined by

$$y(t_n; y_{j-1}) - x_j = \frac{h_n^{p+1}}{(p+1)!} \left( f^{(p)}\left(\xi, y(\xi)\right) - \frac{d^{p+1}\phi}{dt^{p+1}}(\eta) \right)$$

This error is exact for one  $\xi \in ]t_k, t_{k+1}[$  and one  $\eta \in ]t_n, t_{n+1}[$ . The main issues are then to bound the terms  $\frac{d^{p+1}\phi}{dt^{p+1}}(\eta)$  and  $f^{(p)}(\xi, x(\xi))$ , without knowing  $\xi$  and  $\eta$ . Nevertheless, the Picard-Lindelöf operator provides to us the box  $y(t, t_j, [y_j]) \subseteq [\tilde{y}_j]$  for all  $t \in [t_j, t_{j+1}]$ , and so  $x(\xi) \in [\tilde{y}_j]$ . Obviously,  $\eta \in ]t_n, t_{n+1}[$ , which is well-known.

This approach has given good results, see [2], with  $\frac{d^{p+1}\phi}{dt^{p+1}}(\eta)$  computed symbolically. Unfortunately, this computation may take a long time. Moreover, in case of implicit Runge-Kutta method, it is not easy to express  $\phi$  so this approach cannot be applied in that case. We propose an other approach for the computation of the derivatives, based on rooted trees to solve these problems.

#### 2.2.2**Elementary or Frechet's derivatives**

To build new Runge-Kutta methods, John Butcher (1963) expressed the Taylor development of the exact solution and the numerical solution from elementary differentials and Frechet derivatives.

Let  $z, f(z) \in \mathbb{R}^m$ . The *M*-th Frechet derivative of *f* is defined by

$$f^{(M)}(z)(K_1, K_2, \dots, K_M) = \sum_{i=1}^m \sum_{j_1=1}^m \sum_{j_2=1}^m \cdots \sum_{j_M=1}^m {}^i f_{j_1 j_2 \dots j_M} {}^{j_1} K_1 {}^{j_2} K_2 \dots {}^{j_M} K_M e_i$$

where  $K_k = [{}^{1}K_1, {}^{2}K_2, \dots, {}^{M}K_M] \in \mathbb{R}^m$ , for  $k = 1, \dots, M$ The elementary derivatives are defined by  ${}^{i}f_{j_1j_2\dots j_M} = \frac{\partial^M}{\partial^{j_1}z\partial^{j_2}z\dots \partial^{j_M}z}$ .

**Example 2.2.1.** Let m = 2 with  $\dot{x} = x^{(1)} = f(x)$  and M = 1 then

$$f^{(1)}(z)(K_1) = \sum_{i=1}^{2} \sum_{j_1=1}^{2} {}^{i} f_{j_1}({}^{j_1}K_1) e_i$$
$$= \begin{bmatrix} {}^{1} f_1({}^{1}K_1) + {}^{1} f_2({}^{2}K_2) \\ {}^{2} f_1({}^{1}K_1) + {}^{2} f_2({}^{2}K_2) \end{bmatrix}$$

with  ${}^{i}f_{1} = \frac{\partial^{i}f}{\partial^{l}z}$  and  ${}^{i}f_{2} = \frac{\partial^{i}f}{\partial^{2}z}$  with i = 1, 2Replacing z by x and  $K_{1}$  by f(x) we get

$$f^{(1)}(x)(f(x)) = \begin{bmatrix} {}^{1}f_{1}({}^{1}f) + {}^{1}f_{2}({}^{2}f) \\ {}^{2}f_{1}({}^{1}f) + {}^{2}f_{2}({}^{2}f) \end{bmatrix} = x^{(2)}$$

Hence the second derivative of x is the first Fréchet derivative of f operating on f.

**Elementary differentials:** The elementary differentials  $F_s : \mathbb{R}^m \to \mathbb{R}^m$  of f and their order are defined recursively by:

- 1. f is the only elementary differential of order 1
- 2. if  $F_s, s = 1, 2, ..., M$  are elementary differentials of order  $r_s$  then the Fréchet derivative  $f^{(M)}(F_1, F_2, ..., F_m)$  is an elementary differential of order  $1 + \sum_{s=1}^{M} r_s$

Let see different Fréchet derivatives:

- Order 1: f
- Order 2:  $f^{(1)}(f)$
- Order 3:  $f^{(2)}(f, f) = f^{(1)}(f^{(1)}(f))$
- Order 4:  $f^{(3)}(f, f, f) = f^{(2)}(f, f^{(1)}(f)) = f^{(1)}(f^{(2)}(f, f)) = f^{(1)}(f^{(1)}(f^{(1)}(f)))$

In consequence,

$$\begin{aligned} x^{(2)} &= f^{(1)}(f) \\ x^{(3)} &= f^{(2)}(f,f) + f^{(1)}(f^{(1)}(f)) \end{aligned}$$

### 2.2.3 Trees

Rooted trees To a given order n, how many elementary differentials do we have?

**Note:** The answer is the same that counting the number of rooted tree with a given number of nodes (with heap-order).

| Order | Trees | Number of trees |
|-------|-------|-----------------|
|       | •     |                 |
| 1     |       | 1               |
|       | •     |                 |
| 2     | •     | 1               |
|       |       |                 |
| 3     |       | 2               |
|       |       |                 |
| 4     |       | 4               |

| Tree  | Name           | r(t)                 | $\sigma(t)$ | $\gamma(t)$      | $\alpha(t)$ |
|-------|----------------|----------------------|-------------|------------------|-------------|
| •     | au             | 1                    | 1           | 1                | 1           |
| •     | [	au]          | 2                    | 1           | 2                | 1           |
|       | $[\tau^2]$     | 3                    | 2           | 3                | 1           |
| >     | [[	au]]        | 3                    | 1           | 6                | 1           |
|       | $[	au^3]$      | 4                    | 6           | 4                | 1           |
|       | $[\tau[\tau]]$ | 4                    | 1           | 8                | 3           |
|       | $[[\tau^2]]$   | 4                    | 2           | 12               | 1           |
|       | [[[τ]]]        | 4                    | 1           | $\frac{24}{(t)}$ | 1           |
| Order | Tree           | t                    | Г           | (t)              |             |
| 1     | •              | au                   |             | f                |             |
| 2     | •              | [	au]                | {.          | <i>f</i> }       |             |
| 3     | $\mathbf{V}$   | $[\tau^2]$           | {}          | $r^{2}\}$        |             |
| 3     |                | $[_2	au]_2$          | $\{2,$      | $f\}_2$          |             |
| 4     |                | $[\tau^3]$           | {}          | <sup>r3</sup> }  |             |
| 4     |                | $[\tau[\tau]_2$      | $\{f\}$     | $\{f\}_2$        |             |
| 4     |                | $[_{2}\tau^{2}]_{2}$ | ${_{2}j}$   | $^{r2}\}_{2}$    |             |
| 4     |                | [_]                  | ſ           | £]               |             |

 $\begin{array}{c|c} 4 & \hline & [_3\tau]_3 & \{_3f\}_3 \\ \hline \text{Elementary differentials and exact solution} \\ \text{Let } \dot{x} = f(x), \ f: \mathbb{R}^m \to \mathbb{R}^m. \ \text{Then} \end{array}$ 

$$x^{(q)} = \sum_{r(\tau)=q} \alpha(\tau) F(\tau)$$

Note on the number of trees (up to order 11 (left)):

Number of Rooted Trees 1842 719 286 115 48 20 9 4 2 1 1 (total 3047)

Elementary differentials and Runge-Kutta methods

Let the a Runge-Kutta defined by a Butcher table then

$$\frac{d^q}{dh^q} x_n|_{h=0} = \sum_{r(\tau)=q} \alpha(\tau) \gamma(\tau) \psi(\tau) F(\tau)$$

Order Condition The Runge-Kutta method has order p if  $\psi(\tau) = \frac{1}{\gamma(\tau)}$  holds for all trees of order  $r(\tau) \leq p$  and does not hold for some tree of order p+1.

### 2.2.4 Local truncating error

Main results: a unified approach

For a Runge-Kutta (explicit and implicit) of order p we have

$$x(t_n; x_0) - x_n = \frac{h^{p+1}}{(p+1)!} \sum_{r(\tau)=p+1} \alpha(\tau) \left[1 - \gamma(\tau)\psi(\tau)\right] F(\tau)(x(\xi)) \quad \xi \in [t_n, t_{n+1}]$$

- $\tau$  is a rooted tree
- $F(\tau)$  is the elementary differential associated to  $\tau$
- $r(\tau)$  is the order of  $\tau$  (number of nodes)
- $\gamma(\tau)$  is the density
- $\alpha(\tau)$  is the number of equivalent trees
- $\psi(\tau)$

Note  $x(\xi)$  will be over-approximated using Picard-Lindelöf operator.

### 2.3 Implicit RK computation

### 2.3.1 Implicit Runge-Kutta methods

#### Butcher tableau

**Implicit Euler** The backward Euler method is first order. Unconditionally stable and non-oscillatory for linear diffusion problems.

$$\begin{array}{c|c}1 & 1\\\hline & 1\end{array}$$

**Implicit midpoint** The implicit midpoint method is of second order. It is the simplest method in the class of collocation methods known as the Gauss methods. It is a symplectic integrator.

**Radau IIA** Radau methods are fully implicit methods (matrix A of such methods can have any structure). Radau methods attain order 2s - 1 for s stages. Radau methods are A-stable, but expensive to implement. Also they can suffer from order reduction. The first order Radau method is similar to backward Euler method.

**Lobatto IIIC** There are three families of Lobatto methods, called IIIA, IIIB and IIIC. These are named after Rehuel Lobatto. All are implicit methods, have order 2s - 2 and they all have c1 = 0 and cs = 1. Unlike any explicit method, it's possible for these methods to have the order greater than the number of stages. Lobatto lived before the classic fourth-order method was popularized by Runge and Kutta.

| 0   | 1/6 | -1/3 | 1/6   |
|-----|-----|------|-------|
| 1/2 | 1/6 | 5/12 | -1/12 |
| 1   | 1/6 | 2/3  | 1/6   |
|     | 1/6 | 2/3  | 1/6   |

**SDIRK4** For the so-called DIRK methods, also known as SDIRK or semi-explicit or semi-implicit methods, A has a lower triangular structure where the constant in diagonal is chosen for stability reasons. In cases in which the solution of integration in the current step is identical with the final stage, it is possible that *a*11 is equal to 0 rather than to the diagonal value , without taking away from the essential nature of a DIRK method.

| 1/4   | 1/4      | 0         | 0      | 0      | 0   |
|-------|----------|-----------|--------|--------|-----|
| 3/4   | 1/2      | 1/4       | 0      | 0      | 0   |
| 11/20 | 17/50    | -1/25     | 1/4    | 0      | 0   |
| 1/2   | 371/1360 | -137/2720 | 15/544 | 1/4    | 0   |
| 1     | 25/24    | -49/48    | 125/16 | -85/12 | 1/4 |
|       | 25/24    | -49/48    | 125/16 | -85/12 | 1/4 |

Properties

### 2.3.2 Algorithm

#### Naturally contracting form

$$k_{i} = f(y_{n} + h \sum_{j=1}^{s} a_{i,j}k_{j}, t_{n} + c_{i}h)$$
(2.8)

 $s = \sum_{j=1}^{s} a_{i,j} \leq 1$  for all i, then  $y_n + hs \subset [\tilde{y_n}]$ , then by theorem of ? and Lipschitz condition, f is contracting for  $k_i$ .

#### Algorithm

We use a contractor scheme:

$$k_i \cap f(y_n + h \sum_{j=1}^s a_{i,j} k_j, t_n + c_i h),$$
 (2.9)

which leads to a fixpoint (one solution by Banach's theorem or Brewer's theorem).

,

A novelty of our approach is that we can define a new *a priori* enclosure based on Runge-Kutta methods. We can define a new enclosure such that scheme such that

$$k_{i}(t, y_{j}) = f\left(t_{j} + c_{i}(t - t_{j}), y_{j} + (t - t_{j})\sum_{n=1}^{s} a_{in}k_{n}\right),$$
  
$$y_{j+1}(t, \xi) = y_{j} + (t - t_{j})\sum_{i=1}^{s} b_{i}k_{i}(t, y_{j}) + \text{LTE}(t, y(\xi)) .$$

An inclusion function with  $h = t_{j+1} - t_j$  is then defined with

$$y_{j+1}([t_j, t_{j+1}], [R]) = x_j + [0, h] \sum_{i=1}^s b_i k_i ([t_j, t_{j+1}], y_j) + \text{LTE}([t_j, t_{j+1}], [R])$$
.

Proving the contraction of such scheme, that is

$$[R] \supseteq x_{j+1} ([t_j, t_{j+1}], [R])$$

can prove the existence and the uniqueness of the solution of Equation (1.1) using Theorem 2.1.1. In the sequel of this chapter we present a computable formula of the LTE for any explicit or implicit Runge-Kutta formula.

## Chapter 3

# Experimentation

## 3.1 Vericomp benchmark

### 3.1.1 Disclaimer

This section reports the results of the solution of various problems coming from the VERICOMP benchmark<sup>1</sup>. For each problem, different validated methods of Runge-Kutta of order 4 are applied among: the classical formula of Runge-Kutta (explicit), the Lobatto-3a formula (implicit) and the Lobatto-3c formula (implicit). Moreover, an homemade version of Taylor series, limited to order 5 and using affine arithmetic, is also applied on each problem.

For each problem, we report the following metrics:

- c5t: user time taken to simulate the problem for 1 second.
- c5w: the final diameter of the solution (infinity norm is used).
- c6t: the time to breakdown the method with a maximal limit of 10 seconds.
- c6w: the diameter of the solution a the breakdown time.

After the results listing, a discussion is done.

### 3.1.2 Results

 $<sup>^{1} \</sup>rm http://vericomp.inf.uni-due.de$ 

| Drobloma      | Iable 3.1: Simulatio       | n results of                    | Problem          | 1      | ofm                               |
|---------------|----------------------------|---------------------------------|------------------|--------|-----------------------------------|
| r toblems     |                            |                                 | COW              | COL    | COW                               |
| system_1      | TAYLOR4 (TP8)              | 0.040                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | TAYLOR4 (TP9)              | 0.050                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | TAYLOR4 (TP10)             | 0.060                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | TAYLOR4 (TP11)             | 0.110                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | TAYLOR4 (TP12)             | 0.160                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| $system_1$    | TAYLOR4 (TP13)             | 0.220                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | TAYLOR4 (TP14)             | 0.270                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | RK4 (TP8)                  | 0.030                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| $system_1$    | RK4 (TP9)                  | 0.020                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| $system_1$    | RK4 (TP10)                 | 0.040                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| $system_1$    | RK4 (TP11)                 | 0.080                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| $system_1$    | RK4 (TP12)                 | 0.100                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | RK4 (TP13)                 | 0.170                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | RK4 (TP14)                 | 0.230                           | 5.8147           | 10.000 | 9.6379e + 08                      |
| system_1      | LA3 (TP8)                  | 0.020                           | 5.8323           | 10.000 | $9.8667e \pm 08$                  |
| system_1      | LA3 (TP9)                  | 0.040                           | 5.8253           | 10.000 | 9.774e + 08                       |
| system 1      | LA3 (TP10)                 | 0.050                           | 5.8212           | 10.000 | 9.7205e+08                        |
| system 1      | LA3 (TP11)                 | 0.070                           | 5.8187           | 10.000 | 9.6888e + 08                      |
| system 1      | LA3 (TP12)                 | 0.100                           | 5.8172           | 10.000 | $9.6695e \pm 08$                  |
| system 1      | LA3 (TP13)                 | 0.150                           | 5.8163           | 10.000 | $9.6577e \pm 08$                  |
| system 1      | LA3 (TP14)                 | 0.200                           | 5.8157           | 10.000 | 9.6503e + 08                      |
| system 1      |                            | 0.020                           | 5 8753           | 10.000 | 1.0460+00                         |
| system_1      | LC3(1F8)<br>LC3(TP0)       | 0.020                           | 5.8591           | 10.000 | 1.040e+09<br>1.013o+00            |
| system_1      | LC3 (TP10)                 | 0.040                           | 5.8378           | 10.000 | $1.013e \pm 09$<br>0.0387a \pm 08 |
| system_1      | LC3(1110)<br>LC3(TP11)     | 0.050                           | 5 8201           | 10.000 | $9.93870 \pm 08$                  |
| system_1      | LC3 (TF11)                 | 0.080                           | 0.0291<br>E 0007 | 10.000 | $9.8239e \pm 08$                  |
| system_1      | LC3 (1F12)<br>LC2 (TD12)   | 0.120                           | 0.0201<br>E 0004 | 10.000 | $9.7336 \pm 08$                   |
| system_1      | LC3 (1F13)<br>LC2 (TP14)   | 0.100                           | 5.0204           | 10.000 | 9.7105e+08                        |
| system_1      |                            | 0.220                           | 0.0100           | 10.000 | 9.08356+08                        |
| system_1      | Riot $(02, 1e-11)$         | 0m $1.973$ s                    | 10.059           | 10.000 | 1.2112e + 10                      |
| system_1      | Riot $(03, 1e-11)$         | 0m2.043s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| system_1      | Riot $(04, 1e-11)$         | 0m2.102s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| $system_{-1}$ | Riot (05, 1e-11)           | 0m2.120s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| $system_1$    | Riot $(06, 1e-11)$         | 0m2.186s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| $system_1$    | Riot $(07, 1e-11)$         | 0m2.270s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| $system_1$    | Riot (09, 1e-11)           | 0m23.421s                       | 10.059           | -0.000 | 1.2111e + 10                      |
| $system_1$    | Riot (10, 1e-11)           | 0m2.524s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| $system_1$    | Riot $(11, 1e-11)$         | 0m24.797s                       | 10.059           | -0.000 | 1.2111e + 10                      |
| $system_1$    | Riot $(15, 1e-11)$         | 0m2.874s                        | 10.059           | 10.000 | 1.2111e + 10                      |
| system_1      | Riot (18, 1e-11)           | 0m30.750s                       | 10.059           | -0.000 | 1.2111e+10                        |
| system_1      | Valencia-IVP (0.00025)     | 0m1.690s                        | 4.6755           | 3.469  | 999.98                            |
| $system_1$    | Valencia-IVP $(0.0025)$    | $0 \mathrm{m} 0.157 \mathrm{s}$ | 4.7177           | 3.460  | 999.19                            |
| $system_1$    | Valencia-IVP $(0.025)$     | 0 m 0.022 s                     | 5.1586           | 3.375  | 995.68                            |
| $system_1$    | Valencia-IVP $(0.25)$      | 0 m 0.010 s                     | 14.082           | 2.250  | 516.32                            |
| system_1      | VNODE-LP (12. 1e-1)        | 0m0.005s                        | 6.2022           | 10.000 | 1.6902e + 09                      |
| system_1      | VNODE-LP (13, 1e-1)        | 0 m 0.008 s                     | 6.9272           | 10.000 | 1.7303e + 09                      |
| system_1      | VNODE-LP (14, 1e-1)        | 0m0.005s                        | 5.4997           | 10.000 | 1.0761e + 0.9                     |
| system_1      | VNODE-LP (15. 1e-14.1e-14) | 0m0.006s                        | 6.6718           | 10.000 | 1.2705e+09                        |
| system 1      | VNODE-LP (20. 1e-14.1e-14) | 0m0.002s                        | 6.8406           | 10.000 | 1.9442e + 09                      |
| system_1      | VNODE-LP (25. 1e-14.1e-14) | 0m0.006s                        | 4.6708           | 10.000 | 4.8518e + 08                      |
| system_1      | (20, 10-14, 10-14)         | 0110.0005                       | 1.0100           | 10.000 | 1.00106±00                        |

Table 31 C: latio n results of Proble m 1

| Problems   | Methods                     | c5t          | c5w     | c6t    | c6w          |
|------------|-----------------------------|--------------|---------|--------|--------------|
| system_2   | TAYLOR4 (TP8)               | 0.840        | 0.23254 | 10.000 | 0.00040944   |
| system_2   | TAYLOR4 (TP9)               | 1.160        | 0.23254 | 10.000 | 0.00040873   |
| $system_2$ | TAYLOR4 (TP10)              | 1.660        | 0.23254 | 10.000 | 0.00040865   |
| $system_2$ | TAYLOR4 (TP11)              | 2.530        | 0.23254 | 10.000 | 0.00040861   |
| $system_2$ | TAYLOR4 (TP12)              | 3.930        | 0.23254 | 10.000 | 0.0004086    |
| $system_2$ | TAYLOR4 (TP13)              | 6.170        | 0.23254 | 10.000 | 0.0004086    |
| $system_2$ | TAYLOR4 (TP14)              | 9.770        | 0.23254 | 10.000 | 0.0004086    |
| system_2   | RK4 (TP8)                   | 0.640        | 0.23255 | 10.000 | 0.00040939   |
| $system_2$ | RK4 (TP9)                   | 0.890        | 0.23254 | 10.000 | 0.00040875   |
| $system_2$ | RK4 (TP10)                  | 1.360        | 0.23254 | 10.000 | 0.00040866   |
| $system_2$ | RK4 (TP11)                  | 2.100        | 0.23254 | 10.000 | 0.00040861   |
| $system_2$ | RK4 (TP12)                  | 3.240        | 0.23254 | 10.000 | 0.0004086    |
| $system_2$ | RK4 (TP13)                  | 5.060        | 0.23254 | 10.000 | 0.0004086    |
| $system_2$ | RK4 (TP14)                  | 8.020        | 0.23254 | 10.000 | 0.0004086    |
| system_2   | LA3 (TP8)                   | 0.500        | 0.26111 | 10.000 | 0.12375      |
| system_2   | LA3 (TP9)                   | 0.730        | 0.25154 | 10.000 | 0.02491      |
| $system_2$ | LA3 (TP10)                  | 1.040        | 0.24447 | 10.000 | 0.010686     |
| $system_2$ | LA3 (TP11)                  | 1.600        | 0.24009 | 10.000 | 0.0074653    |
| $system_2$ | LA3 (TP12)                  | 2.440        | 0.23734 | 10.000 | 0.0039061    |
| $system_2$ | LA3 (TP13)                  | 3.850        | 0.23554 | 10.000 | 0.0074742    |
| $system_2$ | LA3 $(TP14)$                | 6.100        | 0.23442 | 10.000 | 0.002063     |
| system_2   | LC3 (TP8)                   | 0.480        | 0.2641  | 10.000 | 0.14326      |
| system_2   | LC3 (TP9)                   | 0.790        | 0.25281 | 10.000 | 0.014229     |
| $system_2$ | LC3 (TP10)                  | 1.130        | 0.24513 | 10.000 | 0.0094465    |
| $system_2$ | LC3 (TP11)                  | 1.730        | 0.24048 | 10.000 | 0.011631     |
| $system_2$ | LC3 (TP12)                  | 2.700        | 0.23746 | 10.000 | 0.0080097    |
| $system_2$ | LC3 (TP13)                  | 4.370        | 0.23561 | 10.000 | 0.0078812    |
| $system_2$ | LC3 (TP14)                  | 6.700        | 0.2345  | 10.000 | 0.0017907    |
| system_2   | Riot $(03, 1e-11)$          | 35m43.710s   | 0.24697 | 0.000  | 0            |
| $system_2$ | Riot $(05, 1e-11)$          | 0 m 0.734 s  | 0.23588 | 10.000 | 3.4736e + 08 |
| $system_2$ | Riot $(06, 1e-11)$          | 0 m 0.342 s  | 0.2417  | -0.000 | 0.2417       |
| $system_2$ | Riot $(07, 1e-11)$          | 0m $9.268$ s | 0.2417  | -0.000 | 0.42672      |
| $system_2$ | Riot $(10, 1e-11)$          | 0 m 0.297 s  | 0.2417  | 10.000 | 0.43053      |
| system_2   | Riot $(15, 1e-11)$          | 0m0.438s     | 0.2417  | 10.000 | 0.69667      |
| system_2   | Valencia-IVP $(0.00025)$    | 0m3.878s     | 6.372   | 2.668  | 999.81       |
| $system_2$ | Valencia-IVP $(0.0025)$     | 0 m 0.382 s  | 6.4647  | 2.655  | 992.41       |
| system_2   | Valencia-IVP $(0.025)$      | 0m0.046s     | 7.5087  | 2.550  | 986.22       |
| system_2   | VNODE-LP (13, 1e-1)         | 0m0.009s     | 0.23255 | 10.000 | 0.013215     |
| $system_2$ | VNODE-LP (15, 1e-14, 1e-14) | 0 m 0.004 s  | 0.23254 | 10.000 | 0.013205     |
| $system_2$ | VNODE-LP (20, 1e-14, 1e-14) | 0m0.003s     | 0.23254 | 10.000 | 0.013205     |
| $system_2$ | VNODE-LP (25, 1e-14, 1e-14) | 0m $0.004$ s | 0.23254 | 10.000 | 0.013205     |

 Table 3.2: Simulation results of Problem 2

|            | Table 3.3: Simulation       | n results of H                  | Problem 3 |        |          |
|------------|-----------------------------|---------------------------------|-----------|--------|----------|
| Problems   | Methods                     | c5t                             | c5w       | c6t    | c6w      |
| system_3   | TAYLOR4 (TP8)               | 0.060                           | 0.48874   | 10.000 | 0.068846 |
| $system_3$ | TAYLOR4 (TP9)               | 0.100                           | 0.48163   | 10.000 | 0.065318 |
| $system_3$ | TAYLOR4 (TP10)              | 0.150                           | 0.47729   | 10.000 | 0.063275 |
| $system_3$ | TAYLOR4 (TP11)              | 0.200                           | 0.47456   | 10.000 | 0.062043 |
| $system_3$ | TAYLOR4 (TP12)              | 0.280                           | 0.47286   | 10.000 | 0.06129  |
| $system_3$ | TAYLOR4 (TP13)              | 0.400                           | 0.47179   | 10.000 | 0.060825 |
| $system_3$ | TAYLOR4 (TP14)              | 0.000                           | 1         | 0.000  | 1        |
| system_3   | RK4 (TP8)                   | 0.020                           | 0.47001   | 10.000 | 0.060058 |
| system_3   | RK4 (TP9)                   | 0.050                           | 0.46999   | 10.000 | 0.060051 |
| $system_3$ | RK4 (TP10)                  | 0.090                           | 0.46998   | 10.000 | 0.060047 |
| $system_3$ | RK4 (TP11)                  | 0.070                           | 0.46998   | 10.000 | 0.060046 |
| $system_3$ | RK4 (TP12)                  | 0.160                           | 0.46998   | 10.000 | 0.060046 |
| $system_3$ | RK4 (TP13)                  | 0.220                           | 0.46998   | 10.000 | 0.060046 |
| $system_3$ | RK4 (TP14)                  | 0.310                           | 0.46998   | 10.000 | 0.060045 |
| system_3   | LA3 (TP8)                   | 0.040                           | 0.4851    | 10.000 | 0.068211 |
| $system_3$ | LA3 $(TP9)$                 | 0.050                           | 0.47954   | 10.000 | 0.064964 |
| $system_3$ | LA3 (TP10)                  | 0.070                           | 0.476     | 10.000 | 0.063061 |
| $system_3$ | LA3 (TP11)                  | 0.110                           | 0.47374   | 10.000 | 0.061905 |
| $system_3$ | LA3 (TP12)                  | 0.150                           | 0.47235   | 10.000 | 0.061203 |
| $system_3$ | LA3 (TP13)                  | 0.200                           | 0.47147   | 10.000 | 0.060771 |
| system_3   | LA3 (TP14)                  | 0.280                           | 0.47092   | 10.000 | 0.0605   |
| system_3   | LC3 (TP8)                   | 0.040                           | 0.49094   | 10.000 | 0.071732 |
| $system_3$ | LC3 (TP9)                   | 0.060                           | 0.4831    | 10.000 | 0.066956 |
| $system_3$ | LC3 (TP10)                  | 0.080                           | 0.47815   | 10.000 | 0.064212 |
| $system_3$ | LC3 (TP11)                  | 0.100                           | 0.4751    | 10.000 | 0.062606 |
| $system_3$ | LC3 (TP12)                  | 0.150                           | 0.47319   | 10.000 | 0.061632 |
| $system_3$ | LC3 (TP13)                  | 0.210                           | 0.472     | 10.000 | 0.061037 |
| $system_3$ | LC3 (TP14)                  | 0.300                           | 0.47125   | 10.000 | 0.060666 |
| system_3   | Riot (05, 1e-11)            | 0 m 3.197 s                     | 0.44827   | 10.000 | 0.13094  |
| $system_3$ | Riot $(10, 1e-11)$          | 0m12.763s                       | 0.44389   | 10.000 | 0.057421 |
| $system_3$ | Riot $(15, 1e-11)$          | 0m40.607s                       | 0.44387   | 10.000 | 0.055362 |
| system_3   | Valencia-IVP (0.00025)      | 0m2.780s                        | 2.8979    | 1.191  | 3.7768   |
| system_3   | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.282 \mathrm{s}$ | 2.9052    | 1.175  | 3.694    |
| system_3   | Valencia-IVP $(0.025)$      | 0 m 0.042 s                     | 2.9872    | 1.300  | 5.8585   |
| system_3   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.009s                        | 0.88761   | 6.361  | 151.77   |
| system_3   | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.007 \mathrm{s}$ | 0.98714   | 3.815  | 218.19   |
| $system_3$ | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.009 \mathrm{s}$ | 1.1388    | 2.597  | 270.43   |

|            | Table 3.4: Simulation       | n results of I                  | Problem 4 |        |         |
|------------|-----------------------------|---------------------------------|-----------|--------|---------|
| Problems   | Methods                     | c5t                             | c5w       | c6t    | c6w     |
| system_4   | TAYLOR4 (TP8)               | 0.390                           | 0.070037  | 9.074  | 85948   |
| system_4   | TAYLOR4 (TP9)               | 0.580                           | 0.070009  | 9.320  | 62850   |
| system_4   | TAYLOR4 (TP10)              | 0.830                           | 0.06993   | 8.853  | 85022   |
| system_4   | TAYLOR4 (TP11)              | 1.310                           | 0.069876  | 7.474  | 67079   |
| $system_4$ | TAYLOR4 (TP12)              | 2.050                           | 0.069864  | 8.570  | 70345   |
| $system_4$ | TAYLOR4 (TP13)              | 3.190                           | 0.069834  | 8.542  | 64978   |
| $system_4$ | TAYLOR4 (TP14)              | 4.950                           | 0.069829  | 7.852  | 73737   |
| system_4   | RK4 (TP8)                   | 0.240                           | 0.069785  | 9.617  | 78366   |
| $system_4$ | RK4 (TP9)                   | 0.320                           | 0.069787  | 9.191  | 62143   |
| $system_4$ | RK4 (TP10)                  | 0.460                           | 0.069801  | 8.962  | 77711   |
| $system_4$ | RK4 (TP11)                  | 0.670                           | 0.069802  | 9.178  | 81171   |
| $system_4$ | RK4 (TP12)                  | 1.020                           | 0.069819  | 8.626  | 64394   |
| $system_4$ | RK4 (TP13)                  | 1.560                           | 0.069798  | 8.298  | 82798   |
| $system_4$ | RK4 (TP14)                  | 2.370                           | 0.06983   | 8.973  | 65817   |
| system_4   | LA3 (TP8)                   | 0.230                           | 0.07624   | 5.512  | 83953   |
| $system_4$ | LA3 $(TP9)$                 | 0.300                           | 0.073963  | 5.626  | 82664   |
| $system_4$ | LA3 (TP10)                  | 0.390                           | 0.072495  | 5.722  | 86373   |
| $system_4$ | LA3 (TP11)                  | 0.600                           | 0.071545  | 5.928  | 60730   |
| $system_4$ | LA3 (TP12)                  | 0.900                           | 0.070933  | 5.969  | 81847   |
| $system_4$ | LA3 (TP13)                  | 1.360                           | 0.07052   | 6.916  | 79535   |
| system_4   | LA3 (TP14)                  | 2.130                           | 0.070275  | 5.983  | 63808   |
| system_4   | LC3 (TP8)                   | 0.200                           | 0.077751  | 5.516  | 97508   |
| system_4   | LC3 (TP9)                   | 0.280                           | 0.074792  | 5.726  | 88836   |
| system_4   | LC3 (TP10)                  | 0.380                           | 0.073062  | 5.658  | 74922   |
| system_4   | LC3 (TP11)                  | 0.570                           | 0.071849  | 5.816  | 95737   |
| $system_4$ | LC3 (TP12)                  | 0.790                           | 0.071113  | 6.249  | 82501   |
| $system_4$ | LC3 (TP13)                  | 1.290                           | 0.070648  | 6.607  | 67028   |
| $system_4$ | LC3 (TP14)                  | 1.980                           | 0.070313  | 7.398  | 68298   |
| system_4   | Riot (05, 1e-11)            | 0m37.601s                       | 0.06757   | 0.000  | 0       |
| $system_4$ | Riot $(10, 1e-11)$          | 0m3.171s                        | 0.06757   | 10.000 | 0.18331 |
| system_4   | Riot $(15, 1e-11)$          | 0m9.102s                        | 0.06757   | 10.000 | 0.30021 |
| system_4   | Valencia-IVP $(0.00025)$    | 0m5.231s                        | 10.971    | 1.140  | 910.02  |
| $system_4$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.679 \mathrm{s}$ | 13.023    | 1.105  | 154.09  |
| system_4   | Valencia-IVP $(0.025)$      | 0m0.063s                        | 3.2425    | 0.600  | 3.2425  |
| system_4   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.012s                        | 0.073974  | 5.055  | 10185   |
| $system_4$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.014 s                     | 0.075043  | 4.977  | 21260   |
| $system_4$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.012 s                     | 0.076265  | 4.913  | 30511   |

| Problems      | Methods                     | c5t                             | c5w          | c6t    | c6w            |
|---------------|-----------------------------|---------------------------------|--------------|--------|----------------|
| system_7      | TAYLOR4 (TP8)               | 0.000                           | 5.4885e-09   | 10.000 | 5.2398e-09     |
| $system_7$    | TAYLOR4 (TP9)               | 0.000                           | 5.6577 e-10  | 10.000 | 5.4977e-10     |
| $system_7$    | TAYLOR4 (TP10)              | 0.010                           | 5.8386e-11   | 10.000 | $5.3574e{-}11$ |
| $system_{-}7$ | TAYLOR4 (TP11)              | 0.010                           | 5.9324e-12   | 10.000 | 5.5432e-12     |
| $system_7$    | TAYLOR4 (TP12)              | 0.020                           | 6.4071e-13   | 10.000 | 5.8407e-13     |
| $system_7$    | TAYLOR4 (TP13)              | 0.030                           | 1.3856e-13   | 10.000 | 5.8756e-14     |
| $system_7$    | TAYLOR4 (TP14)              | 0.050                           | 1.2923e-13   | 10.000 | 5.9005e-15     |
| system_7      | RK4 (TP8)                   | 0.000                           | 6.9766e-09   | 10.000 | 6.05e-09       |
| system_7      | RK4 (TP9)                   | 0.000                           | 7.3286e-10   | 10.000 | 6.93e-10       |
| system_7      | RK4 (TP10)                  | 0.000                           | 7.5791e-11   | 10.000 | 7.3548e-11     |
| $system_7$    | RK4 (TP11)                  | 0.010                           | 7.7225e-12   | 10.000 | 7.2765e-12     |
| system_7      | RK4 (TP12)                  | 0.010                           | 7.8859e-13   | 10.000 | 7.4488e-13     |
| $system_7$    | RK4 (TP13)                  | 0.020                           | 1.0791e-13   | 10.000 | 7.5389e-14     |
| $system_7$    | RK4 (TP14)                  | 0.030                           | 5.6066e-14   | 10.000 | 7.6827e-15     |
| system_7      | LA3 (TP8)                   | 0.000                           | 5.199e-09    | 10.000 | 5.0889e-09     |
| $system_7$    | LA3 $(TP9)$                 | 0.000                           | 5.4665 e- 10 | 10.000 | 4.8474e-10     |
| $system_{-}7$ | LA3 (TP10)                  | 0.000                           | 5.792e-11    | 10.000 | 5.61e-11       |
| $system_7$    | LA3 (TP11)                  | 0.000                           | 5.7909e-12   | 10.000 | 5.4252e-12     |
| $system_7$    | LA3 (TP12)                  | 0.010                           | 6.0674 e- 13 | 10.000 | 5.8379e-13     |
| $system_7$    | LA3 (TP13)                  | 0.020                           | 8.2267e-14   | 10.000 | 5.7728e-14     |
| $system_{-}7$ | LA3 (TP14)                  | 0.030                           | 4.13e-14     | 10.000 | 5.8007e-15     |
| system_7      | LC3 (TP8)                   | 0.000                           | 5.362e-09    | 10.000 | 5.0148e-09     |
| $system_7$    | LC3 (TP9)                   | 0.000                           | 5.611e-10    | 10.000 | 5.5022e-10     |
| $system_7$    | LC3 (TP10)                  | 0.000                           | 5.8373e-11   | 10.000 | 5.2443e-11     |
| $system_7$    | LC3 (TP11)                  | 0.010                           | 5.8898e-12   | 10.000 | 5.6076e-12     |
| $system_7$    | LC3 (TP12)                  | 0.010                           | 6.0607 e-13  | 10.000 | 5.6303e-13     |
| $system_7$    | LC3 (TP13)                  | 0.020                           | 8.4266e-14   | 10.000 | 5.7818e-14     |
| $system_{-}7$ | LC3 (TP14)                  | 0.040                           | 4.4076e-14   | 10.000 | 5.8898e-15     |
| system_7      | Riot (05, 1e-11)            | 0 m 0.073 s                     | 1.8582e-11   | 1.000  | 1.8582e-11     |
| $system_{-}7$ | Riot $(10, 1e-11)$          | 0 m 0.106 s                     | 1.199e-14    | 10.000 | 1.061e-12      |
| $system_7$    | Riot (15, 1e-11)            | 0 m 0.189 s                     | 1.7097e-14   | 0.000  | 0              |
| system_7      | Valencia-IVP $(0.00025)$    | 0m1.491s                        | 0.00029389   | 10.000 | 2.7571         |
| $system_{-}7$ | Valencia-IVP $(0.0025)$     | 0 m 0.132 s                     | 0.0029465    | 10.000 | 27.915         |
| system_7      | Valencia-IVP (0.025)        | 0 m 0.016 s                     | 0.030251     | 10.000 | 316.61         |
| system_7      | VNODE-LP (15, 1e-14, 1e-14) | $0 \mathrm{m} 0.005 \mathrm{s}$ | 1.6653e-16   | 10.000 | 4.6756e-19     |
| $system_7$    | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.003 s                     | 2.7756e-16   | 10.000 | 4.0658e-19     |
| $system_7$    | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.007 s                     | 1.6653e-16   | 10.000 | 2.9138e-19     |

Table 3.5: Simulation results of Problem 7

| Problems   | Methods                     | c5t         | c5w          | c6t    | c6w        |
|------------|-----------------------------|-------------|--------------|--------|------------|
| system_8   | TAYLOR4 (TP8)               | 0.630       | 6.2392e-08   | 10.000 | 2.6753e-07 |
| system_8   | TAYLOR4 (TP9)               | 0.900       | 6.8627 e-09  | 10.000 | 7.328e-08  |
| system_8   | TAYLOR4 (TP10)              | 1.340       | 7.1243e-10   | 10.000 | 1.0083e-08 |
| $system_8$ | TAYLOR4 (TP11)              | 2.100       | 7.4399e-11   | 10.000 | 1.343e-09  |
| system_8   | TAYLOR4 (TP12)              | 3.380       | 7.6358e-12   | 10.000 | 1.7369e-10 |
| system_8   | TAYLOR4 (TP13)              | 5.260       | 1.0223e-12   | 10.000 | 2.2065e-11 |
| system_8   | TAYLOR4 (TP14)              | 8.140       | 5.7332e-13   | 10.000 | 3.1279e-12 |
| system_8   | RK4 (TP8)                   | 0.510       | 8.0492e-08   | 10.000 | 4.8703e-07 |
| system_8   | RK4 (TP9)                   | 0.760       | 8.8927e-09   | 10.000 | 9.2522e-08 |
| system_8   | RK4 (TP10)                  | 1.140       | 9.2505e-10   | 10.000 | 1.1545e-08 |
| system_8   | RK4 (TP11)                  | 1.810       | 9.6979e-11   | 10.000 | 1.3574e-09 |
| system_8   | RK4 (TP12)                  | 2.810       | 9.8163e-12   | 10.000 | 1.8886e-10 |
| system_8   | RK4 (TP13)                  | 4.420       | 1.0665e-12   | 10.000 | 2.5177e-11 |
| system_8   | RK4 (TP14)                  | 6.910       | 2.8466e-13   | 10.000 | 3.3497e-12 |
| system_8   | LA3 (TP8)                   | 0.410       | 6.3861e-08   | 10.000 | 1.9173e-06 |
| system_8   | LA3 (TP9)                   | 0.590       | 6.8303e-09   | 10.000 | 2.1645e-07 |
| system_8   | LA3 (TP10)                  | 0.870       | 7.1757e-10   | 10.000 | 2.0083e-08 |
| system_8   | LA3(TP11)                   | 1.320       | 7.3416e-11   | 10.000 | 1.9068e-09 |
| system_8   | LA3 $(TP12)$                | 2.100       | 7.5049e-12   | 10.000 | 2.0342e-10 |
| system_8   | LA3 (TP13)                  | 3.280       | 8.1635e-13   | 10.000 | 2.2924e-11 |
| system_8   | LA3 (TP14)                  | 5.150       | 2.1383e-13   | 10.000 | 2.7943e-12 |
| system_8   | LC3 (TP8)                   | 0.430       | 6.3703e-08   | 10.000 | 3.2935e-06 |
| system_8   | LC3 (TP9)                   | 0.630       | 6.9067 e-09  | 10.000 | 2.6899e-07 |
| system_8   | LC3 (TP10)                  | 0.950       | 7.17e-10     | 10.000 | 2.3447e-08 |
| system_8   | LC3 (TP11)                  | 1.460       | 7.3931e-11   | 10.000 | 2.107e-09  |
| system_8   | LC3 (TP12)                  | 2.300       | 7.5591e-12   | 10.000 | 2.1838e-10 |
| system_8   | LC3 (TP13)                  | 3.630       | 8.2462e-13   | 10.000 | 2.4242e-11 |
| system_8   | LC3 (TP14)                  | 5.610       | 2.2604 e- 13 | 10.000 | 2.9331e-12 |
| system_8   | Riot (05, 1e-11)            | 0m0.296s    | 9.0226e-11   | 10.000 | 8.8003e-05 |
| system_8   | Riot $(10, 1e-11)$          | 0 m 0.207 s | 1.299e-14    | 10.000 | 1.3371e-10 |
| system_8   | Riot $(15, 1e-11)$          | 0m0.253s    | 1.8319e-14   | 10.000 | 8.3085e-15 |
| system_8   | Valencia-IVP (0.00025)      | 0m4.114s    | 0.0026387    | 5.269  | 999.48     |
| $system_8$ | Valencia-IVP $(0.0025)$     | 0m0.402s    | 0.026723     | 4.485  | 996.18     |
|            | Valencia-IVP (0.025)        | 0 m 0.048 s | 0.30489      | 3.575  | 963.25     |
| system_8   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.006s    | 2.1094e-15   | 10.000 | 2.3327e-16 |
| system_8   | VNODE-LP (20, 1e-14, 1e-14) | 0m0.005s    | 1.1102e-15   | 10.000 | 1.0988e-16 |
| system_8   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.003s    | 8.8818e-16   | 10.000 | 8.5489e-17 |

 Table 3.6: Simulation results of Problem 8

| Problems       | Methods                     | c5t         | c5w         | c6t    | c6w          |
|----------------|-----------------------------|-------------|-------------|--------|--------------|
| system_10      | TAYLOR4 (TP8)               | 0.010       | 2.1154e-08  | 10.000 | 2.5347e-08   |
| system_10      | TAYLOR4 (TP9)               | 0.020       | 2.2594e-09  | 10.000 | 2.6471e-09   |
| system_10      | TAYLOR4 (TP10)              | 0.030       | 2.3767e-10  | 10.000 | 2.7776e-10   |
| $system_10$    | TAYLOR4 (TP11)              | 0.050       | 2.4321e-11  | 10.000 | 2.8726e-11   |
| $system_{-}10$ | TAYLOR4 (TP12)              | 0.090       | 2.5682e-12  | 10.000 | 2.9864 e- 12 |
| $system_{-10}$ | TAYLOR4 (TP13)              | 0.140       | 3.8791e-13  | 10.000 | 4.0901e-13   |
| $system_10$    | TAYLOR4 (TP14)              | 0.230       | 2.4336e-13  | 10.000 | 2.105e-13    |
| system_10      | RK4 (TP8)                   | 0.000       | 4.9113e-08  | 10.000 | 6.3159e-08   |
| $system_{-}10$ | RK4 (TP9)                   | 0.010       | 5.258e-09   | 10.000 | 6.5608e-09   |
| $system_{10}$  | RK4 (TP10)                  | 0.010       | 5.1864 e-10 | 10.000 | 6.569e-10    |
| $system_10$    | RK4 (TP11)                  | 0.010       | 4.895e-11   | 10.000 | 6.0076e-11   |
| $system_{-10}$ | RK4 (TP12)                  | 0.020       | 4.5011e-12  | 10.000 | 5.4561e-12   |
| $system_{-10}$ | RK4 (TP13)                  | 0.040       | 4.3721e-13  | 10.000 | 5.1514e-13   |
| $system_10$    | RK4 (TP14)                  | 0.060       | 7.1054e-14  | 10.000 | 7.272e-14    |
| system_10      | LA3 (TP8)                   | 0.000       | 1.9603e-08  | 10.000 | 2.3468e-08   |
| system_10      | LA3 (TP9)                   | 0.010       | 2.1781e-09  | 10.000 | 2.5435e-09   |
| system_10      | LA3 (TP10)                  | 0.010       | 2.278e-10   | 10.000 | 2.705e-10    |
| system_10      | LA3 (TP11)                  | 0.020       | 2.4233e-11  | 10.000 | 2.8082e-11   |
| system_10      | LA3 (TP12)                  | 0.040       | 2.478e-12   | 10.000 | 2.9076e-12   |
| system_10      | LA3 (TP13)                  | 0.060       | 2.7711e-13  | 10.000 | 3.1497e-13   |
| $system_{-}10$ | LA3 (TP14)                  | 0.090       | 6.8168e-14  | 10.000 | 6.5503 e- 14 |
| system_10      | LC3 (TP8)                   | 0.000       | 2.6295e-08  | 10.000 | 3.4923e-08   |
| system_10      | LC3 (TP9)                   | 0.010       | 3.0011e-09  | 10.000 | 3.521e-09    |
| $system_10$    | LC3 (TP10)                  | 0.010       | 2.8753e-10  | 10.000 | 3.508e-10    |
| system_10      | LC3 (TP11)                  | 0.020       | 2.8342e-11  | 10.000 | 3.4456e-11   |
| $system_{-}10$ | LC3 (TP12)                  | 0.030       | 2.7964e-12  | 10.000 | 3.3326e-12   |
| $system_10$    | LC3 (TP13)                  | 0.050       | 2.9554e-13  | 10.000 | 3.4062e-13   |
| system_10      | LC3 (TP14)                  | 0.070       | 6.0396e-14  | 10.000 | 5.9508e-14   |
| system_10      | Riot (05, 1e-11)            | 0m0.148s    | 3.2904e-11  | 10.000 | 4.4509e-11   |
| $system_10$    | Riot (10, 1e-11)            | 0m0.154s    | 2.276e-14   | 10.000 | 2.4266e-12   |
| $system_{-10}$ | Riot $(15, 1e-11)$          | 0 m 0.235 s | 2.1427e-14  | 10.000 | 2.0872e-14   |
| system_10      | Valencia-IVP (0.00025)      | 0m1.280s    | 0.00015473  | 10.000 | 0.0022794    |
| $system_10$    | Valencia-IVP $(0.0025)$     | 0 m 0.111 s | 0.0015521   | 10.000 | 0.022876     |
| system_10      | Valencia-IVP $(0.025)$      | 0m0.014s    | 0.016012    | 10.000 | 0.23397      |
| system_10      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.007s    | 1.6653e-15  | 10.000 | 1.4988e-15   |
| $system_{-10}$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.006 s | 1.2212e-15  | 10.000 | 1.1102e-15   |
| system_10      | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.004 s | 9.992e-16   | 10.000 | 1.1102e-15   |

 Table 3.7: Simulation results of Problem 10

| Problems       | Methods                     | c5t         | c5w          | c6t    | c6w         |
|----------------|-----------------------------|-------------|--------------|--------|-------------|
| system_11      | TAYLOR4 (TP8)               | 0.260       | 1.5364e-07   | 10.000 | 0.00011249  |
| system_11      | TAYLOR4 (TP9)               | 0.380       | 1.6536e-08   | 10.000 | 0.0001409   |
| system_11      | TAYLOR4 (TP10)              | 0.600       | 1.6928e-09   | 10.000 | 6.8266e-05  |
| system_11      | TAYLOR4 (TP11)              | 0.950       | 1.7436e-10   | 10.000 | 7.4563e-06  |
| system_11      | TAYLOR4 (TP12)              | 1.490       | 1.8469e-11   | 10.000 | 7.9824e-07  |
| system_11      | TAYLOR4 (TP13)              | 2.280       | 2.9283e-12   | 10.000 | 1.0116e-07  |
| system_11      | TAYLOR4 (TP14)              | 3.610       | 1.9837e-12   | 10.000 | 3.6623 e-08 |
| system_11      | RK4 (TP8)                   | 0.160       | 1.4924e-07   | 10.000 | 9.9104e-05  |
| system_11      | RK4 (TP9)                   | 0.240       | 1.6173e-08   | 10.000 | 0.00010979  |
| system_11      | RK4 (TP10)                  | 0.370       | 1.6512e-09   | 10.000 | 3.7122e-05  |
| system_11      | RK4 (TP11)                  | 0.560       | 1.6831e-10   | 10.000 | 4.4121e-06  |
| system_11      | RK4 (TP12)                  | 0.910       | 1.7229e-11   | 10.000 | 4.5013e-07  |
| $system_{-11}$ | RK4 (TP13)                  | 1.390       | 2.037e-12    | 10.000 | 5.0184 e-08 |
| $system_{11}$  | RK4 (TP14)                  | 2.130       | 6.8701e-13   | 10.000 | 1.2723e-08  |
| system_11      | LA3 (TP8)                   | 0.150       | 1.3016e-07   | 10.000 | 0.00027567  |
| $system_{-11}$ | LA3 (TP9)                   | 0.210       | 1.3811e-08   | 10.000 | 5.0329e-05  |
| $system_{-11}$ | LA3 (TP10)                  | 0.320       | 1.5537 e-09  | 10.000 | 3.3377e-05  |
| $system_{-11}$ | LA3 (TP11)                  | 0.500       | 1.6718e-10   | 10.000 | 4.3944e-06  |
| system_11      | LA3 (TP12)                  | 0.790       | 1.5877e-11   | 10.000 | 4.2412e-07  |
| $system_{-11}$ | LA3 (TP13)                  | 1.240       | 1.8541e-12   | 10.000 | 4.6319e-08  |
| $system_{-11}$ | LA3 (TP14)                  | 1.890       | 5.9908e-13   | 10.000 | 1.1111e-08  |
| system_11      | LC3 (TP8)                   | 0.140       | 1.2294e-07   | 10.000 | 0.00022257  |
| $system_{-11}$ | LC3 (TP9)                   | 0.200       | 1.2053e-08   | 10.000 | 5.6171e-05  |
| $system_{-11}$ | LC3 (TP10)                  | 0.310       | 1.1696e-09   | 10.000 | 4.3e-05     |
| system_11      | LC3 (TP11)                  | 0.470       | 1.1365e-10   | 10.000 | 4.8341e-06  |
| $system_{-11}$ | LC3 (TP12)                  | 0.740       | 1.1288e-11   | 10.000 | 4.7542e-07  |
| $system_11$    | LC3 (TP13)                  | 1.160       | 1.3585e-12   | 10.000 | 5.0885e-08  |
| system_11      | LC3 (TP14)                  | 1.770       | 5.1648e-13   | 10.000 | 1.1353e-08  |
| system_11      | Riot (05, 1e-11)            | 0 m 0.593 s | 3.3225e-10   | 10.000 | 3.6967e-08  |
| $system_{-11}$ | Riot (10, 1e-11)            | 0 m 0.299 s | 6.505e-12    | 10.000 | 3.2633e-09  |
| system_11      | Riot $(15, 1e-11)$          | 0 m 0.436 s | 3.5971e-14   | 10.000 | 5.0365e-10  |
| system_11      | Valencia-IVP (0.00025)      | 0m1.732s    | 0.011564     | 4.825  | 986.14      |
| $system_11$    | Valencia-IVP $(0.0025)$     | 0 m 0.252 s | 0.11774      | 2.902  | 1.5629      |
| system_11      | Valencia-IVP $(0.025)$      | 0 m 0.094 s | 1.5234       | 1.050  | 1.7124      |
| system_11      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.015s    | 1.3101e-14   | 10.000 | 2.7778e-12  |
| system_11      | VNODE-LP (20, 1e-14, 1e-14) | 0m0.013s    | 9.1038e-15   | 10.000 | 1.9398e-12  |
| $system_{-11}$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.011 s | 6.8834 e- 15 | 10.000 | 2.2919e-12  |

 Table 3.8: Simulation results of Problem 11

| Problems    | Methods                     | c5t                             | c5w                | c6t    | c6w         |
|-------------|-----------------------------|---------------------------------|--------------------|--------|-------------|
| system_13   | TAYLOR4 (TP8)               | 0.100                           | 6.0623e-08         | 10.000 | 1.1392e-05  |
| $system_13$ | TAYLOR4 (TP9)               | 0.160                           | 0.160 6.3074e-09 1 |        | 6.6022 e-06 |
| $system_13$ | TAYLOR4 (TP10)              | 0.260                           | 6.6362 e- 10       | 10.000 | 6.3809e-06  |
| $system_13$ | TAYLOR4 (TP11)              | 0.410                           | 6.9288e-11         | 10.000 | 5.969e-06   |
| $system_13$ | TAYLOR4 (TP12)              | 0.630                           | 8.6562e-12         | 10.000 | 5.8669e-06  |
| $system_13$ | TAYLOR4 (TP13)              | 0.990                           | 3.336e-12          | 10.000 | 9.4036e-06  |
| system_13   | TAYLOR4 (TP14)              | 1.570                           | 4.281e-12          | 10.000 | 2.4348e-05  |
| system_13   | RK4 (TP8)                   | 0.070                           | 7.7716e-08         | 10.000 | 1.1601e-05  |
| $system_13$ | RK4 (TP9)                   | 0.120                           | 8.0154e-09         | 10.000 | 2.9548e-06  |
| $system_13$ | RK4 (TP10)                  | 0.180                           | 8.5062e-10         | 10.000 | 3.2373e-06  |
| $system_13$ | RK4 (TP11)                  | 0.290                           | 8.8824e-11         | 10.000 | 4.3262e-06  |
| $system_13$ | RK4 (TP12)                  | 0.440                           | 9.7406e-12         | 10.000 | 5.0541 e-06 |
| $system_13$ | RK4 (TP13)                  | 0.690                           | 1.9238e-12         | 10.000 | 4.0228e-06  |
| system_13   | RK4 (TP14)                  | 1.100                           | 1.6866e-12         | 10.000 | 1.052 e- 05 |
| system_13   | LA3 (TP8)                   | 0.060                           | 5.6343e-08         | 10.000 | 2.5172e-05  |
| $system_13$ | LA3 $(TP9)$                 | 0.090                           | 6.0874 e- 09       | 10.000 | 1.0084 e-05 |
| $system_13$ | LA3 (TP10)                  | 0.140                           | 6.5448e-10         | 10.000 | 5.8655e-06  |
| $system_13$ | LA3 (TP11)                  | 0.220                           | 6.8319e-11         | 10.000 | 5.7753e-06  |
| $system_13$ | LA3 (TP12)                  | 0.350                           | 7.3896e-12         | 10.000 | 4.6608e-06  |
| $system_13$ | LA3 (TP13)                  | 0.530                           | 1.4424e-12         | 10.000 | 3.0252e-06  |
| system_13   | LA3 (TP14)                  | 0.830                           | 1.2559e-12         | 10.000 | 3.7585e-06  |
| system_13   | LC3 (TP8)                   | 0.060                           | 5.7775e-08         | 10.000 | 3.7157e-05  |
| $system_13$ | LC3 (TP9)                   | 0.100                           | 6.2167 e-09        | 10.000 | 1.62e-05    |
| $system_13$ | LC3 (TP10)                  | 0.150                           | 6.5544 e- 10       | 10.000 | 7.0966e-06  |
| $system_13$ | LC3 (TP11)                  | 0.250                           | 6.8894e-11         | 10.000 | 7.2423e-06  |
| $system_13$ | LC3 (TP12)                  | 0.390                           | 7.4376e-12         | 10.000 | 6.7877e-06  |
| $system_13$ | LC3 (TP13)                  | 0.590                           | 1.5206e-12         | 10.000 | 1.347e-05   |
| system_13   | LC3 (TP14)                  | 0.920                           | 1.3589e-12         | 10.000 | 9.5534e-06  |
| system_13   | Riot (05, 1e-11)            | $0 \mathrm{m} 0.182 \mathrm{s}$ | 2.3274e-10         | 10.000 | 2.2851e-09  |
| $system_13$ | Riot $(10, 1e-11)$          | $0 \mathrm{m} 0.119 \mathrm{s}$ | 3.5083e-14         | 10.000 | 1.236e-10   |
| system_13   | Riot $(15, 1e-11)$          | 0m0.153s                        | 1.1813e-13         | 10.000 | 5.4101e-12  |
| system_13   | Valencia-IVP (0.00025)      | 0m1.141s                        | 0.0044966          | 7.088  | 999.86      |
| $system_13$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.099 \mathrm{s}$ | 0.045269           | 5.923  | 999.03      |
| system_13   | Valencia-IVP $(0.025)$      | 0 m 0.017 s                     | 0.48459            | 4.650  | 990.84      |
| system_13   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.004s                        | 6.2172e-15         | 10.000 | 2.4802e-13  |
| $system_13$ | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.005 \mathrm{s}$ | 3.9968e-15         | 10.000 | 2.3404e-13  |
| system_13   | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.005 \mathrm{s}$ | 1.7764e-15         | 10.000 | 1.1502e-13  |

Table 3.9: Simulation results of Problem 13

| Problems    | Methods                     | c5t                             | c5w          | c6t    | c6w           |
|-------------|-----------------------------|---------------------------------|--------------|--------|---------------|
| system_14   | TAYLOR4 (TP8)               | 0.180                           | 6.7792e-07   | 10.000 | 3.6732e + 06  |
| system_14   | TAYLOR4 (TP9)               | 0.260                           | 6.9365e-08   | 10.000 | 3.7168e + 05  |
| system_14   | TAYLOR4 (TP10)              | 0.420                           | 6.9965e-09   | 10.000 | 37470         |
| system_14   | TAYLOR4 (TP11)              | 0.640                           | 7.1965e-10   | 10.000 | 3831          |
| system_14   | TAYLOR4 (TP12)              | 1.000                           | 9.1987e-11   | 10.000 | 487.39        |
| $system_14$ | TAYLOR4 (TP13)              | 1.570                           | 4.0941e-11   | 10.000 | 212.59        |
| system_14   | TAYLOR4 (TP14)              | 2.460                           | 5.42e-11     | 10.000 | 280.91        |
| system_14   | RK4 (TP8)                   | 0.140                           | 8.8443e-07   | 10.000 | 4.8078e + 06  |
| $system_14$ | RK4 (TP9)                   | 0.210                           | 9.0238e-08   | 10.000 | 4.8664e + 05  |
| $system_14$ | RK4 (TP10)                  | 0.330                           | 9.1356e-09   | 10.000 | 49032         |
| $system_14$ | RK4 (TP11)                  | 0.520                           | 9.2979e-10   | 10.000 | 4954.2        |
| $system_14$ | RK4 (TP12)                  | 0.830                           | 1.0077e-10   | 10.000 | 536.16        |
| $system_14$ | RK4 (TP13)                  | 1.250                           | 2.2155e-11   | 10.000 | 116.14        |
| system_14   | RK4 (TP14)                  | 1.980                           | 2.1288e-11   | 10.000 | 110.34        |
| system_14   | LA3 (TP8)                   | 0.110                           | 6.5762 e- 07 | 10.000 | 3.6344e + 06  |
| $system_14$ | LA3 $(TP9)$                 | 0.160                           | 6.8229e-08   | 10.000 | 3.6887e + 05  |
| $system_14$ | LA3 (TP10)                  | 0.250                           | 6.9439e-09   | 10.000 | 37284         |
| $system_14$ | LA3 (TP11)                  | 0.390                           | 7.0554e-10   | 10.000 | 3768.7        |
| $system_14$ | LA3 (TP12)                  | 0.630                           | 7.6625e-11   | 10.000 | 407.83        |
| $system_14$ | LA3 (TP13)                  | 0.960                           | 1.6641e-11   | 10.000 | 87.117        |
| system_14   | LA3 (TP14)                  | 1.500                           | 1.5774e-11   | 10.000 | 81.805        |
| system_14   | LC3 (TP8)                   | 0.120                           | 6.6269e-07   | 10.000 | 3.6549e + 06  |
| $system_14$ | LC3 (TP9)                   | 0.180                           | 6.8267 e-08  | 10.000 | 3.7023e + 05  |
| $system_14$ | LC3 (TP10)                  | 0.280                           | 7.0143e-09   | 10.000 | 37343         |
| $system_14$ | LC3 (TP11)                  | 0.440                           | 7.0725e-10   | 10.000 | 3774.1        |
| $system_14$ | LC3 (TP12)                  | 0.700                           | 7.7222e-11   | 10.000 | 410.63        |
| $system_14$ | LC3 (TP13)                  | 1.150                           | 1.7465e-11   | 10.000 | 91.328        |
| system_14   | LC3 (TP14)                  | 1.660                           | 1.7025e-11   | 10.000 | 88.352        |
| system_14   | Riot (03, 1e-11)            | 0m2.181s                        | 1.0466e-05   | -0.000 | 1.0466e-05    |
| $system_14$ | Riot (04, 1e-11)            | 0m1.239s                        | 2.1448e-08   | -0.000 | 2.1448e-08    |
| $system_14$ | Riot $(05, 1e-11)$          | 0 m 0.348 s                     | 7.1298e-09   | 8.208  | 2.2565e + 261 |
| $system_14$ | Riot $(06, 1e-11)$          | 0 m 0.194 s                     | 2.2129e-09   | -0.000 | 2.2129e-09    |
| $system_14$ | Riot $(10, 1e-11)$          | 0m0.126s                        | 4.0075e-12   | 1.000  | 4.0075e-12    |
| system_14   | Riot $(15, 1e-11)$          | 0m0.175s                        | 1.2037e-11   | 10.000 | 1.5302e + 136 |
| system_14   | Valencia-IVP (0.00025)      | 0m1.778s                        | 0.090273     | 3.670  | 999.58        |
| $system_14$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.165 \mathrm{s}$ | 0.90282      | 2.973  | 998.44        |
| system_14   | Valencia-IVP $(0.025)$      | 0m0.021s                        | 9.1235       | 2.275  | 967.86        |
| system_14   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.008s                        | 1.9185e-13   | 10.000 | 1.0508        |
| $system_14$ | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.006 \mathrm{s}$ | 2.2737e-13   | 10.000 | 1.25          |
| system_14   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.005s                        | 9.2371e-14   | 10.000 | 0.48828       |

 Table 3.10: Simulation results of Problem 14

| Problems       | Methods                     | c5t         | c5w     | c6t    | c6w     |
|----------------|-----------------------------|-------------|---------|--------|---------|
| system_15      | TAYLOR4 (TP8)               | 0.110       | 0.9093  | 10.000 | 0.91298 |
| $system_{-}15$ | TAYLOR4 (TP9)               | 0.160       | 0.9093  | 10.000 | 0.91296 |
| $system_15$    | TAYLOR4 (TP10)              | 0.250       | 0.9093  | 10.000 | 0.91296 |
| $system_15$    | TAYLOR4 (TP11)              | 0.410       | 0.9093  | 10.000 | 0.91295 |
| $system_{-}15$ | TAYLOR4 (TP12)              | 0.650       | 0.9093  | 10.000 | 0.91297 |
| $system_{-}15$ | TAYLOR4 (TP13)              | 1.030       | 0.9093  | 10.000 | 0.91297 |
| $system_{15}$  | TAYLOR4 (TP14)              | 1.590       | 0.9093  | 10.000 | 0.91296 |
| system_15      | RK4 (TP8)                   | 0.070       | 0.9093  | 10.000 | 0.91299 |
| $system_15$    | RK4 (TP9)                   | 0.110       | 0.9093  | 10.000 | 0.91296 |
| $system_15$    | RK4 (TP10)                  | 0.180       | 0.9093  | 10.000 | 0.91295 |
| $system_15$    | RK4 (TP11)                  | 0.280       | 0.9093  | 10.000 | 0.91296 |
| $system_{-}15$ | RK4 (TP12)                  | 0.450       | 0.9093  | 10.000 | 0.91295 |
| $system_15$    | RK4 (TP13)                  | 0.710       | 0.9093  | 10.000 | 0.91296 |
| $system_{15}$  | RK4 (TP14)                  | 1.090       | 0.9093  | 10.000 | 0.91295 |
| system_15      | LA3 (TP8)                   | 0.060       | 1.004   | 10.000 | 41.485  |
| $system_15$    | LA3 $(TP9)$                 | 0.090       | 0.96902 | 10.000 | 25.255  |
| $system_15$    | LA3 (TP10)                  | 0.140       | 0.94981 | 10.000 | 9.715   |
| $system_{-}15$ | LA3 (TP11)                  | 0.220       | 0.93481 | 10.000 | 6.4485  |
| $system_{-}15$ | LA3 (TP12)                  | 0.350       | 0.926   | 10.000 | 3.4445  |
| $system_15$    | LA3 (TP13)                  | 0.550       | 0.92025 | 10.000 | 1.6699  |
| system_15      | LA3 $(TP14)$                | 0.870       | 0.91549 | 10.000 | 2.3746  |
| system_15      | LC3 (TP8)                   | 0.060       | 1.0058  | 10.000 | 63.011  |
| $system_15$    | LC3 (TP9)                   | 0.100       | 0.97512 | 10.000 | 22.843  |
| $system_{-}15$ | LC3 (TP10)                  | 0.160       | 0.95246 | 10.000 | 16.319  |
| $system_{-}15$ | LC3 (TP11)                  | 0.240       | 0.93554 | 10.000 | 8.0286  |
| $system_{-}15$ | LC3 (TP12)                  | 0.460       | 0.92607 | 10.000 | 4.1775  |
| $system_15$    | LC3 (TP13)                  | 0.620       | 0.92054 | 10.000 | 1.9364  |
| $system_{-}15$ | LC3 (TP14)                  | 0.970       | 0.91552 | 10.000 | 1.4643  |
| system_15      | Riot $(05, 1e-11)$          | 0m0.360s    | 0.92101 | 10.000 | 0.91295 |
| $system_{-}15$ | Riot $(10, 1e-11)$          | 0m0.155s    | 0.93965 | 10.000 | 0.91295 |
| system_15      | Riot $(15, 1e-11)$          | 0m0.202s    | 0.93965 | 10.000 | 0.91295 |
| system_15      | Valencia-IVP $(0.00025)$    | 0m0.976s    | 3.6323  | 3.799  | 999.63  |
| $system_{-}15$ | Valencia-IVP $(0.0025)$     | 0 m 0.088 s | 3.6817  | 3.785  | 999.37  |
| $system_{-}15$ | Valencia-IVP $(0.025)$      | 0m0.014s    | 4.2116  | 3.650  | 997.82  |
| system_15      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.004s    | 0.9093  | 10.000 | 8.3669  |
| $system_{-}15$ | VNODE-LP (20, 1e-14, 1e-14) | 0m0.006s    | 0.9093  | 10.000 | 8.3669  |
| $system_{-}15$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.003 s | 0.9093  | 10.000 | 8.3669  |

Table 3.11: Simulation results of Problem 15

| Problems       | Methods                     | c5t                             | c5w    | c6t    | c6w             |
|----------------|-----------------------------|---------------------------------|--------|--------|-----------------|
| system_16      | TAYLOR4 (TP8)               | 0.190                           | 5.0338 | 10.000 | 2.6716e + 12    |
| system_16      | TAYLOR4 (TP9)               | 0.290                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | TAYLOR4 (TP10)              | 0.430                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | TAYLOR4 (TP11)              | 0.660                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | TAYLOR4 (TP12)              | 1.040                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | TAYLOR4 (TP13)              | 1.620                           | 5.0338 | 10.000 | 2.6716e + 12    |
| system_16      | TAYLOR4 (TP14)              | 2.530                           | 5.0338 | 10.000 | $2.6716e{+}12$  |
| system_16      | RK4 (TP8)                   | 0.140                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_{16}$  | RK4 (TP9)                   | 0.210                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | RK4 (TP10)                  | 0.330                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | RK4 (TP11)                  | 0.530                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_{-}16$ | RK4 (TP12)                  | 0.840                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_16$    | RK4 (TP13)                  | 1.270                           | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_{-16}$ | RK4 (TP14)                  | 1.960                           | 5.0338 | 10.000 | $2.6716e{+}12$  |
| system_16      | LA3 (TP8)                   | 0.110                           | 5.0368 | 10.000 | 2.6879e + 12    |
| $system_16$    | LA3 (TP9)                   | 0.170                           | 5.035  | 10.000 | 2.678e + 12     |
| $system_16$    | LA3 (TP10)                  | 0.250                           | 5.0343 | 10.000 | 2.6742e + 12    |
| $system_16$    | LA3 (TP11)                  | 0.410                           | 5.034  | 10.000 | 2.6726e + 12    |
| $system_16$    | LA3 (TP12)                  | 0.670                           | 5.0339 | 10.000 | 2.672e + 12     |
| $system_16$    | LA3 (TP13)                  | 1.030                           | 5.0339 | 10.000 | 2.6718e + 12    |
| $system_{-}16$ | LA3 (TP14)                  | 1.570                           | 5.0338 | 10.000 | $2.6717e{+}12$  |
| system_16      | LC3 (TP8)                   | 0.120                           | 5.0391 | 10.000 | 2.7006e+12      |
| $system_16$    | LC3 (TP9)                   | 0.190                           | 5.0359 | 10.000 | $2.6828e{+}12$  |
| $system_16$    | LC3 (TP10)                  | 0.280                           | 5.0347 | 10.000 | 2.676e + 12     |
| $system_{-}16$ | LC3 (TP11)                  | 0.450                           | 5.0342 | 10.000 | $2.6734e{+}12$  |
| $system_16$    | LC3 (TP12)                  | 0.720                           | 5.034  | 10.000 | $2.6723e{+}12$  |
| $system_{-}16$ | LC3 (TP13)                  | 1.140                           | 5.0339 | 10.000 | $2.6719e{+}12$  |
| system_16      | LC3 (TP14)                  | 1.740                           | 5.0339 | 10.000 | 2.6717e + 12    |
| system_16      | Riot (05, 1e-11)            | 0 m 0.607 s                     | 5.0338 | -0.000 | 3.4e + 150      |
| $system_{-}16$ | Riot $(10, 1e-11)$          | 0 m 0.160 s                     | 5.0338 | -0.000 | 3.3409e + 248   |
| system_16      | Riot $(15, 1e-11)$          | 0 m 0.204 s                     | 5.0338 | -0.000 | $1.3096e{+}136$ |
| system_16      | Valencia-IVP (0.00025)      | 0m1.641s                        | 5.1241 | 2.748  | 999.74          |
| $system_16$    | Valencia-IVP (0.0025)       | $0 \mathrm{m} 0.155 \mathrm{s}$ | 5.9373 | 2.635  | 999.64          |
| system_16      | Valencia-IVP $(0.025)$      | 0 m 0.022 s                     | 14.218 | 2.200  | 938.36          |
| system_16      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.004s                        | 5.0338 | 10.000 | 2.6716e + 12    |
| $system_{-16}$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.004 s                     | 5.0338 | 10.000 | $2.6716e{+}12$  |
| $system_{-}16$ | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.005 \mathrm{s}$ | 5.0338 | 10.000 | $2.6716e{+}12$  |

Table 3.12: Simulation results of Problem 16

| Problems    | Methods                     | c5t                             | c5w                 | c6t    | c6w         |
|-------------|-----------------------------|---------------------------------|---------------------|--------|-------------|
| system_17   | TAYLOR4 (TP8)               | 0.020                           | 2.5429e-08 10.000   |        | 2.3333e-08  |
| system_17   | TAYLOR4 (TP9)               | 0.030                           | 0.030 2.695e-09 10. |        | 2.4776e-09  |
| $system_17$ | TAYLOR4 (TP10)              | 0.050                           | 2.7876e-10          | 10.000 | 2.6014e-10  |
| $system_17$ | TAYLOR4 (TP11)              | 0.080                           | 2.859e-11           | 10.000 | 2.673e-11   |
| $system_17$ | TAYLOR4 (TP12)              | 0.130                           | 3.0154e-12          | 10.000 | 2.7828e-12  |
| $system_17$ | TAYLOR4 (TP13)              | 0.200                           | 4.6429e-13          | 10.000 | 3.6043e-13  |
| $system_17$ | TAYLOR4 (TP14)              | 0.000                           | 0                   | 0.000  | 0           |
| system_17   | RK4 (TP8)                   | 0.010                           | 5.9725e-08          | 10.000 | 5.6092e-08  |
| system_17   | RK4 (TP9)                   | 0.010                           | 6.7171e-09          | 10.000 | 6.2806e-09  |
| system_17   | RK4 (TP10)                  | 0.010                           | 6.4465 e- 10        | 10.000 | 6.282e-10   |
| $system_17$ | RK4 (TP11)                  | 0.020                           | 5.8932e-11          | 10.000 | 5.8241e-11  |
| $system_17$ | RK4 (TP12)                  | 0.040                           | 5.3604 e- 12        | 10.000 | 5.1803e-12  |
| $system_17$ | RK4 (TP13)                  | 0.060                           | 5.1581e-13          | 10.000 | 4.8617e-13  |
| $system_17$ | RK4 (TP14)                  | 0.090                           | 8.5709e-14          | 10.000 | 6.3449e-14  |
| system_17   | LA3 (TP8)                   | 0.010                           | 2.395e-08           | 10.000 | 2.1498e-08  |
| system_17   | LA3 (TP9)                   | 0.010                           | 2.5485e-09          | 10.000 | 2.4479e-09  |
| system_17   | LA3 (TP10)                  | 0.020                           | 2.7709e-10          | 10.000 | 2.569e-10   |
| system_17   | LA3 (TP11)                  | 0.030                           | 2.8204e-11          | 10.000 | 2.6542e-11  |
| system_17   | LA3 (TP12)                  | 0.050                           | 2.9106e-12          | 10.000 | 2.7096e-12  |
| system_17   | LA3 (TP13)                  | 0.080                           | 3.2618e-13          | 10.000 | 2.916e-13   |
| $system_17$ | LA3 (TP14)                  | 0.130                           | 8.2823e-14          | 10.000 | 5.429e-14   |
| system_17   | LC3 (TP8)                   | 0.010                           | 3.2526e-08          | 10.000 | 3.1401e-08  |
| system_17   | LC3 (TP9)                   | 0.010                           | 3.4509e-09          | 10.000 | 3.3385e-09  |
| system_17   | LC3 (TP10)                  | 0.020                           | 3.6045e-10          | 10.000 | 3.4087e-10  |
| system_17   | LC3 (TP11)                  | 0.030                           | 3.4278e-11          | 10.000 | 3.2206e-11  |
| system_17   | LC3 (TP12)                  | 0.040                           | 3.2934e-12          | 10.000 | 3.1542e-12  |
| system_17   | LC3 (TP13)                  | 0.070                           | 3.4661e-13          | 10.000 | 3.1558e-13  |
| $system_17$ | LC3 (TP14)                  | 0.110                           | 7.2831e-14          | 10.000 | 5.0293e-14  |
| system_17   | Riot (05, 1e-11)            | 0m0.209s                        | 4.0267e-11          | -0.000 | 4.3024e-11  |
| $system_17$ | Riot (10, 1e-11)            | 0m0.153s                        | 3.8114e-13          | -0.000 | 4.3851e-12  |
| $system_17$ | Riot (15, 1e-11)            | $0 \mathrm{m} 0.249 \mathrm{s}$ | 1.7208e-14          | -0.000 | 2.2093e-14  |
| system_17   | Valencia-IVP (0.00025)      | 0m1.248s                        | 0.00062591          | 10.000 | 0.012037    |
| system_17   | Valencia-IVP (0.0025)       | 0 m 0.108 s                     | 0.0062999           | 10.000 | 0.12039     |
| $system_17$ | Valencia-IVP (0.025)        | 0m0.015s                        | 0.06731             | 9.275  | 1.1674      |
| system_17   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.007s                        | 2.1094e-15          | 10.000 | 1.0825e-15  |
| system_17   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.009 s                     | 1.1102e-15          | 10.000 | 9.1593e-16  |
| system_17   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.010 s                     | 1.2212e-15          | 10.000 | 5.8287 e-16 |

 Table 3.13: Simulation results of Problem 17

| Problems      | Methods                     | c5t         | c5w     | c6t    | c6w    |
|---------------|-----------------------------|-------------|---------|--------|--------|
| system_18     | TAYLOR4 (TP8)               | 0.080       | 2.3166  | 1.247  | 80.315 |
| system_18     | TAYLOR4 (TP9)               | 0.120       | 2.2033  | 1.271  | 63.866 |
| $system_18$   | TAYLOR4 (TP10)              | 0.190       | 2.136   | 1.286  | 50.824 |
| $system_18$   | TAYLOR4 (TP11)              | 0.280       | 2.0957  | 1.296  | 40.262 |
| $system_18$   | TAYLOR4 (TP12)              | 0.440       | 2.0711  | 1.302  | 31.806 |
| $system_18$   | TAYLOR4 (TP13)              | 0.700       | 2.0558  | 1.305  | 25.183 |
| $system_18$   | TAYLOR4 (TP14)              | 0.000       | 1       | 0.000  | 1      |
| system_18     | RK4 (TP8)                   | 0.040       | 2.032   | 1.315  | 92.9   |
| system_18     | RK4 (TP9)                   | 0.060       | 2.031   | 1.315  | 73.775 |
| system_18     | RK4 (TP10)                  | 0.090       | 2.0305  | 1.315  | 58.317 |
| $system_18$   | RK4 (TP11)                  | 0.140       | 2.0303  | 1.315  | 46.315 |
| $system_18$   | RK4 (TP12)                  | 0.210       | 2.0303  | 1.314  | 36.66  |
| $system_18$   | RK4 (TP13)                  | 0.330       | 2.0302  | 1.313  | 29.062 |
| $system_{18}$ | RK4 (TP14)                  | 0.520       | 2.0302  | 1.312  | 22.972 |
| system_18     | LA3 (TP8)                   | 0.040       | 2.634   | 1.188  | 103.56 |
| $system_18$   | LA3 $(TP9)$                 | 0.050       | 2.3653  | 1.232  | 82.448 |
| $system_18$   | LA3 (TP10)                  | 0.080       | 2.2265  | 1.262  | 64.848 |
| system_18     | LA3 (TP11)                  | 0.130       | 2.1482  | 1.281  | 51.565 |
| $system_18$   | LA3 (TP12)                  | 0.180       | 2.1026  | 1.293  | 40.939 |
| $system_18$   | LA3 (TP13)                  | 0.280       | 2.0752  | 1.300  | 32.465 |
| $system_18$   | LA3 $(TP14)$                | 0.450       | 2.0583  | 1.304  | 25.656 |
| system_18     | LC3 (TP8)                   | 0.040       | 3.3388  | 1.118  | 99.411 |
| $system_18$   | LC3 (TP9)                   | 0.060       | 2.6504  | 1.185  | 79.498 |
| $system_18$   | LC3 (TP10)                  | 0.090       | 2.3694  | 1.230  | 63.574 |
| system_18     | LC3 (TP11)                  | 0.140       | 2.227   | 1.261  | 50.594 |
| $system_18$   | LC3 (TP12)                  | 0.200       | 2.1486  | 1.280  | 39.994 |
| $system_18$   | LC3 (TP13)                  | 0.310       | 2.1029  | 1.292  | 31.772 |
| $system_18$   | LC3 (TP14)                  | 0.490       | 2.0753  | 1.299  | 25.11  |
| system_18     | Riot (05, 1e-11)            | 0m3.154s    | 0.89498 | -0.000 | 5.6525 |
| $system_18$   | Riot (10, 1e-11)            | 0m12.527s   | 0.7695  | -0.000 | 13.258 |
| $system_18$   | Riot $(15, 1e-11)$          | 0m46.473s   | 0.76476 | -0.000 | 12.845 |
| system_18     | Valencia-IVP (0.00025)      | 0m3.609s    | 2.5351  | 1.309  | 62.299 |
| system_18     | Valencia-IVP (0.0025)       | 0 m 0.385 s | 2.4744  | 0.983  | 2.4744 |
| system_18     | Valencia-IVP $(0.025)$      | 0 m 0.046 s | 2.1873  | 0.875  | 2.1873 |
| system_18     | VNODE-LP (15, 1e-14, 1e-14) | 0m0.008s    | 1.952   | 1.352  | 106.72 |
| system_18     | VNODE-LP (20, 1e-14, 1e-14) | 0m0.013s    | 4.4163  | 1.079  | 154.57 |
| $system_18$   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.032 s | 189.75  | 0.944  | 189.75 |

Table 3.14: Simulation results of Problem 18

| Problems       | Methods                     | c5t                             | c5w     | c6t    | c6w      |
|----------------|-----------------------------|---------------------------------|---------|--------|----------|
| system_19      | TAYLOR4 (TP8)               | 0.060                           | 0.66694 | 10.000 | 0.18508  |
| system_19      | TAYLOR4 (TP9)               | 0.090                           | 0.65131 | 10.000 | 0.15696  |
| $system_19$    | TAYLOR4 (TP10)              | 0.130                           | 0.64145 | 10.000 | 0.14286  |
| $system_19$    | TAYLOR4 (TP11)              | 0.210                           | 0.63542 | 10.000 | 0.13516  |
| $system_19$    | TAYLOR4 (TP12)              | 0.330                           | 0.63167 | 10.000 | 0.13071  |
| $system_19$    | TAYLOR4 (TP13)              | 0.520                           | 0.62932 | 10.000 | 0.12803  |
| system_19      | TAYLOR4 (TP14)              | 0.000                           | 1       | 0.000  | 1        |
| system_19      | RK4 (TP8)                   | 0.030                           | 0.62552 | 10.000 | 0.12388  |
| $system_19$    | RK4 (TP9)                   | 0.040                           | 0.62541 | 10.000 | 0.12377  |
| $system_19$    | RK4 (TP10)                  | 0.070                           | 0.62536 | 10.000 | 0.12372  |
| $system_19$    | RK4 (TP11)                  | 0.100                           | 0.62534 | 10.000 | 0.1237   |
| $system_19$    | RK4 (TP12)                  | 0.150                           | 0.62533 | 10.000 | 0.12369  |
| $system_{19}$  | RK4 (TP13)                  | 0.240                           | 0.62533 | 10.000 | 0.12369  |
| system_19      | RK4 (TP14)                  | 0.380                           | 0.62533 | 10.000 | 0.12369  |
| system_19      | LA3 (TP8)                   | 0.030                           | 0.67072 | 10.000 | 0.19253  |
| $system_19$    | LA3 $(TP9)$                 | 0.040                           | 0.65354 | 10.000 | 0.15985  |
| $system_19$    | LA3 (TP10)                  | 0.060                           | 0.64288 | 10.000 | 0.14432  |
| $system_19$    | LA3 (TP11)                  | 0.090                           | 0.63625 | 10.000 | 0.13591  |
| $system_{-}19$ | LA3 $(TP12)$                | 0.130                           | 0.63216 | 10.000 | 0.13112  |
| $system_{19}$  | LA3 $(TP13)$                | 0.210                           | 0.62963 | 10.000 | 0.12827  |
| system_19      | LA3 (TP14)                  | 0.330                           | 0.62803 | 10.000 | 0.12654  |
| system_19      | LC3 (TP8)                   | 0.030                           | 0.69287 | 10.000 | 0.25335  |
| $system_{19}$  | LC3 (TP9)                   | 0.040                           | 0.66627 | 10.000 | 0.18198  |
| $system_19$    | LC3 (TP10)                  | 0.060                           | 0.65057 | 10.000 | 0.15488  |
| $system_{19}$  | LC3 (TP11)                  | 0.090                           | 0.6409  | 10.000 | 0.14156  |
| $system_19$    | LC3 (TP12)                  | 0.140                           | 0.63504 | 10.000 | 0.13436  |
| $system_19$    | LC3 (TP13)                  | 0.220                           | 0.63142 | 10.000 | 0.13021  |
| system_19      | LC3 (TP14)                  | 0.350                           | 0.62915 | 10.000 | 0.12771  |
| system_19      | Riot (05, 1e-11)            | 0 m 3.192 s                     | 0.44827 | -0.000 | 0.13094  |
| $system_19$    | Riot $(10, 1e-11)$          | 0m12.762s                       | 0.44389 | -0.000 | 0.057421 |
| system_19      | Riot $(15, 1e-11)$          | 0m40.498s                       | 0.44387 | -0.000 | 0.055362 |
| system_19      | Valencia-IVP $(0.00025)$    | 0m2.772s                        | 2.8979  | 1.191  | 3.7768   |
| $system_19$    | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.287 \mathrm{s}$ | 2.9052  | 1.175  | 3.694    |
| system_19      | Valencia-IVP $(0.025)$      | 0 m 0.041 s                     | 2.9872  | 1.300  | 5.8585   |
| system_19      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.008s                        | 0.88761 | 6.361  | 151.77   |
| system_19      | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.010 s                     | 0.98714 | 3.815  | 218.19   |
| $system_19$    | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.008 \mathrm{s}$ | 1.1388  | 2.597  | 270.43   |

Table 3.15: Simulation results of Problem 19

| Problems    | Methods                     | c5t         | c5w               | c6t    | c6w             |
|-------------|-----------------------------|-------------|-------------------|--------|-----------------|
| system_20   | TAYLOR4 (TP8)               | 0.040       | 0.0052454         | 10.000 | 5.7321e-09      |
| system_20   | TAYLOR4 (TP9)               | 0.060       | 0.0052389  10.000 |        | 5.9775e-10      |
| system_20   | TAYLOR4 (TP10)              | 0.100       | 0.005235          | 10.000 | 1.3097e-10      |
| system_20   | TAYLOR4 (TP11)              | 0.160       | 0.0052325         | 10.000 | 7.6695e-11      |
| system_20   | TAYLOR4 (TP12)              | 0.000       | 0.2               | 0.000  | 0.2             |
| system_20   | TAYLOR4 (TP13)              | 0.000       | 0.2               | 0.000  | 0.2             |
| $system_20$ | TAYLOR4 (TP14)              | 0.000       | 0.2               | 0.000  | 0.2             |
| system_20   | RK4 (TP8)                   | 0.010       | 0.0052285         | 10.000 | 9.8518e-09      |
| system_20   | RK4 (TP9)                   | 0.020       | 0.0052284         | 10.000 | 1.2709e-09      |
| system_20   | RK4 (TP10)                  | 0.040       | 0.0052284         | 10.000 | 1.5888e-10      |
| system_20   | RK4 (TP11)                  | 0.060       | 0.0052284         | 10.000 | 8.1081e-11      |
| system_20   | RK4 (TP12)                  | 0.100       | 0.0052284         | 10.000 | $6.8557 e{-11}$ |
| $system_20$ | RK4 (TP13)                  | 0.000       | 0.2               | 0.000  | 0.2             |
| $system_20$ | RK4 (TP14)                  | 0.000       | 0.2               | 0.000  | 0.2             |
| system_20   | LA3 (TP8)                   | 0.010       | 0.0052955         | 10.000 | 2.5286e-07      |
| system_20   | LA3 (TP9)                   | 0.030       | 0.0052591         | 10.000 | 8.833e-09       |
| system_20   | LA3 (TP10)                  | 0.040       | 0.0052431         | 10.000 | 8.3868e-10      |
| system_20   | LA3 (TP11)                  | 0.060       | 0.0052358         | 10.000 | 1.9991e-10      |
| system_20   | LA3 (TP12)                  | 0.100       | 0.0052323         | 10.000 | 1.02e-10        |
| $system_20$ | LA3 (TP13)                  | 0.000       | 0.2               | 0.000  | 0.2             |
| $system_20$ | LA3 (TP14)                  | 0.000       | 0.2               | 0.000  | 0.2             |
| system_20   | LC3 (TP8)                   | 0.010       | 0.0053599         | 10.000 | 9.8946e-07      |
| system_20   | LC3 (TP9)                   | 0.020       | 0.0052888         | 10.000 | 5.6014 e-08     |
| $system_20$ | LC3 (TP10)                  | 0.030       | 0.005257          | 10.000 | 4.6691e-09      |
| $system_20$ | LC3 (TP11)                  | 0.050       | 0.0052427         | 10.000 | 2.7076e-10      |
| $system_20$ | LC3 (TP12)                  | 0.090       | 0.0052359         | 10.000 | 1.1279e-10      |
| $system_20$ | LC3 (TP13)                  | 0.140       | 0.0052325         | 10.000 | 8.2115e-11      |
| system_20   | LC3 (TP14)                  | 0.210       | 0.0052308         | 10.000 | 7.2424e-11      |
| system_20   | Riot (05, 1e-11)            | 0m2.343s    | 0.0051337         | -0.000 | 6.9818e-11      |
| system_20   | Riot (10, 1e-11)            | 0m0.506s    | 0.0051337         | -0.000 | 6.6049e-11      |
| $system_20$ | Riot $(15, 1e-11)$          | 0m1.011s    | 0.0051337         | -0.000 | 6.6032 e- 11    |
| system_20   | Valencia-IVP (0.00025)      | 0m2.020s    | 5.7609            | 1.371  | 895.46          |
| system_20   | Valencia-IVP (0.0025)       | 0 m 0.244 s | 6.1709            | 1.123  | 8.035           |
| system_20   | Valencia-IVP (0.025)        | 0 m 0.030 s | 7.1228            | 0.750  | 7.1228          |
| system_20   | VNODE-LP (15. 1e-14.1e-14)  | 0m0.003s    | 0.0053622         | 10.000 | 6.9172e-11      |
| system_20   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.005 s | 0.0053887         | 10.000 | 6.957e-11       |
| system_20   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.007 s | 0.0054356         | 10.000 | 7.0287e-11      |

 Table 3.16: Simulation results of Problem 20

| Problems    | Methods                     | c5t                             | c5w                | c6t    | c6w           |
|-------------|-----------------------------|---------------------------------|--------------------|--------|---------------|
| system_21   | TAYLOR4 (TP8)               | 0.030                           | 3.0733e-08 10.000  |        | 6.8721e-09    |
| system_21   | TAYLOR4 (TP9)               | 0.050                           | ) 3.2389e-09 10.00 |        | 1.1268e-09    |
| system_21   | TAYLOR4 (TP10)              | 0.070                           | 3.3001e-10         | 10.000 | 9.6522e-11    |
| $system_21$ | TAYLOR4 (TP11)              | 0.110                           | 3.3614e-11         | 10.000 | 8.5003e-12    |
| system_21   | TAYLOR4 (TP12)              | 0.000                           | 0                  | 0.000  | 0             |
| system_21   | TAYLOR4 (TP13)              | 0.000                           | 0                  | 0.000  | 0             |
| $system_21$ | TAYLOR4 (TP14)              | 0.000                           | 0                  | 0.000  | 0             |
| system_21   | RK4 (TP8)                   | 0.010                           | 3.3937e-08         | 10.000 | 7.4364e-09    |
| system_21   | RK4 (TP9)                   | 0.020                           | 3.4224e-09         | 10.000 | 1.0865e-09    |
| system_21   | RK4 (TP10)                  | 0.030                           | 3.4031e-10         | 10.000 | 7.6861e-11    |
| $system_21$ | RK4 (TP11)                  | 0.050                           | 3.39e-11           | 10.000 | 1.1213e-11    |
| system_21   | RK4 (TP12)                  | 0.090                           | 3.4204 e- 12       | 10.000 | 1.3034e-12    |
| $system_21$ | RK4 (TP13)                  | 0.000                           | 0                  | 0.000  | 0             |
| system_21   | RK4 (TP14)                  | 0.000                           | 0                  | 0.000  | 0             |
| system_21   | LA3 (TP8)                   | 0.010                           | 2.6881e-08         | 8.634  | 3.8833e-08    |
| $system_21$ | LA3 $(TP9)$                 | 0.020                           | 2.8558e-09         | 10.000 | 1.9854 e - 09 |
| $system_21$ | LA3 (TP10)                  | 0.030                           | 2.9342e-10         | 10.000 | 1.4172e-10    |
| $system_21$ | LA3 (TP11)                  | 0.060                           | 2.9966e-11         | 10.000 | 1.0167e-11    |
| $system_21$ | LA3 (TP12)                  | 0.090                           | 3.0833e-12         | 10.000 | 8.5887e-13    |
| $system_21$ | LA3 (TP13)                  | 0.140                           | 3.908e-13          | 10.000 | 9.9032e-14    |
| system_21   | LA3 (TP14)                  | 0.000                           | 0                  | 0.000  | 0             |
| system_21   | LC3 (TP8)                   | 0.010                           | 3.0304e-08         | 10.000 | 5.0799e-07    |
| $system_21$ | LC3 (TP9)                   | 0.020                           | 2.7984 e - 09      | 10.000 | 3.9342e-08    |
| $system_21$ | LC3 (TP10)                  | 0.030                           | 2.6206e-10         | 10.000 | 2.426e-10     |
| system_21   | LC3 (TP11)                  | 0.050                           | 2.5378e-11         | 10.000 | 1.213e-11     |
| $system_21$ | LC3 (TP12)                  | 0.070                           | 2.458e-12          | 10.000 | 1.243e-12     |
| $system_21$ | LC3 (TP13)                  | 0.120                           | 3.082e-13          | 10.000 | 1.0303e-13    |
| system_21   | LC3 (TP14)                  | 0.190                           | 1.39e-13           | 10.000 | 1.6875e-14    |
| system_21   | Riot (05, 1e-11)            | 0 m 0.346 s                     | 4.0035e-11         | -0.000 | 2.075e-12     |
| $system_21$ | Riot $(10, 1e-11)$          | 0 m 0.168 s                     | 4.4511e-12         | -0.000 | 7.0832e-14    |
| system_21   | Riot $(15, 1e-11)$          | 0 m 0.211 s                     | 2.1094e-14         | -0.000 | 2.1094e-14    |
| system_21   | Valencia-IVP (0.00025)      | 0m1.174s                        | 0.073251           | 3.678  | 900.35        |
| $system_21$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.095 \mathrm{s}$ | 0.74627            | 2.210  | 6.0933        |
| system_21   | Valencia-IVP $(0.025)$      | 0 m 0.032 s                     | 6.312              | 0.975  | 6.312         |
| system_21   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.008s                        | 3.9968e-15         | 10.000 | 1.1102e-15    |
| $system_21$ | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.007 \mathrm{s}$ | 2.8866e-15         | 10.000 | 1.1102e-15    |
| system_21   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.006 s                     | 1.9984e-15         | 10.000 | 1.1102e-15    |

 Table 3.17: Simulation results of Problem 21
| Problems    | Methods                      | c5t         | c5w    | c6t    | c6w    |
|-------------|------------------------------|-------------|--------|--------|--------|
| system_22   | TAYLOR4 (TP8)                | 0.060       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | TAYLOR4 (TP9)                | 0.080       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | TAYLOR4 (TP10)               | 0.120       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | TAYLOR4 (TP11)               | 0.170       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | TAYLOR4 (TP12)               | 0.270       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | TAYLOR4 (TP13)               | 0.440       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | TAYLOR4 (TP14)               | 0.690       | 1.3818 | 10.000 | 1.3831 |
| system_22   | RK4 (TP8)                    | 0.040       | 1.3818 | 10.000 | 1.3831 |
| system_22   | RK4 (TP9)                    | 0.060       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | RK4 (TP10)                   | 0.090       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | RK4 (TP11)                   | 0.130       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | RK4 (TP12)                   | 0.210       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | RK4 (TP13)                   | 0.330       | 1.3818 | 10.000 | 1.3831 |
| $system_22$ | RK4 (TP14)                   | 0.520       | 1.3818 | 10.000 | 1.3831 |
| system_22   | LA3 (TP8)                    | 0.030       | 1.4465 | 10.000 | 5.1497 |
| system_22   | LA3 (TP9)                    | 0.040       | 1.4248 | 10.000 | 3.046  |
| system_22   | LA3 (TP10)                   | 0.070       | 1.4096 | 10.000 | 3.5315 |
| system_22   | LA3 (TP11)                   | 0.100       | 1.4    | 10.000 | 2.4605 |
| $system_22$ | LA3 (TP12)                   | 0.170       | 1.3935 | 10.000 | 2.5072 |
| $system_22$ | LA3 (TP13)                   | 0.250       | 1.3891 | 10.000 | 1.8036 |
| $system_22$ | LA3 $(TP14)$                 | 0.410       | 1.3865 | 10.000 | 1.5151 |
| system_22   | LC3 (TP8)                    | 0.040       | 1.4501 | 10.000 | 4.8497 |
| $system_22$ | LC3 (TP9)                    | 0.050       | 1.427  | 10.000 | 4.1688 |
| $system_22$ | LC3 (TP10)                   | 0.080       | 1.4116 | 10.000 | 2.9464 |
| $system_22$ | LC3 (TP11)                   | 0.110       | 1.4004 | 10.000 | 3.0065 |
| $system_22$ | LC3 (TP12)                   | 0.180       | 1.394  | 10.000 | 2.0322 |
| $system_22$ | LC3 (TP13)                   | 0.290       | 1.3895 | 10.000 | 1.7565 |
| $system_22$ | LC3 (TP14)                   | 0.450       | 1.3867 | 10.000 | 1.7305 |
| system_22   | Riot (05, 1e-11)             | 0m0.215s    | 1.3818 | -0.000 | 1.3831 |
| $system_22$ | Riot $(10, 1e-11)$           | 0m0.147s    | 1.3818 | -0.000 | 1.3831 |
| $system_22$ | Riot $(15, 1e-11)$           | 0 m 0.192 s | 1.3818 | -0.000 | 1.3831 |
| system_22   | Valencia-IVP (0.00025)       | 0m0.980s    | 2.7189 | 6.907  | 999.97 |
| system_22   | Valencia-IVP (0.0025)        | 0m0.090s    | 2.724  | 6.897  | 999.51 |
| system_22   | Valencia-IVP $(0.025)$       | 0m0.014s    | 2.7767 | 6.800  | 990.15 |
| system_22   | VNODE-LP (15. 1e-14.1e-14)   | 0m0.003s    | 1.3818 | 10.000 | 25.373 |
| system_22   | VNODE-LP $(20, 1e-14.1e-14)$ | 0m0.006s    | 1.3818 | 10.000 | 25.373 |
| system_22   | VNODE-LP (25, 1e-14, 1e-14)  | 0 m 0.005 s | 1.3818 | 10.000 | 25.373 |

 Table 3.18: Simulation results of Problem 22

| Problems    | Methods                     | c5t                             | c5w            | c6t    | c6w         |
|-------------|-----------------------------|---------------------------------|----------------|--------|-------------|
| system_23   | TAYLOR4 (TP8)               | 0.050                           | 1.5913e-08     | 10.000 | 1.6814e-06  |
| system_23   | TAYLOR4 (TP9)               | 0.080                           | 1.7046e-09     | 10.000 | 2.6103e-07  |
| system_23   | TAYLOR4 (TP10)              | 0.120                           | 1.8306e-10     | 10.000 | 1.6375e-07  |
| system_23   | TAYLOR4 (TP11)              | 0.180                           | 1.903e-11      | 10.000 | 1.6848e-07  |
| system_23   | TAYLOR4 (TP12)              | 0.280                           | 2.212e-12      | 10.000 | 2.0574e-08  |
| system_23   | TAYLOR4 (TP13)              | 0.450                           | 6.5636e-13     | 10.000 | 6.3359e-09  |
| $system_23$ | TAYLOR4 (TP14)              | 0.710                           | 7.6073e-13     | 10.000 | 7.5749e-09  |
| system_23   | RK4 (TP8)                   | 0.040                           | 1.9834e-08     | 10.000 | 7.863e-07   |
| system_23   | RK4 (TP9)                   | 0.050                           | 2.2172e-09     | 10.000 | 2.5607 e-07 |
| system_23   | RK4 (TP10)                  | 0.080                           | 2.3651e-10     | 10.000 | 8.9245e-08  |
| system_23   | RK4 (TP11)                  | 0.130                           | 2.4555e-11     | 10.000 | 1.3865e-07  |
| system_23   | RK4 (TP12)                  | 0.200                           | 2.6081e-12     | 10.000 | 2.2231e-08  |
| $system_23$ | RK4 (TP13)                  | 0.310                           | 4.2721e-13     | 10.000 | 3.913e-09   |
| $system_23$ | RK4 (TP14)                  | 0.490                           | 3.0509e-13     | 10.000 | 2.9406e-09  |
| system_23   | LA3 (TP8)                   | 0.030                           | 1.5086e-08     | 10.000 | 1.2796e-06  |
| $system_23$ | LA3 (TP9)                   | 0.040                           | 1.6451e-09     | 10.000 | 3.7812e-07  |
| $system_23$ | LA3 (TP10)                  | 0.060                           | 1.7698e-10     | 10.000 | 1.8245e-07  |
| system_23   | LA3 (TP11)                  | 0.100                           | 1.8517e-11     | 10.000 | 1.1868e-07  |
| system_23   | LA3 (TP12)                  | 0.150                           | 1.9926e-12     | 10.000 | 1.811e-08   |
| $system_23$ | LA3 (TP13)                  | 0.240                           | 3.233e-13      | 10.000 | 3.106e-09   |
| system_23   | LA3 (TP14)                  | 0.370                           | 2.256e-13      | 10.000 | 2.248e-09   |
| system_23   | LC3 (TP8)                   | 0.030                           | 1.5774e-08     | 10.000 | 1.8135e-06  |
| $system_23$ | LC3 (TP9)                   | 0.050                           | 1.7152e-09     | 10.000 | 2.948e-07   |
| $system_23$ | LC3 (TP10)                  | 0.070                           | 1.7917e-10     | 10.000 | 3.0775e-07  |
| system_23   | LC3 (TP11)                  | 0.110                           | $1.8552e{-}11$ | 10.000 | 1.3905e-07  |
| $system_23$ | LC3 (TP12)                  | 0.170                           | 1.9949e-12     | 10.000 | 1.8803e-08  |
| $system_23$ | LC3 (TP13)                  | 0.270                           | 3.3529e-13     | 10.000 | 3.2553e-09  |
| system_23   | LC3 (TP14)                  | 0.420                           | 2.4336e-13     | 10.000 | 2.448e-09   |
| system_23   | Riot (05, 1e-11)            | 0m0.102s                        | 5.6269e-11     | -0.000 | 7.3491e-10  |
| $system_23$ | Riot (10, 1e-11)            | 0 m 0.114 s                     | 2.7978e-14     | -0.000 | 4.2883e-11  |
| system_23   | Riot (15, 1e-11)            | 0 m 0.139 s                     | 4.1966e-14     | -0.000 | 1.0757e-12  |
| system_23   | Valencia-IVP (0.00025)      | 0m1.130s                        | 0.00046233     | 10.000 | 5.0012      |
| $system_23$ | Valencia-IVP (0.0025)       | $0 \mathrm{m} 0.095 \mathrm{s}$ | 0.0046322      | 10.000 | 50.642      |
| system_23   | Valencia-IVP $(0.025)$      | 0m0.014s                        | 0.047235       | 10.000 | 574.87      |
| system_23   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.003s                        | 1.9984e-15     | 10.000 | 8.3933e-14  |
| $system_23$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.004 s                     | 9.992e-16      | 10.000 | 7.5051e-14  |
| $system_23$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.006 s                     | 6.6613 e-16    | 10.000 | 4.7073e-14  |

 Table 3.19:
 Simulation results of Problem 23

| Problems    | Methods                     | c5t         | c5w    | c6t    | c6w    |
|-------------|-----------------------------|-------------|--------|--------|--------|
| system_24   | TAYLOR4 (TP8)               | 0.060       | 1.9324 | 10.000 | 14317  |
| system_24   | TAYLOR4 (TP9)               | 0.080       | 1.9324 | 10.000 | 14317  |
| system_24   | TAYLOR4 (TP10)              | 0.110       | 1.9324 | 10.000 | 14317  |
| $system_24$ | TAYLOR4 (TP11)              | 0.170       | 1.9324 | 10.000 | 14317  |
| system_24   | TAYLOR4 (TP12)              | 0.270       | 1.9324 | 10.000 | 14317  |
| system_24   | TAYLOR4 (TP13)              | 0.440       | 1.9324 | 10.000 | 14317  |
| $system_24$ | TAYLOR4 (TP14)              | 0.670       | 1.9324 | 10.000 | 14317  |
| system_24   | RK4 (TP8)                   | 0.040       | 1.9324 | 10.000 | 14317  |
| system_24   | RK4 (TP9)                   | 0.060       | 1.9324 | 10.000 | 14317  |
| $system_24$ | RK4 (TP10)                  | 0.080       | 1.9324 | 10.000 | 14317  |
| $system_24$ | RK4 (TP11)                  | 0.130       | 1.9324 | 10.000 | 14317  |
| $system_24$ | RK4 (TP12)                  | 0.200       | 1.9324 | 10.000 | 14317  |
| $system_24$ | RK4 (TP13)                  | 0.330       | 1.9324 | 10.000 | 14317  |
| $system_24$ | RK4 (TP14)                  | 0.510       | 1.9324 | 10.000 | 14317  |
| system_24   | LA3 (TP8)                   | 0.030       | 1.9328 | 10.000 | 14347  |
| system_24   | LA3 (TP9)                   | 0.050       | 1.9326 | 10.000 | 14329  |
| $system_24$ | LA3 (TP10)                  | 0.070       | 1.9325 | 10.000 | 14322  |
| $system_24$ | LA3 (TP11)                  | 0.100       | 1.9325 | 10.000 | 14319  |
| $system_24$ | LA3 $(TP12)$                | 0.160       | 1.9324 | 10.000 | 14318  |
| $system_24$ | LA3 (TP13)                  | 0.250       | 1.9324 | 10.000 | 14318  |
| $system_24$ | LA3 $(TP14)$                | 0.400       | 1.9324 | 10.000 | 14317  |
| system_24   | LC3 (TP8)                   | 0.040       | 1.9331 | 10.000 | 14371  |
| $system_24$ | LC3 (TP9)                   | 0.050       | 1.9327 | 10.000 | 14338  |
| $system_24$ | LC3 (TP10)                  | 0.070       | 1.9325 | 10.000 | 14325  |
| $system_24$ | LC3 (TP11)                  | 0.110       | 1.9325 | 10.000 | 14320  |
| $system_24$ | LC3 (TP12)                  | 0.180       | 1.9325 | 10.000 | 14318  |
| $system_24$ | LC3 (TP13)                  | 0.320       | 1.9324 | 10.000 | 14318  |
| $system_24$ | LC3 (TP14)                  | 0.470       | 1.9324 | 10.000 | 14317  |
| system_24   | Riot $(05, 1e-11)$          | 0 m 0.222 s | 1.9324 | -0.000 | 21721  |
| $system_24$ | Riot $(10, 1e-11)$          | 0 m 0.148 s | 1.9324 | -0.000 | 21718  |
| $system_24$ | Riot $(15, 1e-11)$          | 0 m 0.193 s | 1.9324 | -0.000 | 21703  |
| system_24   | Valencia-IVP $(0.00025)$    | 0m1.214s    | 1.9329 | 7.337  | 999.94 |
| $system_24$ | Valencia-IVP $(0.0025)$     | 0 m 0.114 s | 1.9368 | 7.320  | 998.62 |
| system_24   | Valencia-IVP $(0.025)$      | 0m0.014s    | 1.977  | 7.175  | 998.34 |
| system_24   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.004s    | 1.9324 | 10.000 | 14317  |
| $system_24$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.006 s | 1.9324 | 10.000 | 14317  |
| $system_24$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.002 s | 1.9324 | 10.000 | 14317  |

Table 3.20: Simulation results of Problem 24

| Problems      | Methods                     | c5t         | c5w         | c6t    | c6w         |
|---------------|-----------------------------|-------------|-------------|--------|-------------|
| system_25     | TAYLOR4 (TP8)               | 0.040       | 1.3772e-08  | 10.000 | 0.00016615  |
| $system_25$   | TAYLOR4 (TP9)               | 0.070       | 1.5056e-09  | 10.000 | 1.7744e-05  |
| $system_25$   | TAYLOR4 (TP10)              | 0.110       | 1.6064 e-10 | 10.000 | 1.8561e-06  |
| $system_25$   | TAYLOR4 (TP11)              | 0.160       | 1.6748e-11  | 10.000 | 1.9164 e-07 |
| $system_25$   | TAYLOR4 (TP12)              | 0.260       | 1.8416e-12  | 10.000 | 2.0722e-08  |
| $system_25$   | TAYLOR4 (TP13)              | 0.410       | 4.1234e-13  | 10.000 | 4.1866e-09  |
| $system_25$   | TAYLOR4 (TP14)              | 0.650       | 4.0101e-13  | 10.000 | 3.7742e-09  |
| system_25     | RK4 (TP8)                   | 0.030       | 1.7587e-08  | 10.000 | 0.00021528  |
| system_25     | RK4 (TP9)                   | 0.050       | 1.9552e-09  | 10.000 | 2.3157e-05  |
| system_25     | RK4 (TP10)                  | 0.070       | 2.0936e-10  | 10.000 | 2.4276e-06  |
| $system_25$   | RK4 (TP11)                  | 0.110       | 2.1817e-11  | 10.000 | 2.501e-07   |
| $system_25$   | RK4 (TP12)                  | 0.180       | 2.26e-12    | 10.000 | 2.5778e-08  |
| $system_25$   | RK4 (TP13)                  | 0.280       | 3.1397e-13  | 10.000 | 3.3969e-09  |
| $system_25$   | RK4 (TP14)                  | 0.450       | 1.6809e-13  | 10.000 | 1.6121e-09  |
| system_25     | LA3 (TP8)                   | 0.030       | 1.2714e-08  | 10.000 | 0.00016167  |
| $system_25$   | LA3 $(TP9)$                 | 0.040       | 1.4237e-09  | 10.000 | 1.7264e-05  |
| $system_25$   | LA3 (TP10)                  | 0.060       | 1.537e-10   | 10.000 | 1.7994e-06  |
| $system_25$   | LA3 (TP11)                  | 0.090       | 1.61e-11    | 10.000 | 1.8681e-07  |
| $system_25$   | LA3 (TP12)                  | 0.140       | 1.714e-12   | 10.000 | 1.9526e-08  |
| $system_25$   | LA3 (TP13)                  | 0.210       | 2.3848e-13  | 10.000 | 2.5806e-09  |
| system_25     | LA3 (TP14)                  | 0.340       | 1.2601e-13  | 10.000 | 1.2041e-09  |
| system_25     | LC3 (TP8)                   | 0.030       | 1.2989e-08  | 10.000 | 0.00016663  |
| $system_25$   | LC3 (TP9)                   | 0.040       | 1.473e-09   | 10.000 | 1.7777e-05  |
| $system_25$   | LC3 (TP10)                  | 0.060       | 1.562e-10   | 10.000 | 1.8255e-06  |
| $system_25$   | LC3 (TP11)                  | 0.100       | 1.6272e-11  | 10.000 | 1.878e-07   |
| $system_25$   | LC3 (TP12)                  | 0.150       | 1.7181e-12  | 10.000 | 1.9601e-08  |
| $system_25$   | LC3 (TP13)                  | 0.240       | 2.4358e-13  | 10.000 | 2.6186e-09  |
| system_25     | LC3 (TP14)                  | 0.380       | 1.3412e-13  | 10.000 | 1.2862e-09  |
| system_25     | Riot (05, 1e-11)            | 0m0.104s    | 5.7086e-11  | -0.000 | 0.0013639   |
| $system_25$   | Riot (10, 1e-11)            | 0 m 0.109 s | 3.7192e-15  | -0.000 | 3.7192e-15  |
| $system_25$   | Riot $(15, 1e-11)$          | 0 m 0.089 s | 0           | -0.000 | 5.7732e-15  |
| system_25     | Valencia-IVP (0.00025)      | 0m1.087s    | 0.00029389  | 10.000 | 2.7571      |
| $system_25$   | Valencia-IVP $(0.0025)$     | 0m0.093s    | 0.0029465   | 10.000 | 27.915      |
| $system_{25}$ | Valencia-IVP $(0.025)$      | 0m0.015s    | 0.030251    | 10.000 | 316.61      |
| system_25     | VNODE-LP (15, 1e-14, 1e-14) | 0m0.004s    | 9.992e-16   | 10.000 | 8.9433e-12  |
| system_25     | VNODE-LP (20, 1e-14, 1e-14) | 0m0.004s    | 8.8818e-16  | 10.000 | 7.9496e-12  |
| system_25     | VNODE-LP (25, 1e-14, 1e-14) | 0m0.004s    | 8.3267e-16  | 10.000 | 6.2134e-12  |

 Table 3.21: Simulation results of Problem 25

| Problems    | Methods                     | c5t                             | c5w    | c6t    | c6w        |
|-------------|-----------------------------|---------------------------------|--------|--------|------------|
| system_26   | TAYLOR4 (TP8)               | 0.190                           | 1.2981 | 10.000 | 0.00023241 |
| system_26   | TAYLOR4 (TP9)               | 0.280                           | 1.2981 | 10.000 | 0.00022813 |
| $system_26$ | TAYLOR4 (TP10)              | 0.410                           | 1.2981 | 10.000 | 0.00022749 |
| system_26   | TAYLOR4 (TP11)              | 0.610                           | 1.2981 | 10.000 | 0.000229   |
| $system_26$ | TAYLOR4 (TP12)              | 0.940                           | 1.2981 | 10.000 | 0.00022964 |
| $system_26$ | TAYLOR4 (TP13)              | 1.480                           | 1.2981 | 10.000 | 0.00022949 |
| system_26   | TAYLOR4 (TP14)              | 2.360                           | 1.2981 | 10.000 | 0.00022948 |
| system_26   | RK4 (TP8)                   | 0.130                           | 1.2981 | 10.000 | 0.00023297 |
| system_26   | RK4 (TP9)                   | 0.190                           | 1.2981 | 10.000 | 0.00022751 |
| $system_26$ | RK4 (TP10)                  | 0.300                           | 1.2981 | 10.000 | 0.00022782 |
| $system_26$ | RK4 (TP11)                  | 0.470                           | 1.2981 | 10.000 | 0.00022747 |
| $system_26$ | RK4 (TP12)                  | 0.730                           | 1.2981 | 10.000 | 0.00022897 |
| $system_26$ | RK4 (TP13)                  | 1.150                           | 1.2981 | 10.000 | 0.00022902 |
| system_26   | RK4 (TP14)                  | 1.800                           | 1.2981 | 10.000 | 0.00022939 |
| system_26   | LA3 (TP8)                   | 0.110                           | 1.7614 | 10.000 | 47.327     |
| system_26   | LA3 (TP9)                   | 0.160                           | 1.6099 | 10.000 | 5.1636     |
| $system_26$ | LA3 (TP10)                  | 0.240                           | 1.5196 | 10.000 | 3.3388     |
| system_26   | LA3 (TP11)                  | 0.380                           | 1.4341 | 10.000 | 1.4904     |
| system_26   | LA3 (TP12)                  | 0.580                           | 1.394  | 10.000 | 0.77395    |
| system_26   | LA3 (TP13)                  | 0.910                           | 1.3539 | 10.000 | 0.27453    |
| system_26   | LA3 (TP14)                  | 1.440                           | 1.3298 | 10.000 | 0.09762    |
| system_26   | LC3 (TP8)                   | 0.110                           | 1.7962 | 10.000 | 57.572     |
| $system_26$ | LC3 (TP9)                   | 0.170                           | 1.6345 | 10.000 | 4.2967     |
| system_26   | LC3 (TP10)                  | 0.260                           | 1.544  | 10.000 | 3.6973     |
| $system_26$ | LC3 (TP11)                  | 0.420                           | 1.4629 | 10.000 | 3.522      |
| $system_26$ | LC3 (TP12)                  | 0.630                           | 1.3763 | 10.000 | 0.85036    |
| $system_26$ | LC3 (TP13)                  | 1.000                           | 1.3639 | 10.000 | 1.2933     |
| system_26   | LC3 (TP14)                  | 1.600                           | 1.3283 | 10.000 | 0.13024    |
| system_26   | Riot (05, 1e-11)            | 0 m 0.592 s                     | 1.2981 | -0.000 | 0.00023441 |
| $system_26$ | Riot $(10, 1e-11)$          | $0 \mathrm{m} 0.217 \mathrm{s}$ | 1.2981 | -0.000 | 0.00022716 |
| system_26   | Riot $(15, 1e-11)$          | 0 m 0.302 s                     | 1.2981 | -0.000 | 0.00022731 |
| system_26   | Valencia-IVP (0.00025)      | 0m1.817s                        | 277.25 | 1.238  | 999.84     |
| system_26   | Valencia-IVP (0.0025)       | 0m0.156s                        | 287.15 | 1.230  | 996.77     |
| system_26   | Valencia-IVP (0.025)        | $0 \mathrm{m} 0.022 \mathrm{s}$ | 421.64 | 1.125  | 867.43     |
| system_26   | VNODE-LP (15, 1e-14, 1e-14) | 0 m 0.007 s                     | 1.2981 | 10.000 | 6.8883     |
| system_26   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.008 s                     | 1.2981 | 10.000 | 6.8883     |
| $system_26$ | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.007 \mathrm{s}$ | 1.2981 | 10.000 | 6.8883     |

 Table 3.22: Simulation results of Problem 26

| Problems    | Methods                     | c5t         | c5w          | c6t    | c6w          |
|-------------|-----------------------------|-------------|--------------|--------|--------------|
| system_27   | TAYLOR4 (TP8)               | 0.150       | 9.9382e-08   | 10.000 | 9.9453e-07   |
| system_27   | TAYLOR4 (TP9)               | 0.210       | 1.0984 e-08  | 10.000 | 2.4889e-07   |
| system_27   | TAYLOR4 (TP10)              | 0.320       | 1.1848e-09   | 10.000 | 3.0464 e- 07 |
| $system_27$ | TAYLOR4 (TP11)              | 0.500       | 1.2016e-10   | 10.000 | 2.585e-07    |
| system_27   | TAYLOR4 (TP12)              | 0.790       | 1.366e-11    | 10.000 | 2.1613e-07   |
| $system_27$ | TAYLOR4 (TP13)              | 1.220       | 3.6535e-12   | 10.000 | 3.5367 e-07  |
| $system_27$ | TAYLOR4 (TP14)              | 1.900       | 3.9741e-12   | 10.000 | 1.2891e-06   |
| system_27   | RK4 (TP8)                   | 0.110       | 1.2932e-07   | 10.000 | 1.3248e-06   |
| system_27   | RK4 (TP9)                   | 0.160       | 1.4163e-08   | 10.000 | 2.0043e-07   |
| $system_27$ | RK4 (TP10)                  | 0.250       | 1.5098e-09   | 10.000 | 1.5059e-07   |
| $system_27$ | RK4 (TP11)                  | 0.410       | 1.5404 e- 10 | 10.000 | 1.5609e-07   |
| $system_27$ | RK4 (TP12)                  | 0.640       | 1.6365e-11   | 10.000 | 1.7223e-07   |
| $system_27$ | RK4 (TP13)                  | 0.970       | 2.5304e-12   | 10.000 | 1.8389e-07   |
| $system_27$ | RK4 (TP14)                  | 1.540       | 1.6289e-12   | 10.000 | 1.7725e-07   |
| system_27   | LA3 (TP8)                   | 0.090       | 1.077e-07    | 10.000 | 0.0021861    |
| $system_27$ | LA3 $(TP9)$                 | 0.130       | 1.1278e-08   | 10.000 | 0.00013224   |
| $system_27$ | LA3 (TP10)                  | 0.200       | 1.1811e-09   | 10.000 | 3.2675e-05   |
| $system_27$ | LA3 (TP11)                  | 0.310       | 1.2139e-10   | 10.000 | 3.5598e-06   |
| $system_27$ | LA3 $(TP12)$                | 0.490       | 1.2736e-11   | 10.000 | 1.2922e-06   |
| $system_27$ | LA3 $(TP13)$                | 0.760       | 1.9278e-12   | 10.000 | 3.4537e-07   |
| system_27   | LA3 $(TP14)$                | 1.230       | 1.2119e-12   | 10.000 | 3.651e-07    |
| system_27   | LC3 (TP8)                   | 0.100       | 1.1371e-07   | 10.000 | 0.0045486    |
| $system_27$ | LC3 (TP9)                   | 0.150       | 1.1741e-08   | 10.000 | 0.0004441    |
| $system_27$ | LC3 (TP10)                  | 0.220       | 1.2156e-09   | 10.000 | 4.9058e-05   |
| $system_27$ | LC3 (TP11)                  | 0.350       | 1.2311e-10   | 10.000 | 4.7915e-06   |
| $system_27$ | LC3 (TP12)                  | 0.540       | 1.297e-11    | 10.000 | 1.3287e-06   |
| $system_27$ | LC3 (TP13)                  | 0.840       | 1.9971e-12   | 10.000 | 4.0411e-07   |
| $system_27$ | LC3 (TP14)                  | 1.290       | 1.3069e-12   | 10.000 | 1.3527e-06   |
| system_27   | Riot (05, 1e-11)            | 0 m 0.256 s | 1.8868e-10   | -0.000 | 2.7813e+09   |
| $system_27$ | Riot $(10, 1e-11)$          | 0 m 0.164 s | 1.199e-14    | -0.000 | 3.4514e-08   |
| $system_27$ | Riot $(15, 1e-11)$          | 0 m 0.230 s | 8.793e-14    | -0.000 | 1.8045e-12   |
| system_27   | Valencia-IVP (0.00025)      | 0m1.391s    | 0.1407       | 2.649  | 999.19       |
| $system_27$ | Valencia-IVP $(0.0025)$     | 0 m 0.126 s | 1.4595       | 2.205  | 988.39       |
| $system_27$ | Valencia-IVP $(0.025)$      | 0m0.021s    | 21.761       | 1.650  | 925.46       |
| system_27   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.006s    | 9.992e-15    | 10.000 | 9.4229e-14   |
| system_27   | VNODE-LP (20, 1e-14, 1e-14) | 0m0.005s    | 5.9952e-15   | 10.000 | 5.4546e-14   |
| system_27   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.004s    | 5.9952e-15   | 10.000 | 3.6599e-14   |

Table 3.23: Simulation results of Problem 27

|             | Table 3.24: Simulation      | results of Pr                   | oblem 28 |        |         |
|-------------|-----------------------------|---------------------------------|----------|--------|---------|
| Problems    | Methods                     | c5t                             | c5w      | c6t    | c6w     |
| system_28   | TAYLOR4 (TP8)               | 4.130                           | 20.932   | 0.283  | 20.932  |
| $system_28$ | TAYLOR4 (TP9)               | 5.960                           | 17.968   | 0.282  | 17.968  |
| $system_28$ | TAYLOR4 (TP10)              | 8.860                           | 15.338   | 0.280  | 15.338  |
| $system_28$ | TAYLOR4 (TP11)              | 12.540                          | 13.052   | 0.282  | 13.052  |
| $system_28$ | TAYLOR4 (TP12)              | 18.350                          | 11.079   | 0.280  | 11.079  |
| $system_28$ | TAYLOR4 (TP13)              | 27.080                          | 9.385    | 0.277  | 9.385   |
| $system_28$ | TAYLOR4 (TP14)              | 38.040                          | 7.9094   | 0.275  | 7.9094  |
| system_28   | RK4 (TP8)                   | 4.160                           | 23.152   | 0.284  | 23.152  |
| system_28   | RK4 (TP9)                   | 3.300                           | 19.86    | 0.284  | 19.86   |
| $system_28$ | RK4 (TP10)                  | 4.790                           | 17.013   | 0.285  | 17.013  |
| $system_28$ | RK4 (TP11)                  | 6.890                           | 14.506   | 0.283  | 14.506  |
| $system_28$ | RK4 (TP12)                  | 9.590                           | 12.365   | 0.279  | 12.365  |
| $system_28$ | RK4 (TP13)                  | 13.920                          | 10.475   | 0.278  | 10.475  |
| system_28   | RK4 (TP14)                  | 20.070                          | 8.8608   | 0.276  | 8.8608  |
| system_28   | LA3 (TP8)                   | 1.960                           | 24.682   | 0.274  | 24.682  |
| $system_28$ | LA3 (TP9)                   | 2.960                           | 21.217   | 0.276  | 21.217  |
| $system_28$ | LA3 (TP10)                  | 4.250                           | 18.246   | 0.276  | 18.246  |
| $system_28$ | LA3 (TP11)                  | 6.350                           | 15.618   | 0.278  | 15.618  |
| $system_28$ | LA3 (TP12)                  | 8.760                           | 13.281   | 0.278  | 13.281  |
| $system_28$ | LA3 (TP13)                  | 12.720                          | 11.269   | 0.277  | 11.269  |
| system_28   | LA3 (TP14)                  | 18.360                          | 9.5482   | 0.276  | 9.5482  |
| system_28   | LC3 (TP8)                   | 1.870                           | 24.835   | 0.265  | 24.835  |
| $system_28$ | LC3 (TP9)                   | 2.830                           | 21.005   | 0.270  | 21.005  |
| $system_28$ | LC3 (TP10)                  | 4.250                           | 17.966   | 0.273  | 17.966  |
| $system_28$ | LC3 (TP11)                  | 6.320                           | 15.404   | 0.276  | 15.404  |
| $system_28$ | LC3 (TP12)                  | 8.960                           | 13.092   | 0.276  | 13.092  |
| $system_28$ | LC3 (TP13)                  | 13.090                          | 11.123   | 0.277  | 11.123  |
| system_28   | LC3 (TP14)                  | 19.040                          | 9.4039   | 0.275  | 9.4039  |
| system_28   | Riot (05, 1e-11)            | 0m29.200s                       | 0        | -0.000 | 4.2446  |
| $system_28$ | Riot (10, 1e-11)            | 18m44.691s                      | 0        | -0.000 | 4.0786  |
| system_28   | Riot $(15, 1e-11)$          | 210m1.595s                      | 0        | -0.000 | 4.5904  |
| system_28   | Valencia-IVP (0.00025)      | 0m2.126s                        | 1.1713   | 0.162  | 1.1713  |
| $system_28$ | Valencia-IVP (0.0025)       | 0 m 0.733 s                     | 3.1672   | 0.395  | 3.1672  |
| system_28   | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.027 \mathrm{s}$ | 0.95755  | 0.075  | 0.95755 |
| system_28   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.309s                        | 18.119   | 0.155  | 18.119  |
| $system_28$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.299 s                     | 22.402   | 0.140  | 22.402  |
| $system_28$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.301 s                     | 25.252   | 0.128  | 25.252  |

| Problems    | Methods                     | c5t                             | c5w            | c6t    | c6w          |
|-------------|-----------------------------|---------------------------------|----------------|--------|--------------|
| system_29   | TAYLOR4 (TP8)               | 0.560                           | 3.5522e-07     | 10.000 | 3.7763e-07   |
| system_29   | TAYLOR4 (TP9)               | 0.830                           | 3.6736e-08     | 10.000 | 3.9348e-08   |
| system_29   | TAYLOR4 (TP10)              | 1.250                           | 3.7576e-09     | 10.000 | 4.0256e-09   |
| $system_29$ | TAYLOR4 (TP11)              | 1.990                           | 3.7343e-10     | 10.000 | 4.03e-10     |
| system_29   | TAYLOR4 (TP12)              | 3.120                           | 3.7579e-11     | 10.000 | 4.0723e-11   |
| $system_29$ | TAYLOR4 (TP13)              | 5.370                           | 4.5068e-12     | 10.000 | 4.8452e-12   |
| $system_29$ | TAYLOR4 (TP14)              | 7.360                           | 1.6607 e-12    | 10.000 | 1.7164e-12   |
| system_29   | RK4 (TP8)                   | 0.340                           | 5.0539e-07     | 10.000 | 5.8051e-07   |
| system_29   | RK4 (TP9)                   | 0.460                           | 5.8113e-08     | 10.000 | 6.5063 e-08  |
| system_29   | RK4 (TP10)                  | 0.710                           | 5.7374e-09     | 10.000 | 6.4068e-09   |
| system_29   | RK4 (TP11)                  | 1.000                           | 6.2862e-10     | 10.000 | 6.6449e-10   |
| system_29   | RK4 (TP12)                  | 1.540                           | 6.1003e-11     | 10.000 | 6.3473e-11   |
| $system_29$ | RK4 (TP13)                  | 2.420                           | 5.9718e-12     | 10.000 | 6.1513e-12   |
| $system_29$ | RK4 (TP14)                  | 3.700                           | 8.6475e-13     | 10.000 | 8.7147e-13   |
| system_29   | LA3 (TP8)                   | 0.340                           | 2.3268e-07     | 10.000 | 3.1546e-07   |
| $system_29$ | LA3 (TP9)                   | 0.470                           | 2.4512e-08     | 10.000 | 3.3829e-08   |
| $system_29$ | LA3 (TP10)                  | 0.710                           | 2.3962e-09     | 10.000 | 3.3821e-09   |
| $system_29$ | LA3 (TP11)                  | 1.060                           | 2.281e-10      | 10.000 | 3.2909e-10   |
| $system_29$ | LA3 (TP12)                  | 1.660                           | $2.1874e{-}11$ | 10.000 | 3.1581e-11   |
| $system_29$ | LA3 (TP13)                  | 2.600                           | 2.3522e-12     | 10.000 | 3.2499e-12   |
| system_29   | LA3 (TP14)                  | 4.030                           | 5.4412e-13     | 10.000 | 6.1251e-13   |
| system_29   | LC3 (TP8)                   | 0.340                           | 2.9012e-07     | 10.000 | 4.1042 e- 07 |
| $system_29$ | LC3 (TP9)                   | 0.460                           | 2.9152e-08     | 10.000 | 4.3464 e-08  |
| $system_29$ | LC3 (TP10)                  | 0.680                           | 2.7738e-09     | 10.000 | 4.2533e-09   |
| $system_29$ | LC3 (TP11)                  | 1.000                           | 2.5993e-10     | 10.000 | 3.9511e-10   |
| $system_29$ | LC3 (TP12)                  | 1.560                           | 2.3858e-11     | 10.000 | 3.5866e-11   |
| $system_29$ | LC3 (TP13)                  | 2.480                           | 2.4346e-12     | 10.000 | 3.4715e-12   |
| system_29   | LC3 (TP14)                  | 3.730                           | 5.4146e-13     | 10.000 | 6.1394e-13   |
| system_29   | Riot (05, 1e-11)            | 0m1.818s                        | 3.2308e-10     | -0.000 | 5.7962e-09   |
| $system_29$ | Riot $(10, 1e-11)$          | 0m1.333s                        | 6.1563 e- 12   | -0.000 | 1.0335e-10   |
| system_29   | Riot $(15, 1e-11)$          | 0m2.386s                        | 9.6034 e- 15   | -0.000 | 9.6034 e- 15 |
| system_29   | Valencia-IVP (0.00025)      | 0m3.140s                        | 0.001153       | 10.000 | 0.057922     |
| $system_29$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.516 \mathrm{s}$ | 0.01199        | 6.265  | 0.2962       |
| system_29   | Valencia-IVP $(0.025)$      | 0m0.226s                        | 0.17131        | 1.200  | 0.2357       |
| system_29   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.080s                        | 1.8485e-14     | 10.000 | 1.5952e-14   |
| system_29   | VNODE-LP (20, 1e-14, 1e-14) | 0m0.099s                        | 1.199e-14      | 10.000 | 1.1606e-14   |
| system_29   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.107s                        | 9.4924e-15     | 10.000 | 8.9239e-15   |

 Table 3.25:
 Simulation results of Problem 29

| Problems       | Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | c5t                             | c5w              | c6t   | c6w    |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------|-------|--------|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 140                          | 00.070           | 0.007 | 00.070 |
| system_30      | $\frac{1}{1} \frac{1}{1} \frac{1}$ | 10.140                          | 80.278           | 0.297 | 80.278 |
| system_30      | TAYLOR4 (TP9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24.390                          | 03.718<br>50.470 | 0.298 | 03.718 |
| system_30      | TAYLOR4 (TP10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.140                          | 50.476           | 0.299 | 50.476 |
| system_30      | TAYLOR4 (TP11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 53.200                          | 40.071           | 0.299 | 40.071 |
| system_30      | TAYLOR4 (TP12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.710                          | 31.765           | 0.299 | 31.765 |
| system_30      | TAYLOR4 (TP13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 113.360                         | 25.075           | 0.297 | 25.075 |
| system_30      | TAYLOR4 (TP14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 159.450                         | 19.754           | 0.296 | 19.754 |
| system_30      | RK4 (TP8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.090                           | 92.703           | 0.302 | 92.703 |
| $system_30$    | RK4 (TP9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.060                          | 73.155           | 0.302 | 73.155 |
| $system_30$    | RK4 (TP10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.520                          | 58.308           | 0.303 | 58.308 |
| system_30      | RK4 (TP11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 28.190                          | 46.348           | 0.300 | 46.348 |
| system_30      | RK4 (TP12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.790                          | 36.606           | 0.300 | 36.606 |
| system_30      | RK4 (TP13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 60.340                          | 28.938           | 0.299 | 28.938 |
| $system_{-}30$ | RK4 (TP14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 87.210                          | 22.85            | 0.298 | 22.85  |
| system_30      | LA3 (TP8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.670                           | 103.64           | 0.290 | 103.64 |
| system_30      | LA3 (TP9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.260                          | 81.407           | 0.293 | 81.407 |
| system_30      | LA3 (TP10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.760                          | 65.057           | 0.296 | 65.057 |
| system_30      | LA3 (TP11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.890                          | 51.523           | 0.298 | 51.523 |
| system_30      | LA3 (TP12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.280                          | 40.863           | 0.298 | 40.863 |
| system_30      | LA3 (TP13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.410                          | 32.308           | 0.298 | 32.308 |
| $system_{-}30$ | LA3 $(TP14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82.570                          | 25.57            | 0.297 | 25.57  |
| system_30      | LC3 (TP8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.590                           | 101.33           | 0.282 | 101.33 |
| system_30      | LC3 (TP9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11.350                          | 79.317           | 0.288 | 79.317 |
| system_30      | LC3 (TP10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.050                          | 63.817           | 0.293 | 63.817 |
| system_30      | LC3 (TP11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 25.100                          | 50.599           | 0.296 | 50.599 |
| system_30      | LC3 (TP12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36.770                          | 40.033           | 0.296 | 40.033 |
| system_30      | LC3 (TP13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.480                          | 31.626           | 0.297 | 31.626 |
| $system_{-}30$ | LC3 (TP14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 78.840                          | 25.014           | 0.297 | 25.014 |
| system_30      | Riot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 |                  |       |        |
| system_30      | Valencia-IVP (0.00025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0m13.555s                       | 57.455           | 0.332 | 57.455 |
| system_30      | Valencia-IVP (0.0025)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0 \mathrm{m} 0.494 \mathrm{s}$ | 4.4295           | 0.245 | 4.4295 |
| system_30      | Valencia-IVP $(0.025)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0 \mathrm{m} 0.108 \mathrm{s}$ | 3.7929           | 0.200 | 3.7929 |
| system_30      | VNODE-LP (15, 1e-14, 1e-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 m 0.194 s                     | 105.32           | 0.259 | 105.32 |
| system_30      | VNODE-LP $(20, 1e-14, 1e-14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0m0.186s                        | 146.87           | 0.237 | 146.87 |
| system_30      | VNODE-LP (25, 1e-14, 1e-14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 m 0.187 s                     | 188.72           | 0.220 | 188.72 |

Table 3.26: Simulation results of Problem 30

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | Problems       | Methods                     | c5t                             | c5w          | c6t    | c6w          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|---------------------------------|--------------|--------|--------------|
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                      | system_31      | TAYLOR4 (TP8)               | 2.230                           | 1.2578e-07   | 10.000 | 5.8598e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | TAYLOR4 (TP9)               | 3.470                           | 1.3976e-08   | 10.000 | 5.2745e-05   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | TAYLOR4 (TP10)              | 5.330                           | 1.5217e-09   | 10.000 | 1.2559e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | TAYLOR4 (TP11)              | 8.330                           | 1.5944 e- 10 | 10.000 | 1.4182e-06   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | TAYLOR4 (TP12)              | 13.050                          | 1.6868e-11   | 10.000 | 1.5655e-07   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | TAYLOR4 (TP13)              | 20.400                          | 2.2326e-12   | 10.000 | 2.1442e-08   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | $system_31$    | TAYLOR4 (TP14)              | 31.840                          | 1.028e-12    | 10.000 | 1.025e-08    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | RK4 (TP8)                   | 1.290                           | 1.0486e-07   | 10.000 | 4.4015e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | RK4 (TP9)                   | 1.850                           | 1.2451e-08   | 10.000 | 4.0884e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | RK4 (TP10)                  | 2.940                           | 1.3932e-09   | 10.000 | 1.3356e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | RK4 (TP11)                  | 4.390                           | 1.5137e-10   | 10.000 | 1.457e-06    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | RK4 (TP12)                  | 6.870                           | 1.5606e-11   | 10.000 | 1.5259e-07   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | RK4 (TP13)                  | 10.920                          | 1.6551e-12   | 10.000 | 1.6821e-08   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_{31}$  | RK4 (TP14)                  | 16.650                          | 3.2484e-13   | 10.000 | 3.6533e-09   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | LA3 (TP8)                   | 1.250                           | 7.1058e-08   | 10.000 | 8.3149e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LA3 $(TP9)$                 | 1.780                           | 7.6279e-09   | 10.000 | 4.4857 e-05  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LA3 (TP10)                  | 2.670                           | 8.5419e-10   | 10.000 | 1.2882e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LA3 (TP11)                  | 4.270                           | 9.3902e-11   | 10.000 | 1.3788e-06   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_{-}31$ | LA3 (TP12)                  | 6.580                           | 9.7906e-12   | 10.000 | 1.4299e-07   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LA3 (TP13)                  | 10.140                          | 1.0789e-12   | 10.000 | 1.5696e-08   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | LA3 (TP14)                  | 16.130                          | 2.7699e-13   | 10.000 | 3.3895e-09   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | system_31      | LC3 (TP8)                   | 1.090                           | 1.7432e-07   | 10.000 | 4.6058e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LC3 (TP9)                   | 1.490                           | 1.9061e-08   | 10.000 | 4.6763 e- 05 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LC3 (TP10)                  | 2.220                           | 1.9137e-09   | 10.000 | 1.9889e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LC3 (TP11)                  | 3.450                           | 1.8493e-10   | 10.000 | 1.9633e-06   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LC3 (TP12)                  | 5.250                           | 1.7977e-11   | 10.000 | 1.9146e-07   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                      | $system_31$    | LC3 (TP13)                  | 8.310                           | 1.821e-12    | 10.000 | 1.9509e-08   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | LC3 (TP14)                  | 12.850                          | 3.1761e-13   | 10.000 | 3.486e-09    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | Riot (05, 1e-11)            | 0m $8.552$ s                    | 1.3195e-10   | -0.000 | 3.7849e-08   |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                    | $system_31$    | Riot $(10, 1e-11)$          | 0 m 4.423 s                     | 4.2645e-12   | -0.000 | 5.8043e-09   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | Riot $(15, 1e-11)$          | 0m4.983s                        | 1.8874e-15   | -0.000 | 1.2535e-10   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | system_31      | Valencia-IVP (0.00025)      | 0m55.912s                       | 0.0020183    | 4.793  | 1.5566       |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                    | $system_31$    | Valencia-IVP $(0.0025)$     | 0m4.192s                        | 0.020632     | 3.252  | 1.8903       |
| system_31VNODE-LP (15, 1e-14,1e-14)0m0.160s9.26e-1510.0001.3792e-13system_31VNODE-LP (20, 1e-14,1e-14)0m0.181s4.9093e-1510.0009.2898e-14system_31VNODE-LP (25, 1e-14,1e-14)0m0.205s4.0697e-1510.0007.63e-14 | system_31      | Valencia-IVP $(0.025)$      | 0 m 0.399 s                     | 0.25275      | 1.800  | 1.0445       |
| system_31VNODE-LP (20, 1e-14,1e-14)0m0.181s4.9093e-1510.0009.2898e-14system_31VNODE-LP (25, 1e-14,1e-14)0m0.205s4.0697e-1510.0007.63e-14                                                                    | system_31      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.160s                        | 9.26e-15     | 10.000 | 1.3792e-13   |
| system_31 VNODE-LP (25, 1e-14, 1e-14) 0m0.205s 4.0697e-15 10.000 7.63e-14                                                                                                                                   | system_31      | VNODE-LP (20, 1e-14, 1e-14) | 0m0.181s                        | 4.9093e-15   | 10.000 | 9.2898e-14   |
|                                                                                                                                                                                                             | $system_{-31}$ | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.205 \mathrm{s}$ | 4.0697 e-15  | 10.000 | 7.63e-14     |

 Table 3.27:
 Simulation results of Problem 31

| Problems       | Methods                     | c5t                             | c5w          | c6t    | c6w         |
|----------------|-----------------------------|---------------------------------|--------------|--------|-------------|
| system_32      | TAYLOR4 (TP8)               | 0.110                           | 1.0131e-07   | 10.000 | 1.092e-06   |
| system_32      | TAYLOR4 (TP9)               | 0.150                           | 1.1876e-08   | 10.000 | 1.2968e-07  |
| $system_32$    | TAYLOR4 (TP10)              | 0.220                           | 1.5521e-09   | 10.000 | 1.3318e-08  |
| $system_32$    | TAYLOR4 (TP11)              | 0.330                           | 1.5477e-10   | 10.000 | 1.4345e-09  |
| $system_32$    | TAYLOR4 (TP12)              | 0.520                           | 1.9744e-11   | 10.000 | 1.544e-10   |
| $system_32$    | TAYLOR4 (TP13)              | 0.900                           | 2.9185e-12   | 10.000 | 1.8198e-11  |
| $system_{32}$  | TAYLOR4 (TP14)              | 1.280                           | 1.549e-12    | 10.000 | 4.4076e-12  |
| system_32      | RK4 (TP8)                   | 0.050                           | 1.1569e-07   | 10.000 | 1.6157e-06  |
| $system_32$    | RK4 (TP9)                   | 0.070                           | 1.2497 e-08  | 10.000 | 2.1179e-07  |
| $system_32$    | RK4 (TP10)                  | 0.110                           | 1.4826e-09   | 10.000 | 2.7584e-08  |
| $system_32$    | RK4 (TP11)                  | 0.170                           | 1.5983e-10   | 10.000 | 3.5086e-09  |
| $system_32$    | RK4 (TP12)                  | 0.250                           | 1.6631e-11   | 10.000 | 4.1913e-10  |
| $system_32$    | RK4 (TP13)                  | 0.400                           | 1.9895e-12   | 10.000 | 5.1035e-11  |
| system_32      | RK4 (TP14)                  | 0.630                           | 4.9205e-13   | 10.000 | 6.4764e-12  |
| system_32      | LA3 (TP8)                   | 0.060                           | 4.8721e-08   | 10.000 | 9.5298e-07  |
| $system_32$    | LA3 (TP9)                   | 0.080                           | 5.2775e-09   | 10.000 | 9.6145 e-08 |
| $system_32$    | LA3 (TP10)                  | 0.130                           | 5.5251e-10   | 10.000 | 1.0333e-08  |
| $system_32$    | LA3 (TP11)                  | 0.180                           | 5.6823e-11   | 10.000 | 1.1945e-09  |
| $system_32$    | LA3 (TP12)                  | 0.290                           | 5.9162 e- 12 | 10.000 | 1.2948e-10  |
| $system_32$    | LA3 (TP13)                  | 0.460                           | 8.0025e-13   | 10.000 | 1.4912e-11  |
| system_32      | LA3 (TP14)                  | 0.710                           | 4.0501e-13   | 10.000 | 2.1458e-12  |
| system_32      | LC3 (TP8)                   | 0.060                           | 8.8322e-08   | 10.000 | 1.0067e-06  |
| $system_32$    | LC3 (TP9)                   | 0.080                           | 1.0516e-08   | 10.000 | 1.0107 e-07 |
| $system_32$    | LC3 (TP10)                  | 0.110                           | 1.3559e-09   | 10.000 | 1.2095e-08  |
| $system_32$    | LC3 (TP11)                  | 0.180                           | 1.5019e-10   | 10.000 | 1.3537e-09  |
| $system_32$    | LC3 (TP12)                  | 0.250                           | 1.6706e-11   | 10.000 | 1.5879e-10  |
| $system_32$    | LC3 (TP13)                  | 0.390                           | 2.0792e-12   | 10.000 | 1.7959e-11  |
| system_32      | LC3 (TP14)                  | 0.610                           | 4.7784e-13   | 10.000 | 2.528e-12   |
| system_32      | Riot (05, 1e-11)            | 0m2.160s                        | 8.7466e-11   | -0.000 | 2.9713e-10  |
| $system_32$    | Riot (10, 1e-11)            | 0 m 0.781 s                     | 1.2124e-13   | -0.000 | 4.0483e-11  |
| system_32      | Riot $(15, 1e-11)$          | $0 \mathrm{m} 0.815 \mathrm{s}$ | 1.3411e-13   | -0.000 | 1.8493e-11  |
| system_32      | Valencia-IVP (0.00025)      | 1m35.630s                       | 0.00026492   | 10.000 | 0.28978     |
| $system_{-32}$ | Valencia-IVP (0.0025)       | 0m2.151s                        | 0.0026499    | 10.000 | 2.9143      |
| system_32      | Valencia-IVP (0.025)        | $0 \mathrm{m} 0.272 \mathrm{s}$ | 0.026604     | 10.000 | 31.409      |
| system_32      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.039s                        | 9.77e-15     | 10.000 | 6.3727e-14  |
| system_32      | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.044 s                     | 8.8818e-15   | 10.000 | 7.3386e-14  |
| $system_{-32}$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.040 s                     | 7.9936e-15   | 10.000 | 3.586e-14   |

 Table 3.28: Simulation results of Problem 32

|                | Table 3.29: Simulation      | results of P                    | roblem 33 |        |         |
|----------------|-----------------------------|---------------------------------|-----------|--------|---------|
| Problems       | Methods                     | c5t                             | c5w       | c6t    | c6w     |
| system_33      | TAYLOR4 (TP8)               | 0.110                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | TAYLOR4 (TP9)               | 0.150                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | TAYLOR4 (TP10)              | 0.230                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | TAYLOR4 (TP11)              | 0.360                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | TAYLOR4 (TP12)              | 0.530                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | TAYLOR4 (TP13)              | 0.860                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | TAYLOR4 (TP14)              | 1.330                           | 0.81192   | 10.000 | 0.20314 |
| system_33      | RK4 (TP8)                   | 0.060                           | 0.81192   | 10.000 | 0.20315 |
| system_33      | RK4 (TP9)                   | 0.080                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | RK4 (TP10)                  | 0.110                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | RK4 (TP11)                  | 0.170                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | RK4 (TP12)                  | 0.270                           | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | RK4 (TP13)                  | 0.410                           | 0.81192   | 10.000 | 0.20314 |
| $system_{-}33$ | RK4 (TP14)                  | 0.640                           | 0.81192   | 10.000 | 0.20314 |
| system_33      | LA3 (TP8)                   | 0.060                           | 0.81202   | 10.000 | 0.20448 |
| $system_33$    | LA3 (TP9)                   | 0.080                           | 0.81197   | 10.000 | 0.20373 |
| $system_33$    | LA3 (TP10)                  | 0.130                           | 0.81194   | 10.000 | 0.20338 |
| $system_33$    | LA3 (TP11)                  | 0.200                           | 0.81193   | 10.000 | 0.20324 |
| $system_33$    | LA3 (TP12)                  | 0.300                           | 0.81193   | 10.000 | 0.20318 |
| $system_33$    | LA3 (TP13)                  | 0.470                           | 0.81192   | 10.000 | 0.20316 |
| $system_33$    | LA3 (TP14)                  | 0.740                           | 0.81192   | 10.000 | 0.20315 |
| system_33      | LC3 (TP8)                   | 0.060                           | 0.81211   | 10.000 | 0.20522 |
| system_33      | LC3 (TP9)                   | 0.080                           | 0.812     | 10.000 | 0.204   |
| system_33      | LC3 (TP10)                  | 0.120                           | 0.81196   | 10.000 | 0.20349 |
| system_33      | LC3 (TP11)                  | 0.170                           | 0.81194   | 10.000 | 0.20329 |
| system_33      | LC3 (TP12)                  | 0.260                           | 0.81193   | 10.000 | 0.2032  |
| $system_33$    | LC3 (TP13)                  | 0.400                           | 0.81192   | 10.000 | 0.20317 |
| $system_{-}33$ | LC3 (TP14)                  | 0.620                           | 0.81192   | 10.000 | 0.20315 |
| system_33      | Riot (05, 1e-11)            | 0m3.466s                        | 0.81192   | -0.000 | 0.20314 |
| $system_33$    | Riot $(10, 1e-11)$          | 0 m 0.842 s                     | 0.81192   | -0.000 | 0.20314 |
| $system_33$    | Riot $(15, 1e-11)$          | $0 \mathrm{m} 0.886 \mathrm{s}$ | 0.81192   | -0.000 | 0.20314 |
| system_33      | Valencia-IVP (0.00025)      | 1m30.726s                       | 0.8123    | 10.000 | 243.87  |
| $system_33$    | Valencia-IVP $(0.0025)$     | 0m1.521s                        | 0.81566   | 10.000 | 249.32  |
| system_33      | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.257 \mathrm{s}$ | 0.85019   | 10.000 | 309.55  |
| system_33      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.041s                        | 0.81192   | 10.000 | 0.20314 |
| $system_33$    | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.042 s                     | 0.81192   | 10.000 | 0.20314 |
| $system_{-}33$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.039 s                     | 0.81192   | 10.000 | 0.20314 |

| Problems    | Methods                     | c5t         | c5w          | c6t    | c6w        |
|-------------|-----------------------------|-------------|--------------|--------|------------|
| system_34   | TAYLOR4 (TP8)               | 0.010       | 4.7235e-09   | 10.000 | 2.9591e-07 |
| system_34   | TAYLOR4 (TP9)               | 0.010       | 7.8377e-10   | 10.000 | 3.0655e-08 |
| system_34   | TAYLOR4 (TP10)              | 0.020       | 1.0829e-10   | 10.000 | 3.5486e-09 |
| system_34   | TAYLOR4 (TP11)              | 0.020       | 1.2753e-11   | 10.000 | 4.2103e-10 |
| system_34   | TAYLOR4 (TP12)              | 0.030       | 1.3936e-12   | 10.000 | 4.4459e-11 |
| system_34   | TAYLOR4 (TP13)              | 0.040       | 2.1538e-13   | 10.000 | 7.7094e-12 |
| system_34   | TAYLOR4 (TP14)              | 0.070       | 1.2879e-13   | 10.000 | 5.361e-12  |
| system_34   | RK4 (TP8)                   | 0.010       | 1.4271e-09   | 10.000 | 7.7418e-08 |
| system_34   | RK4 (TP9)                   | 0.010       | 2.0589e-10   | 10.000 | 8.1568e-09 |
| $system_34$ | RK4 (TP10)                  | 0.020       | 2.1419e-11   | 10.000 | 8.3585e-10 |
| system_34   | RK4 (TP11)                  | 0.020       | 2.3852e-12   | 10.000 | 8.5283e-11 |
| system_34   | RK4 (TP12)                  | 0.030       | 2.78e-13     | 10.000 | 9.3454e-12 |
| $system_34$ | RK4 (TP13)                  | 0.040       | 6.2172e-14   | 10.000 | 1.9824e-12 |
| system_34   | RK4 (TP14)                  | 0.060       | 5.5955e-14   | 10.000 | 1.8456e-12 |
| system_34   | LA3 (TP8)                   | 0.010       | 8.073e-11    | 10.000 | 1.7684e-07 |
| $system_34$ | LA3 (TP9)                   | 0.010       | 6.0024 e- 11 | 10.000 | 2.3486e-08 |
| system_34   | LA3 (TP10)                  | 0.010       | 5.8509e-12   | 10.000 | 2.36e-09   |
| system_34   | LA3 (TP11)                  | 0.020       | 5.4801e-13   | 10.000 | 2.6067e-10 |
| $system_34$ | LA3 (TP12)                  | 0.020       | 7.7716e-14   | 10.000 | 2.9845e-11 |
| $system_34$ | LA3 (TP13)                  | 0.030       | 3.0642e-14   | 10.000 | 4.0146e-12 |
| system_34   | LA3 (TP14)                  | 0.050       | 3.6859e-14   | 10.000 | 1.5241e-12 |
| system_34   | LC3 (TP8)                   | 0.010       | 4.5581e-10   | 10.000 | 1.7673e-07 |
| $system_34$ | LC3 (TP9)                   | 0.010       | 1.0584e-10   | 10.000 | 1.8314e-08 |
| $system_34$ | LC3 (TP10)                  | 0.020       | 1.5158e-11   | 10.000 | 2.4613e-09 |
| $system_34$ | LC3 (TP11)                  | 0.020       | 1.7217e-12   | 10.000 | 2.8973e-10 |
| $system_34$ | LC3 (TP12)                  | 0.010       | 1.9762e-13   | 10.000 | 2.8706e-11 |
| $system_34$ | LC3 (TP13)                  | 0.040       | 4.7074e-14   | 10.000 | 4.4125e-12 |
| system_34   | LC3 (TP14)                  | 0.060       | 4.4409e-14   | 10.000 | 1.6751e-12 |
| system_34   | Riot (05, 1e-11)            | 0m0.304s    | 1.3289e-12   | -0.000 | 1.8114e-10 |
| $system_34$ | Riot $(10, 1e-11)$          | 0 m 0.241 s | 5.7954e-14   | -0.000 | 3.439e-12  |
| system_34   | Riot $(15, 1e-11)$          | 0m0.268s    | 6.9944e-14   | -0.000 | 6.0574e-13 |
| system_34   | Valencia-IVP $(0.00025)$    | 0m42.641s   | 1.6439e-05   | 10.000 | 0.0004796  |
| $system_34$ | Valencia-IVP $(0.0025)$     | 0m1.277s    | 0.00016439   | 10.000 | 0.0047963  |
| system_34   | Valencia-IVP $(0.025)$      | 0m0.165s    | 0.001644     | 10.000 | 0.047992   |
| system_34   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.008s    | 8.8818e-16   | 10.000 | 3.5527e-14 |
| system_34   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.010 s | 8.8818e-16   | 10.000 | 3.6415e-14 |
| system_34   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.009 s | 8.8818e-16   | 10.000 | 2.931e-14  |

 Table 3.30:
 Simulation results of Problem 34

| Problems       | Methods                     | c5t         | c5w     | c6t    | c6w    |
|----------------|-----------------------------|-------------|---------|--------|--------|
| system_35      | TAYLOR4 (TP8)               | 0.010       | 0.94449 | 10.000 | 4.7953 |
| $system_35$    | TAYLOR4 (TP9)               | 0.020       | 0.94449 | 10.000 | 4.795  |
| $system_35$    | TAYLOR4 (TP10)              | 0.030       | 0.94449 | 10.000 | 4.7949 |
| $system_35$    | TAYLOR4 (TP11)              | 0.030       | 0.94449 | 10.000 | 4.7949 |
| $system_35$    | TAYLOR4 (TP12)              | 0.050       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | TAYLOR4 (TP13)              | 0.070       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | TAYLOR4 (TP14)              | 0.090       | 0.94449 | 10.000 | 4.7948 |
| system_35      | RK4 (TP8)                   | 0.010       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | RK4 (TP9)                   | 0.020       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | RK4 (TP10)                  | 0.020       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | RK4 (TP11)                  | 0.020       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | RK4 (TP12)                  | 0.040       | 0.94449 | 10.000 | 4.7948 |
| $system_35$    | RK4 (TP13)                  | 0.050       | 0.94449 | 10.000 | 4.7948 |
| system_35      | RK4 (TP14)                  | 0.070       | 0.94449 | 10.000 | 4.7948 |
| system_35      | LA3 (TP8)                   | 0.010       | 0.94461 | 10.000 | 4.8179 |
| $system_35$    | LA3 $(TP9)$                 | 0.010       | 0.9446  | 10.000 | 4.809  |
| $system_35$    | LA3 (TP10)                  | 0.010       | 0.94456 | 10.000 | 4.8035 |
| $system_35$    | LA3 (TP11)                  | 0.020       | 0.94454 | 10.000 | 4.8002 |
| $system_35$    | LA3 (TP12)                  | 0.030       | 0.94452 | 10.000 | 4.7982 |
| $system_35$    | LA3 (TP13)                  | 0.040       | 0.94451 | 10.000 | 4.7969 |
| system_35      | LA3 (TP14)                  | 0.050       | 0.9445  | 10.000 | 4.7962 |
| system_35      | LC3 (TP8)                   | 0.010       | 0.94473 | 10.000 | 4.8375 |
| $system_35$    | LC3 (TP9)                   | 0.010       | 0.94466 | 10.000 | 4.8213 |
| $system_35$    | LC3 (TP10)                  | 0.020       | 0.94461 | 10.000 | 4.8111 |
| $system_35$    | LC3 (TP11)                  | 0.020       | 0.94457 | 10.000 | 4.805  |
| $system_35$    | LC3 (TP12)                  | 0.030       | 0.94454 | 10.000 | 4.8012 |
| $system_35$    | LC3 (TP13)                  | 0.030       | 0.94452 | 10.000 | 4.7988 |
| system_35      | LC3 (TP14)                  | 0.060       | 0.94451 | 10.000 | 4.7973 |
| system_35      | Riot (05, 1e-11)            | 0m26.070s   | 0.93958 | -0.000 | 4.3033 |
| $system_{-}35$ | Riot $(10, 1e-11)$          | 0m21.763s   | 0.93958 | -0.000 | 4.3033 |
| system_35      | Riot $(15, 1e-11)$          | 0m1.415s    | 0.93958 | -0.000 | 4.3033 |
| system_35      | Valencia-IVP $(0.00025)$    | 0m46.038s   | 0.93957 | 10.000 | 4.2038 |
| $system_35$    | Valencia-IVP $(0.0025)$     | 0m1.842s    | 0.93976 | 10.000 | 4.2101 |
| system_35      | Valencia-IVP $(0.025)$      | 0m0.161s    | 0.94163 | 10.000 | 4.2741 |
| system_35      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.010s    | 0.94965 | 10.000 | 5.8441 |
| $system_35$    | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.008 s | 0.94965 | 10.000 | 5.8753 |
| $system_35$    | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.011 s | 0.94965 | 10.000 | 5.8753 |

Table 3.31: Simulation results of Problem 35

| Problems       | Methods                     | c5t                             | c5w         | c6t    | c6w        |
|----------------|-----------------------------|---------------------------------|-------------|--------|------------|
| system_36      | TAYLOR4 (TP8)               | 0.390                           | 3.8302e-07  | 10.000 | 3.3818e-06 |
| system_36      | TAYLOR4 (TP9)               | 0.480                           | 5.0076e-08  | 10.000 | 4.2414e-07 |
| system_36      | TAYLOR4 (TP10)              | 0.600                           | 6.2302e-09  | 10.000 | 5.0646e-08 |
| system_36      | TAYLOR4 (TP11)              | 0.860                           | 7.2726e-10  | 10.000 | 5.7903e-09 |
| system_36      | TAYLOR4 (TP12)              | 1.210                           | 8.1487e-11  | 10.000 | 6.4198e-10 |
| $system_36$    | TAYLOR4 (TP13)              | 1.790                           | 2.7196e-11  | 10.000 | 1.2778e-10 |
| $system_{-}36$ | TAYLOR4 (TP14)              | 2.760                           | 1.3596e-11  | 10.000 | 5.2596e-11 |
| system_36      | RK4 (TP8)                   | 0.300                           | 2.8762e-07  | 10.000 | 2.7084e-06 |
| $system_36$    | RK4 (TP9)                   | 0.310                           | 4.616e-08   | 10.000 | 3.7416e-07 |
| $system_36$    | RK4 (TP10)                  | 0.380                           | 6.6357 e-09 | 10.000 | 4.8865e-08 |
| system_36      | RK4 (TP11)                  | 0.480                           | 8.5565e-10  | 10.000 | 5.9451e-09 |
| $system_36$    | RK4 (TP12)                  | 0.630                           | 1.0328e-10  | 10.000 | 6.8487e-10 |
| $system_36$    | RK4 (TP13)                  | 0.880                           | 1.2269e-11  | 10.000 | 7.8007e-11 |
| $system_{-}36$ | RK4 (TP14)                  | 1.240                           | 1.7035e-12  | 10.000 | 1.1177e-11 |
| system_36      | LA3 (TP8)                   | 0.300                           | 2.2169e-07  | 10.000 | 2.0499e-06 |
| system_36      | LA3 (TP9)                   | 0.330                           | 3.3496e-08  | 10.000 | 2.7089e-07 |
| system_36      | LA3 (TP10)                  | 0.390                           | 4.619e-09   | 10.000 | 3.451e-08  |
| system_36      | LA3 (TP11)                  | 0.510                           | 5.7408e-10  | 10.000 | 4.0876e-09 |
| $system_36$    | LA3 (TP12)                  | 0.650                           | 6.7628e-11  | 10.000 | 4.6189e-10 |
| $system_36$    | LA3 (TP13)                  | 0.910                           | 7.7591e-12  | 10.000 | 5.2355e-11 |
| system_36      | LA3 (TP14)                  | 1.420                           | 1.231e-12   | 10.000 | 8.5425e-12 |
| system_36      | LC3 (TP8)                   | 0.290                           | 2.2911e-07  | 10.000 | 2.0717e-06 |
| $system_36$    | LC3 (TP9)                   | 0.330                           | 3.4984 e-08 | 10.000 | 2.7398e-07 |
| system_36      | LC3 (TP10)                  | 0.390                           | 4.9685e-09  | 10.000 | 3.4966e-08 |
| $system_36$    | LC3 (TP11)                  | 0.500                           | 6.4688e-10  | 10.000 | 4.22e-09   |
| $system_36$    | LC3 (TP12)                  | 0.660                           | 7.7153e-11  | 10.000 | 4.8028e-10 |
| $system_36$    | LC3 (TP13)                  | 0.890                           | 9.0523e-12  | 10.000 | 5.493e-11  |
| system_36      | LC3 (TP14)                  | 1.320                           | 1.3678e-12  | 10.000 | 8.8445e-12 |
| system_36      | Riot (05, 1e-11)            | 0m1.095s                        | 3.8821e-11  | -0.000 | 2.6445e-10 |
| $system_{-}36$ | Riot $(10, 1e-11)$          | $0 \mathrm{m} 0.857 \mathrm{s}$ | 2.176e-13   | -0.000 | 4.5475e-12 |
| system_36      | Riot $(15, 1e-11)$          | 0m1.818s                        | 3.1442e-13  | -0.000 | 1.2212e-12 |
| system_36      | Valencia-IVP (0.00025)      | 1m34.728s                       | 8.8326e-05  | 10.000 | 0.00054692 |
| $system_36$    | Valencia-IVP $(0.0025)$     | 0m1.368s                        | 0.00088326  | 10.000 | 0.0054692  |
| system_36      | Valencia-IVP $(0.025)$      | 0 m 0.178 s                     | 0.0088326   | 10.000 | 0.054692   |
| system_36      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.014s                        | 1.3323e-14  | 10.000 | 9.4147e-14 |
| system_36      | VNODE-LP (20, 1e-14, 1e-14) | 0m0.014s                        | 1.1546e-14  | 10.000 | 8.0824e-14 |
| system_36      | VNODE-LP (25, 1e-14, 1e-14) | 0m0.014s                        | 7.9936e-15  | 10.000 | 5.9508e-14 |

Table 3.32: Simulation results of Problem 36

|             | Table 3.33: Simulation      | results of P                    | roblem 37 |        |         |
|-------------|-----------------------------|---------------------------------|-----------|--------|---------|
| Problems    | Methods                     | c5t                             | c5w       | c6t    | c6w     |
| system_37   | TAYLOR4 (TP8)               | 0.460                           | 0.36452   | 10.000 | 1.0893  |
| $system_37$ | TAYLOR4 (TP9)               | 0.570                           | 0.3637    | 10.000 | 1.0799  |
| $system_37$ | TAYLOR4 (TP10)              | 0.800                           | 0.36315   | 10.000 | 1.0739  |
| $system_37$ | TAYLOR4 (TP11)              | 1.140                           | 0.36279   | 10.000 | 1.0699  |
| $system_37$ | TAYLOR4 (TP12)              | 1.690                           | 0.36255   | 10.000 | 1.0674  |
| $system_37$ | TAYLOR4 (TP13)              | 2.530                           | 0.3624    | 10.000 | 1.0658  |
| $system_37$ | TAYLOR4 (TP14)              | 3.930                           | 0.3623    | 10.000 | 1.0648  |
| system_37   | RK4 (TP8)                   | 0.290                           | 0.36214   | 10.000 | 1.063   |
| system_37   | RK4 (TP9)                   | 0.360                           | 0.36214   | 10.000 | 1.0631  |
| $system_37$ | RK4 (TP10)                  | 0.370                           | 0.36214   | 10.000 | 1.0631  |
| $system_37$ | RK4 (TP11)                  | 0.560                           | 0.36214   | 10.000 | 1.0631  |
| $system_37$ | RK4 (TP12)                  | 0.780                           | 0.36214   | 10.000 | 1.0631  |
| $system_37$ | RK4 (TP13)                  | 1.090                           | 0.36214   | 10.000 | 1.0631  |
| $system_37$ | RK4 (TP14)                  | 1.630                           | 0.36214   | 10.000 | 1.0631  |
| system_37   | LA3 (TP8)                   | 0.320                           | 0.36125   | 10.000 | 1.0578  |
| $system_37$ | LA3 $(TP9)$                 | 0.300                           | 0.36152   | 10.000 | 1.0594  |
| $system_37$ | LA3 (TP10)                  | 0.430                           | 0.36172   | 10.000 | 1.0606  |
| $system_37$ | LA3 (TP11)                  | 0.590                           | 0.36186   | 10.000 | 1.0615  |
| $system_37$ | LA3 (TP12)                  | 0.800                           | 0.36196   | 10.000 | 1.062   |
| $system_37$ | LA3 (TP13)                  | 1.150                           | 0.36202   | 10.000 | 1.0624  |
| $system_37$ | LA3 $(TP14)$                | 1.740                           | 0.36207   | 10.000 | 1.0627  |
| system_37   | LC3 (TP8)                   | 0.310                           | 0.36119   | 10.000 | 1.0583  |
| $system_37$ | LC3 (TP9)                   | 0.360                           | 0.36148   | 10.000 | 1.0598  |
| $system_37$ | LC3 (TP10)                  | 0.450                           | 0.36169   | 10.000 | 1.0609  |
| $system_37$ | LC3 (TP11)                  | 0.590                           | 0.36184   | 10.000 | 1.0616  |
| $system_37$ | LC3 (TP12)                  | 0.780                           | 0.36195   | 10.000 | 1.0621  |
| $system_37$ | LC3 (TP13)                  | 1.200                           | 0.36201   | 10.000 | 1.0625  |
| $system_37$ | LC3 (TP14)                  | 1.710                           | 0.36206   | 10.000 | 1.0627  |
| system_37   | Riot (05, 1e-11)            | 1m11.410s                       | 0.25904   | -0.000 | 0.51435 |
| $system_37$ | Riot $(10, 1e-11)$          | $0\mathrm{m}5.525\mathrm{s}$    | 0.25904   | -0.000 | 0.51435 |
| $system_37$ | Riot $(15, 1e-11)$          | 0m20.456s                       | 0.25904   | -0.000 | 0.51435 |
| system_37   | Valencia-IVP (0.00025)      | 1m26.397s                       | 0.25956   | 10.000 | 0.51575 |
| $system_37$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 1.774 \mathrm{s}$ | 0.26021   | 10.000 | 0.52027 |
| $system_37$ | Valencia-IVP $(0.025)$      | 0 m 0.170 s                     | 0.26796   | 10.000 | 0.56814 |
| system_37   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.012s                        | 0.26197   | 10.000 | 0.53714 |
| $system_37$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.014 s                     | 0.26206   | 10.000 | 0.53773 |
| $system_37$ | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.015 \mathrm{s}$ | 0.26225   | 10.000 | 0.53846 |

| Problems       | Methods                     | c5t                             | c5w         | c6t    | c6w          |
|----------------|-----------------------------|---------------------------------|-------------|--------|--------------|
| system_38      | TAYLOR4 (TP8)               | 0.170                           | 2.7922e-08  | 10.000 | 7.4431e-08   |
| system_38      | TAYLOR4 (TP9)               | 0.220                           | 3.2672e-09  | 10.000 | 7.942e-09    |
| system_38      | TAYLOR4 (TP10)              | 0.270                           | 4.1428e-10  | 10.000 | 8.3748e-10   |
| system_38      | TAYLOR4 (TP11)              | 0.400                           | 4.6597 e-11 | 10.000 | 8.5737e-11   |
| system_38      | TAYLOR4 (TP12)              | 0.560                           | 5.4421e-12  | 10.000 | 8.7429e-12   |
| system_38      | TAYLOR4 (TP13)              | 0.870                           | 6.8723e-13  | 10.000 | 9.297e-13    |
| $system_38$    | TAYLOR4 (TP14)              | 1.320                           | 2.669e-13   | 10.000 | 1.6706e-13   |
| system_38      | RK4 (TP8)                   | 0.120                           | 2.1332e-08  | 10.000 | 4.498e-08    |
| system_38      | RK4 (TP9)                   | 0.160                           | 2.19e-09    | 10.000 | 4.8124e-09   |
| system_38      | RK4 (TP10)                  | 0.220                           | 2.2353e-10  | 10.000 | 4.9613e-10   |
| system_38      | RK4 (TP11)                  | 0.300                           | 2.2414e-11  | 10.000 | 5.1359e-11   |
| system_38      | RK4 (TP12)                  | 0.430                           | 2.2782e-12  | 10.000 | 5.2231e-12   |
| system_38      | RK4 (TP13)                  | 0.620                           | 2.7422e-13  | 10.000 | 5.4531e-13   |
| system_38      | RK4 (TP14)                  | 0.930                           | 9.8588e-14  | 10.000 | 8.3211e-14   |
| system_38      | LA3 (TP8)                   | 0.090                           | 2.3226e-08  | 10.000 | 5.5003e-08   |
| system_38      | LA3 (TP9)                   | 0.120                           | 2.0602e-09  | 10.000 | 5.7806e-09   |
| system_38      | LA3 (TP10)                  | 0.160                           | 1.8549e-10  | 10.000 | 5.8628e-10   |
| system_38      | LA3 (TP11)                  | 0.220                           | 1.7422e-11  | 10.000 | 6.0634 e- 11 |
| system_38      | LA3 (TP12)                  | 0.280                           | 1.6807e-12  | 10.000 | 6.1279e-12   |
| $system_38$    | LA3 (TP13)                  | 0.420                           | 1.9051e-13  | 10.000 | 6.3527e-13   |
| system_38      | LA3 (TP14)                  | 0.600                           | 6.2839e-14  | 10.000 | 8.3517e-14   |
| system_38      | LC3 (TP8)                   | 0.100                           | 3.1915e-08  | 10.000 | 3.6288e-08   |
| system_38      | LC3 (TP9)                   | 0.080                           | 2.9665e-09  | 10.000 | 3.5504 e-09  |
| system_38      | LC3 (TP10)                  | 0.180                           | 3.4742e-10  | 10.000 | 3.6358e-10   |
| system_38      | LC3 (TP11)                  | 0.240                           | 3.4815e-11  | 10.000 | 3.6803e-11   |
| $system_38$    | LC3 (TP12)                  | 0.310                           | 3.511e-12   | 10.000 | 3.7114e-12   |
| $system_38$    | LC3 (TP13)                  | 0.480                           | 3.8325e-13  | 10.000 | 3.8405e-13   |
| system_38      | LC3 (TP14)                  | 0.690                           | 8.8596e-14  | 10.000 | 6.0923e-14   |
| system_38      | Riot (05, 1e-11)            | $0 \mathrm{m} 1.119 \mathrm{s}$ | 8.3338e-11  | -0.000 | 3.9802e-10   |
| $system_38$    | Riot $(10, 1e-11)$          | $0 \mathrm{m} 0.599 \mathrm{s}$ | 3.0975e-14  | -0.000 | 2.307e-11    |
| system_38      | Riot $(15, 1e-11)$          | $0 \mathrm{m} 0.755 \mathrm{s}$ | 4.4409e-15  | -0.000 | 4.7198e-14   |
| system_38      | Valencia-IVP (0.00025)      | 1m10.629s                       | 0.00053855  | 9.927  | 935.08       |
| system_38      | Valencia-IVP $(0.0025)$     | 0 m 4.51 s                      | 0.0054036   | 7.390  | 83.458       |
| system_38      | Valencia-IVP $(0.025)$      | 0 m 0.436 s                     | 0.055881    | 4.675  | 9.5271       |
| system_38      | VNODE-LP (15, 1e-14, 1e-14) | $0 \mathrm{m} 0.027 \mathrm{s}$ | 2.3315e-15  | 10.000 | 1.7986e-14   |
| $system_{-}38$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.023 s                     | 1.4433e-15  | 10.000 | 1.2323e-14   |
| system_38      | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.026 s                     | 1.4155e-15  | 10.000 | 1.1435e-14   |

 Table 3.34:
 Simulation results of Problem 38

| Problems    | Methods                     | c5t         | c5w      | c6t    | c6w       |
|-------------|-----------------------------|-------------|----------|--------|-----------|
| system_39   | TAYLOR4 (TP8)               | 0.180       | 0.098956 | 10.000 | 0.0040241 |
| $system_39$ | TAYLOR4 (TP9)               | 0.250       | 0.098918 | 10.000 | 0.0040059 |
| $system_39$ | TAYLOR4 (TP10)              | 0.350       | 0.098895 | 10.000 | 0.0039945 |
| $system_39$ | TAYLOR4 (TP11)              | 0.500       | 0.098881 | 10.000 | 0.0039875 |
| $system_39$ | TAYLOR4 (TP12)              | 0.760       | 0.098872 | 10.000 | 0.0039831 |
| $system_39$ | TAYLOR4 (TP13)              | 1.150       | 0.098866 | 10.000 | 0.0039803 |
| system_39   | TAYLOR4 (TP14)              | 1.730       | 0.098863 | 10.000 | 0.0039785 |
| system_39   | RK4 (TP8)                   | 0.110       | 0.098857 | 10.000 | 0.0039757 |
| system_39   | RK4 (TP9)                   | 0.170       | 0.098857 | 10.000 | 0.0039756 |
| $system_39$ | RK4 (TP10)                  | 0.230       | 0.098857 | 10.000 | 0.0039756 |
| $system_39$ | RK4 (TP11)                  | 0.310       | 0.098856 | 10.000 | 0.0039756 |
| $system_39$ | RK4 (TP12)                  | 0.480       | 0.098856 | 10.000 | 0.0039756 |
| $system_39$ | RK4 (TP13)                  | 0.690       | 0.098856 | 10.000 | 0.0039756 |
| $system_39$ | RK4 (TP14)                  | 1.060       | 0.098856 | 10.000 | 0.0039756 |
| system_39   | LA3 (TP8)                   | 0.100       | 0.10458  | 10.000 | 0.0045642 |
| $system_39$ | LA3 $(TP9)$                 | 0.130       | 0.10263  | 10.000 | 0.0043234 |
| $system_39$ | LA3 (TP10)                  | 0.180       | 0.10129  | 10.000 | 0.0041864 |
| $system_39$ | LA3 (TP11)                  | 0.240       | 0.1004   | 10.000 | 0.0041045 |
| $system_39$ | LA3 (TP12)                  | 0.330       | 0.099845 | 10.000 | 0.0040554 |
| $system_39$ | LA3 (TP13)                  | 0.470       | 0.099481 | 10.000 | 0.0040253 |
| system_39   | LA3 $(TP14)$                | 0.690       | 0.09925  | 10.000 | 0.0040067 |
| system_39   | LC3 (TP8)                   | 0.110       | 0.10484  | 10.000 | 0.0046338 |
| $system_39$ | LC3 (TP9)                   | 0.150       | 0.10273  | 10.000 | 0.0043531 |
| $system_39$ | LC3 (TP10)                  | 0.200       | 0.10128  | 10.000 | 0.0042001 |
| $system_39$ | LC3 (TP11)                  | 0.270       | 0.1004   | 10.000 | 0.004112  |
| $system_39$ | LC3 (TP12)                  | 0.380       | 0.099832 | 10.000 | 0.0040597 |
| $system_39$ | LC3 (TP13)                  | 0.560       | 0.099472 | 10.000 | 0.0040278 |
| system_39   | LC3 (TP14)                  | 0.820       | 0.099244 | 10.000 | 0.0040082 |
| system_39   | Riot (05, 1e-11)            | 0m3.777s    | 0.09197  | -0.000 | 1.135e-05 |
| $system_39$ | Riot $(10, 1e-11)$          | 6m32.012s   | 0.09682  | -0.000 | 0.24626   |
| system_39   | Riot $(15, 1e-11)$          | 13m4.722s   | 0.09682  | -0.000 | 0.24626   |
| system_39   | Valencia-IVP $(0.00025)$    | 0m23.487s   | 0.67999  | 2.515  | 881.5     |
| $system_39$ | Valencia-IVP $(0.0025)$     | 0m1.379s    | 0.68374  | 2.303  | 6.9672    |
| system_39   | Valencia-IVP $(0.025)$      | 0 m 0.247 s | 0.73359  | 2.275  | 9.8884    |
| system_39   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.028s    | 0.10211  | 10.000 | 0.29379   |
| system_39   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.028 s | 0.10278  | 10.000 | 0.30109   |
| $system_39$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.025 s | 0.10322  | 10.000 | 0.3087    |

Table 3.35: Simulation results of Problem 39

| Problems    | Methods                     | c5t                             | c5w         | c6t    | c6w        |
|-------------|-----------------------------|---------------------------------|-------------|--------|------------|
| system_40   | TAYLOR4 (TP8)               | 25.590                          | 1.5611e-06  | 9.522  | 0.62151    |
| system_40   | TAYLOR4 (TP9)               | 35.300                          | 1.886e-07   | 10.000 | 0.24996    |
| system_40   | TAYLOR4 (TP10)              | 49.740                          | 2.2374e-08  | 10.000 | 0.029197   |
| system_40   | TAYLOR4 (TP11)              | 74.140                          | 2.6015e-09  | 10.000 | 0.0094394  |
| system_40   | TAYLOR4 (TP12)              | 113.610                         | 2.9517e-10  | 10.000 | 0.0011596  |
| system_40   | TAYLOR4 (TP13)              | 173.010                         | 3.3894e-11  | 10.000 | 0.0001425  |
| $system_40$ | TAYLOR4 (TP14)              | 266.180                         | 5.7838e-12  | 10.000 | 2.3248e-05 |
| system_40   | RK4 (TP8)                   | 18.480                          | 1.0075e-06  | 10.000 | 0.54239    |
| system_40   | RK4 (TP9)                   | 21.920                          | 1.3601e-07  | 10.000 | 0.1267     |
| $system_40$ | RK4 (TP10)                  | 30.550                          | 1.5332e-08  | 10.000 | 0.023281   |
| system_40   | RK4 (TP11)                  | 43.010                          | 1.6852e-09  | 10.000 | 0.0039165  |
| system_40   | RK4 (TP12)                  | 64.720                          | 1.8093e-10  | 10.000 | 0.00066257 |
| $system_40$ | RK4 (TP13)                  | 101.010                         | 1.9397e-11  | 10.000 | 7.4275e-05 |
| system_40   | RK4 (TP14)                  | 151.690                         | 2.5571e-12  | 10.000 | 9.829e-06  |
| system_40   | LA3 (TP8)                   | 16.790                          | 1.1266e-06  | 10.000 | 0.60409    |
| $system_40$ | LA3 $(TP9)$                 | 21.760                          | 1.3529e-07  | 10.000 | 0.15636    |
| $system_40$ | LA3 (TP10)                  | 29.580                          | 1.6075e-08  | 10.000 | 0.026108   |
| $system_40$ | LA3 (TP11)                  | 41.390                          | 1.8938e-09  | 10.000 | 0.0063105  |
| $system_40$ | LA3 (TP12)                  | 60.530                          | 2.1847e-10  | 10.000 | 0.00083967 |
| $system_40$ | LA3 (TP13)                  | 91.840                          | 2.4841e-11  | 10.000 | 0.00010056 |
| system_40   | LA3 (TP14)                  | 136.740                         | 3.209e-12   | 10.000 | 1.2899e-05 |
| system_40   | LC3 (TP8)                   | 16.910                          | 1.2305e-06  | 9.878  | 0.61908    |
| $system_40$ | LC3 (TP9)                   | 21.020                          | 1.5037 e-07 | 10.000 | 0.16173    |
| $system_40$ | LC3 (TP10)                  | 28.780                          | 1.8244e-08  | 10.000 | 0.033471   |
| $system_40$ | LC3 (TP11)                  | 39.800                          | 2.1564e-09  | 10.000 | 0.0072601  |
| $system_40$ | LC3 (TP12)                  | 58.290                          | 2.5061e-10  | 10.000 | 0.0009416  |
| $system_40$ | LC3 (TP13)                  | 88.440                          | 2.8377e-11  | 10.000 | 0.00011561 |
| system_40   | LC3 (TP14)                  | 133.470                         | 3.5767e-12  | 10.000 | 1.4508e-05 |
| system_40   | Riot (05, 1e-11)            | $0\mathrm{m}26.087\mathrm{s}$   | 1.9465e-10  | 0.000  | 0          |
| $system_40$ | Riot $(10, 1e-11)$          | 11m50.212s                      | 5.0149e-12  | 0.000  | 0          |
| system_40   | Riot $(15, 1e-11)$          | 60m12.975s                      | 7.1054e-15  | 0.000  | 0          |
| system_40   | Valencia-IVP (0.00025)      | 0m12.132s                       | 0.0010009   | 0.000  | 0          |
| $system_40$ | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.366 \mathrm{s}$ | 0.010036    | 0.000  | 0          |
| system_40   | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.035 \mathrm{s}$ | 0.10322     | 0.000  | 0          |
| system_40   | VNODE-LP (15, 1e-14, 1e-14) | 0 m 0.046 s                     | 3.8192e-14  | 3.000  | 2.9702e-10 |
| $system_40$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 3.850 s                     | 2.7978e-14  | 0.000  | 0          |
| $system_40$ | VNODE-LP (25, 1e-14, 1e-14) | 0m4.400s                        | 2.1316e-14  | 0.000  | 0          |

Table 3.36:Simulation results of Problem 40

| Problems    | Methods                     | c5t         | c5w     | c6t   | c6w     |
|-------------|-----------------------------|-------------|---------|-------|---------|
| system 41   | TAYLOB4 (TP8)               | 38 240      | 0 23341 | 2 193 | 0.81586 |
| system 41   | TAYLOR4 (TP9)               | 56.240      | 0.23356 | 2.144 | 0.84571 |
| system 41   | TAYLOR4 (TP10)              | 82.870      | 0.23312 | 2.150 | 0.844   |
| system 41   | TAYLOR4 (TP11)              | 129.130     | 0.23292 | 2.133 | 0.86159 |
| system 41   | TAYLOR4 (TP12)              | 203.650     | 0.23286 | 2.139 | 0.85592 |
| system 41   | TAYLOR4 (TP13)              | 317.250     | 0.2329  | 2.131 | 0.85896 |
| system_41   | TAYLOR4 (TP14)              | 501.260     | 0.23288 | 2.155 | 0.84068 |
|             | RK4 (TP8)                   | 24.250      | 0.23001 | 2.229 | 0.79366 |
| system_41   | RK4 (TP9)                   | 28.080      | 0.22991 | 2.223 | 0.79461 |
| system_41   | RK4 (TP10)                  | 40.330      | 0.22957 | 2.211 | 0.80802 |
| system_41   | RK4 (TP11)                  | 59.630      | 0.23089 | 2.190 | 0.8191  |
| system_41   | RK4(TP12)                   | 90.700      | 0.23209 | 2.165 | 0.83117 |
| system_41   | RK4 (TP13)                  | 144.140     | 0.23228 | 2.156 | 0.83803 |
| system_41   | RK4 (TP14)                  | 224.750     | 0.23232 | 2.149 | 0.84697 |
| system_41   | LA3 (TP8)                   | 22.090      | 0.23611 | 2.198 | 0.81753 |
| system_41   | LA3 (TP9)                   | 27.740      | 0.23533 | 2.193 | 0.81736 |
| system_41   | LA3 (TP10)                  | 40.040      | 0.23467 | 2.157 | 0.83501 |
| system_41   | LA3 (TP11)                  | 59.630      | 0.23386 | 2.143 | 0.84664 |
| system_41   | LA3 (TP12)                  | 90.130      | 0.23336 | 2.160 | 0.83456 |
| system_41   | LA3 (TP13)                  | 139.080     | 0.23337 | 2.149 | 0.84272 |
| system_41   | LA3 (TP14)                  | 223.950     | 0.2331  | 2.150 | 0.84385 |
| system_41   | LC3 (TP8)                   | 20.800      | 0.23786 | 2.181 | 0.821   |
| system_41   | LC3 (TP9)                   | 29.050      | 0.23605 | 2.187 | 0.8203  |
| system_41   | LC3 (TP10)                  | 40.420      | 0.23551 | 2.158 | 0.83568 |
| system_41   | LC3 (TP11)                  | 59.040      | 0.23434 | 2.140 | 0.84825 |
| system_41   | LC3 (TP12)                  | 91.580      | 0.23364 | 2.156 | 0.84324 |
| $system_41$ | LC3 (TP13)                  | 142.150     | 0.23351 | 2.141 | 0.85052 |
| system_41   | LC3 (TP14)                  | 220.420     | 0.23324 | 2.140 | 0.85526 |
| system_41   | Riot (05, 1e-11)            | 4m0.951s    | 0.22004 | 0.000 | 0       |
| $system_41$ | Riot $(10, 1e-11)$          | 81m51.368s  | 0.22004 | 0.000 | 0       |
| system_41   | Riot $(15, 1e-11)$          | 305m35.205s | 0.22004 | 0.000 | 0       |
| system_41   | Valencia-IVP (0.00025)      | 0m10.623s   | 0.3966  | 0.000 | 0       |
| $system_41$ | Valencia-IVP $(0.0025)$     | 0m0.275s    | 0.4067  | 0.000 | 0       |
| system_41   | Valencia-IVP $(0.025)$      | 0m0.029s    | 0.51161 | 0.000 | 0       |
| system_41   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.056s    | 0.24701 | 2.251 | 1.0915  |
| $system_41$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.061 s | 0.24758 | 2.240 | 1.1135  |
| $system_41$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.068 s | 0.24797 | 2.231 | 1.1282  |

Table 3.37 Simulation results of Problem 41

| Problems    | Methods                     | c5t         | c5w          | c6t    | c6w         |
|-------------|-----------------------------|-------------|--------------|--------|-------------|
| system_42   | TAYLOR4 (TP8)               | 0.670       | 6.5182e-08   | 10.000 | 0.0001853   |
| system_42   | TAYLOR4 (TP9)               | 0.970       | 6.9772 e-09  | 10.000 | 7.5231e-05  |
| $system_42$ | TAYLOR4 (TP10)              | 1.510       | 7.267e-10    | 10.000 | 2.3754e-05  |
| $system_42$ | TAYLOR4 (TP11)              | 2.340       | 7.4017e-11   | 10.000 | 3.93e-06    |
| $system_42$ | TAYLOR4 (TP12)              | 3.720       | 7.7236e-12   | 10.000 | 4.2675e-07  |
| $system_42$ | TAYLOR4 (TP13)              | 5.810       | 1.1897e-12   | 10.000 | 6.9992e-08  |
| $system_42$ | TAYLOR4 (TP14)              | 9.150       | 7.8271e-13   | 10.000 | 4.9014 e-08 |
| system_42   | RK4 (TP8)                   | 0.420       | 4.9849e-08   | 10.000 | 6.6443e-05  |
| system_42   | RK4 (TP9)                   | 0.600       | 5.3644 e-09  | 10.000 | 4.1734e-05  |
| system_42   | RK4 (TP10)                  | 0.880       | 5.6878e-10   | 10.000 | 2.3717e-05  |
| $system_42$ | RK4 (TP11)                  | 1.360       | 5.7543e-11   | 10.000 | 3.2772e-06  |
| system_42   | RK4 (TP12)                  | 2.140       | 5.9515e-12   | 10.000 | 3.4427 e-07 |
| $system_42$ | RK4 (TP13)                  | 3.380       | 6.9655e-13   | 10.000 | 4.1534e-08  |
| $system_42$ | RK4 (TP14)                  | 5.250       | 2.3448e-13   | 10.000 | 1.4537e-08  |
| system_42   | LA3 (TP8)                   | 0.380       | 5.4075e-08   | 10.000 | 0.00017238  |
| system_42   | LA3 (TP9)                   | 0.530       | 5.9316e-09   | 10.000 | 4.4174e-05  |
| system_42   | LA3 (TP10)                  | 0.800       | 6.3172e-10   | 10.000 | 2.4504e-05  |
| system_42   | LA3 (TP11)                  | 1.180       | 6.4227e-11   | 10.000 | 3.3231e-06  |
| system_42   | LA3 (TP12)                  | 1.840       | 6.5794 e- 12 | 10.000 | 3.4972e-07  |
| system_42   | LA3 (TP13)                  | 2.940       | 7.5517e-13   | 10.000 | 4.1783e-08  |
| $system_42$ | LA3 (TP14)                  | 4.530       | 2.1938e-13   | 10.000 | 1.3757e-08  |
| system_42   | LC3 (TP8)                   | 0.360       | 5.3813e-08   | 10.000 | 0.00013458  |
| system_42   | LC3 (TP9)                   | 0.480       | 5.0378e-09   | 10.000 | 7.047e-05   |
| system_42   | LC3 (TP10)                  | 0.700       | 4.7183e-10   | 10.000 | 2.1268e-05  |
| system_42   | LC3 (TP11)                  | 1.030       | 4.4507e-11   | 10.000 | 2.4301e-06  |
| system_42   | LC3 (TP12)                  | 1.600       | 4.3485e-12   | 10.000 | 2.4349e-07  |
| $system_42$ | LC3 (TP13)                  | 2.530       | 4.9805e-13   | 10.000 | 2.9361e-08  |
| $system_42$ | LC3 (TP14)                  | 3.990       | 1.7741e-13   | 10.000 | 1.1287e-08  |
| system_42   | Riot (05, 1e-11)            | 0m0.410s    | 1.4272e-10   | -0.000 | 2.2876e-08  |
| system_42   | Riot (10, 1e-11)            | 0m0.197s    | 4.0634e-14   | -0.000 | 1.0613e-09  |
| system_42   | Riot (15, 1e-11)            | 0 m 0.264 s | 1.8874e-15   | -0.000 | 1.1936e-09  |
| system_42   | Valencia-IVP (0.00025)      | 0m4.192s    | 0.00030347   | 9.119  | 981.67      |
| system_42   | Valencia-IVP (0.0025)       | 0m0.741s    | 0.0030419    | 7.175  | 270.69      |
| system_42   | Valencia-IVP (0.025)        | 0m0.118s    | 0.031193     | 5.000  | 19.406      |
| system_42   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.010s    | 5.5511e-15   | 10.000 | 3.5123e-12  |
| system_42   | VNODE-LP (20, 1e-14,1e-14)  | 0m0.007s    | 3.7748e-15   | 10.000 | 2.3554e-12  |
| system_42   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.010s    | 3.6637e-15   | 10.000 | 2.6627e-12  |

 Table 3.38: Simulation results of Problem 42

| Problems    | Methods                     | c5t                             | c5w     | c6t   | c6w    |
|-------------|-----------------------------|---------------------------------|---------|-------|--------|
| system_43   | TAYLOR4 (TP8)               | 0.950                           | 0.40394 | 3.329 | 6930.6 |
| system_43   | TAYLOR4 (TP9)               | 1.460                           | 0.40494 | 3.308 | 4411.4 |
| system_43   | TAYLOR4 (TP10)              | 2.430                           | 0.40469 | 3.306 | 2799.3 |
| system_43   | TAYLOR4 (TP11)              | 3.590                           | 0.4051  | 3.299 | 1762.2 |
| system_43   | TAYLOR4 (TP12)              | 5.760                           | 0.4055  | 3.289 | 1112.5 |
| $system_43$ | TAYLOR4 (TP13)              | 9.260                           | 0.40555 | 3.287 | 701.1  |
| system_43   | TAYLOR4 (TP14)              | 14.500                          | 0.40561 | 3.280 | 442.54 |
| system_43   | RK4 (TP8)                   | 0.530                           | 0.40361 | 3.338 | 8726.8 |
| $system_43$ | RK4 (TP9)                   | 0.800                           | 0.40434 | 3.333 | 5561.3 |
| $system_43$ | RK4 (TP10)                  | 1.200                           | 0.40498 | 3.316 | 3507.6 |
| $system_43$ | RK4 (TP11)                  | 1.850                           | 0.40521 | 3.301 | 2218.8 |
| $system_43$ | RK4 (TP12)                  | 2.930                           | 0.40515 | 3.288 | 1405.5 |
| $system_43$ | RK4 (TP13)                  | 4.610                           | 0.4055  | 3.282 | 888.14 |
| $system_43$ | RK4 (TP14)                  | 7.290                           | 0.40557 | 3.279 | 560.43 |
| system_43   | LA3 (TP8)                   | 0.490                           | 0.41849 | 3.263 | 11235  |
| system_43   | LA3 (TP9)                   | 0.680                           | 0.41437 | 3.282 | 7043.4 |
| $system_43$ | LA3 (TP10)                  | 1.030                           | 0.41131 | 3.280 | 4481.6 |
| $system_43$ | LA3 (TP11)                  | 1.590                           | 0.40936 | 3.277 | 2831.3 |
| $system_43$ | LA3 (TP12)                  | 2.470                           | 0.40803 | 3.276 | 1786.1 |
| $system_43$ | LA3 (TP13)                  | 3.930                           | 0.40718 | 3.283 | 1129.3 |
| system_43   | LA3 (TP14)                  | 6.240                           | 0.40664 | 3.276 | 713.89 |
| system_43   | LC3 (TP8)                   | 0.460                           | 0.42315 | 3.230 | 10495  |
| $system_43$ | LC3 (TP9)                   | 0.660                           | 0.41741 | 3.254 | 6704.5 |
| $system_43$ | LC3 (TP10)                  | 0.990                           | 0.41374 | 3.259 | 4299.6 |
| $system_43$ | LC3 (TP11)                  | 1.500                           | 0.41082 | 3.267 | 2691.3 |
| $system_43$ | LC3 (TP12)                  | 2.310                           | 0.40895 | 3.271 | 1711.2 |
| $system_43$ | LC3 (TP13)                  | 3.680                           | 0.40774 | 3.271 | 1079.2 |
| system_43   | LC3 (TP14)                  | 5.800                           | 0.40699 | 3.272 | 680.82 |
| system_43   | Riot (05, 1e-11)            | 0m57.400s                       | 0.36095 | 0.000 | 0      |
| $system_43$ | Riot $(10, 1e-11)$          | 42m34.441s                      | 0.36736 | 0.000 | 0      |
| system_43   | Riot (15, 1e-11)            | 335m18.382s                     | 0.36736 | 0.000 | 0      |
| system_43   | Valencia-IVP (0.00025)      | 0 m 4.077 s                     | 0.63512 | 2.885 | 954.65 |
| $system_43$ | Valencia-IVP $(0.0025)$     | 0 m 0.463 s                     | 0.63944 | 2.860 | 300.15 |
| system_43   | Valencia-IVP (0.025)        | 0m0.116s                        | 0.68415 | 2.650 | 29.66  |
| system_43   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.010s                        | 0.55406 | 2.715 | 13888  |
| $system_43$ | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.011 \mathrm{s}$ | 0.55889 | 2.580 | 29046  |
| system_43   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.009 s                     | 0.52831 | 2.438 | 43755  |

Table 3.39: Simulation results of Problem 43

| Problems    | Methods                     | c5t         | c5w        | c6t    | c6w          |
|-------------|-----------------------------|-------------|------------|--------|--------------|
| system_44   | TAYLOR4 (TP8)               | 99.250      | 1.6729e-08 | 10.000 | 5.1709e-07   |
| system_44   | TAYLOR4 (TP9)               | 147.970     | 1.7394e-09 | 10.000 | 7.0242e-08   |
| system_44   | TAYLOR4 (TP10)              | 226.180     | 1.7919e-10 | 10.000 | 9.4333e-09   |
| system_44   | TAYLOR4 (TP11)              | 350.780     | 1.8123e-11 | 10.000 | 1.2442e-09   |
| system_44   | TAYLOR4 (TP12)              | 555.550     | 1.82e-12   | 10.000 | 1.6044 e- 10 |
| $system_44$ | TAYLOR4 (TP13)              | 878.990     | 1.9962e-13 | 10.000 | 2.0348e-11   |
| $system_44$ | TAYLOR4 (TP14)              | 1374.220    | 1.9529e-13 | 10.000 | 2.7485e-12   |
| system_44   | RK4 (TP8)                   | 87.650      | 2.171e-08  | 10.000 | 6.5343e-07   |
| $system_44$ | RK4 (TP9)                   | 130.540     | 2.2593e-09 | 10.000 | 8.9434e-08   |
| $system_44$ | RK4 (TP10)                  | 200.110     | 2.3279e-10 | 10.000 | 1.2006e-08   |
| $system_44$ | RK4 (TP11)                  | 312.950     | 2.3621e-11 | 10.000 | 1.5783e-09   |
| $system_44$ | RK4 (TP12)                  | 493.220     | 2.3793e-12 | 10.000 | 2.0472e-10   |
| $system_44$ | RK4 (TP13)                  | 783.320     | 2.4301e-13 | 10.000 | 2.5788e-11   |
| system_44   | RK4 (TP14)                  | 1230.930    | 7.9048e-14 | 10.000 | 3.2618e-12   |
| system_44   | LA3 (TP8)                   | 71.940      | 1.6981e-08 | 10.000 | 5.8303e-07   |
| $system_44$ | LA3 (TP9)                   | 98.920      | 1.7519e-09 | 10.000 | 6.9277e-08   |
| system_44   | LA3 (TP10)                  | 149.090     | 1.7923e-10 | 10.000 | 8.6749e-09   |
| $system_44$ | LA3 (TP11)                  | 233.660     | 1.8224e-11 | 10.000 | 1.1029e-09   |
| $system_44$ | LA3 (TP12)                  | 361.000     | 1.8307e-12 | 10.000 | 1.3978e-10   |
| $system_44$ | LA3 (TP13)                  | 9.390       | 0          | 0.000  | 0            |
| system_44   | LA3 (TP14)                  | 13.960      | 0          | 0.000  | 0            |
| system_44   | LC3 (TP8)                   | 75.260      | 1.7199e-08 | 10.000 | 6.3209e-07   |
| $system_44$ | LC3 (TP9)                   | 106.040     | 1.7313e-09 | 10.000 | 7.4196e-08   |
| system_44   | LC3 (TP10)                  | 163.720     | 1.801e-10  | 10.000 | 9.1825e-09   |
| $system_44$ | LC3 (TP11)                  | 248.310     | 1.8118e-11 | 10.000 | 1.157e-09    |
| $system_44$ | LC3 (TP12)                  | 9.380       | 0          | 0.000  | 0            |
| $system_44$ | LC3 (TP13)                  | 9.390       | 0          | 0.000  | 0            |
| $system_44$ | LC3 (TP14)                  | 13.940      | 0          | 0.000  | 0            |
| system_44   | Riot                        |             |            |        |              |
| system_44   | Valencia-IVP (0.00025)      | 0m17.732s   | 0.00067987 | 8.555  | 999.95       |
| system_44   | Valencia-IVP (0.0025)       | 0m1.845s    | 0.0068261  | 7.338  | 997.5        |
| system_44   | Valencia-IVP (0.025)        | 0 m 0.222 s | 0.071092   | 6.000  | 977.47       |
| system_44   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.026s    | 8.3267e-16 | 10.000 | 1.0658e-14   |
| system_44   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.019 s | 4.996e-16  | 10.000 | 5.5511e-15   |
| system_44   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.014 s | 1.9429e-16 | 10.000 | 3.9968e-15   |

 Table 3.40:
 Simulation results of Problem 44

| Problems    | Methods                     | c5t                             | c5w     | c6t    | c6w     |
|-------------|-----------------------------|---------------------------------|---------|--------|---------|
| system_45   | TAYLOR4 (TP8)               | 109.900                         | 0.36788 | 10.000 | 0.1126  |
| system_45   | TAYLOR4 (TP9)               | 162.030                         | 0.36788 | 10.000 | 0.1126  |
| system_45   | TAYLOR4 (TP10)              | 247.300                         | 0.36788 | 10.000 | 0.1126  |
| system_45   | TAYLOR4 (TP11)              | 385.000                         | 0.36788 | 10.000 | 0.1126  |
| system_45   | TAYLOR4 (TP12)              | 610.920                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | TAYLOR4 (TP13)              | 978.780                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | TAYLOR4 (TP14)              | 1538.830                        | 0.36788 | 10.000 | 0.1126  |
| system_45   | RK4 (TP8)                   | 95.190                          | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | RK4 (TP9)                   | 141.530                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | RK4 (TP10)                  | 218.660                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | RK4 (TP11)                  | 338.220                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | RK4 (TP12)                  | 538.980                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | RK4 (TP13)                  | 853.390                         | 0.36788 | 10.000 | 0.1126  |
| $system_45$ | RK4 (TP14)                  | 1335.820                        | 0.36788 | 10.000 | 0.1126  |
| system_45   | LA3 (TP8)                   | 75.870                          | 0.38756 | 10.000 | 0.18747 |
| $system_45$ | LA3 (TP9)                   | 106.810                         | 0.38077 | 10.000 | 0.15599 |
| $system_45$ | LA3 (TP10)                  | 164.780                         | 0.37601 | 10.000 | 0.13858 |
| $system_45$ | LA3 (TP11)                  | 253.600                         | 0.37304 | 10.000 | 0.12843 |
| $system_45$ | LA3 (TP12)                  | 392.330                         | 0.37115 | 10.000 | 0.12237 |
| $system_45$ | LA3 (TP13)                  | 628.270                         | 0.36994 | 10.000 | 0.11868 |
| system_45   | LA3 (TP14)                  | 990.970                         | 0.36917 | 10.000 | 0.1164  |
| system_45   | LC3 (TP8)                   | 79.310                          | 0.38884 | 10.000 | 0.192   |
| $system_45$ | LC3 (TP9)                   | 114.090                         | 0.38141 | 10.000 | 0.15824 |
| $system_45$ | LC3 (TP10)                  | 175.810                         | 0.37636 | 10.000 | 0.13975 |
| $system_45$ | LC3 (TP11)                  | 272.780                         | 0.37326 | 10.000 | 0.1291  |
| $system_45$ | LC3 (TP12)                  | 431.510                         | 0.37127 | 10.000 | 0.12276 |
| $system_45$ | LC3 (TP13)                  | 676.980                         | 0.37001 | 10.000 | 0.11892 |
| system_45   | LC3 (TP14)                  | 1073.260                        | 0.36923 | 10.000 | 0.11655 |
| system_45   | Riot                        |                                 |         |        |         |
| system_45   | Valencia-IVP (0.00025)      | 0m17.383s                       | 2.72    | 4.274  | 999.57  |
| system_45   | Valencia-IVP (0.0025)       | 0m1.838s                        | 2.7353  | 4.263  | 997.63  |
| $system_45$ | Valencia-IVP (0.025)        | $0 \mathrm{m} 0.222 \mathrm{s}$ | 2.8947  | 4.150  | 973.41  |
| system_45   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.024s                        | 0.36788 | 10.000 | 0.66718 |
| system_45   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.020 s                     | 0.36788 | 10.000 | 0.66718 |
| system_45   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.013 s                     | 0.36788 | 10.000 | 0.66718 |

Table 3.41: Simulation results of Problem 45

| Problems    | Methods                     | c5t         | c5w         | c6t    | c6w          |
|-------------|-----------------------------|-------------|-------------|--------|--------------|
| system_46   | TAYLOR4 (TP8)               | 206.640     | 2.8129e-07  | 10.000 | 4.6794e-08   |
| system_46   | TAYLOR4 (TP9)               | 295.550     | 3.9758e-08  | 10.000 | 6.1744e-09   |
| system_46   | TAYLOR4 (TP10)              | 442.500     | 5.6043 e-09 | 10.000 | 9.4693e-10   |
| system_46   | TAYLOR4 (TP11)              | 659.730     | 7.9915e-10  | 10.000 | 1.3713e-10   |
| system_46   | TAYLOR4 (TP12)              | 1006.260    | 1.1174e-10  | 10.000 | 2.0165e-11   |
| $system_46$ | TAYLOR4 (TP13)              | 1520.690    | 1.557e-11   | 10.000 | 2.9375e-12   |
| system_46   | TAYLOR4 (TP14)              | 2311.850    | 2.162e-12   | 10.000 | 4.3671e-13   |
| system_46   | RK4 (TP8)                   | 181.660     | 3.5581e-07  | 10.000 | 6.0115e-08   |
| $system_46$ | RK4 (TP9)                   | 266.450     | 5.0501e-08  | 10.000 | 8.4781e-09   |
| $system_46$ | RK4 (TP10)                  | 398.290     | 7.1016e-09  | 10.000 | 1.1435e-09   |
| $system_46$ | RK4 (TP11)                  | 595.700     | 9.957e-10   | 10.000 | 1.7022e-10   |
| $system_46$ | RK4 (TP12)                  | 900.870     | 1.3983e-10  | 10.000 | 2.492e-11    |
| $system_46$ | RK4 (TP13)                  | 1372.050    | 1.9572e-11  | 10.000 | 3.7196e-12   |
| system_46   | RK4 (TP14)                  | 2083.170    | 2.7271e-12  | 10.000 | 5.4328e-13   |
| system_46   | LA3 (TP8)                   | 142.750     | 3.029e-07   | 10.000 | 8.59e-08     |
| $system_46$ | LA3 $(TP9)$                 | 204.050     | 3.6926e-08  | 10.000 | 7.3781e-09   |
| $system_46$ | LA3 (TP10)                  | 301.230     | 4.8977e-09  | 10.000 | 9.0584 e- 10 |
| $system_46$ | LA3 (TP11)                  | 455.320     | 6.5218e-10  | 10.000 | 1.2048e-10   |
| $system_46$ | LA3 (TP12)                  | 683.080     | 9.0125e-11  | 10.000 | 1.6853e-11   |
| $system_46$ | LA3 (TP13)                  | 1035.690    | 1.2352e-11  | 10.000 | 2.3525e-12   |
| system_46   | LA3 (TP14)                  | 18.270      | 0           | 0.000  | 0            |
| system_46   | LC3 (TP8)                   | 149.890     | 3.2956e-07  | 10.000 | 1.0752e-07   |
| $system_46$ | LC3 (TP9)                   | 219.390     | 4.0029e-08  | 10.000 | 8.8952e-09   |
| $system_46$ | LC3 (TP10)                  | 323.850     | 5.1723e-09  | 10.000 | 1.0649e-09   |
| $system_46$ | LC3 (TP11)                  | 490.370     | 6.9923e-10  | 10.000 | 1.2867e-10   |
| $system_46$ | LC3 (TP12)                  | 737.050     | 9.5419e-11  | 10.000 | 1.7671e-11   |
| $system_46$ | LC3 (TP13)                  | 1110.750    | 1.3104e-11  | 10.000 | 2.5332e-12   |
| system_46   | LC3 (TP14)                  | 18.420      | 0           | 0.000  | 0            |
| system_46   | Riot                        |             |             |        |              |
| system_46   | Valencia-IVP (0.00025)      | 0m19.620s   | 0.90083     | 1.613  | 998.27       |
| system_46   | Valencia-IVP (0.0025)       | 0m2.097s    | 10.696      | 1.383  | 994.33       |
| system_46   | Valencia-IVP (0.025)        | 0 m 0.280 s | 717.1       | 1.000  | 717.1        |
| system_46   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.112s    | 2.9109e-15  | 10.000 | 8.7708e-14   |
| system_46   | VNODE-LP (20, 1e-14, 1e-14) | 0m0.064s    | 1.5613e-15  | 10.000 | 3.9968e-14   |
| system_46   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.040s    | 8.3267e-16  | 10.000 | 2.4092e-14   |

 Table 3.42:
 Simulation results of Problem 46

| Problems    | Methods                     | c5t         | c5w      | c6t    | c6w           |
|-------------|-----------------------------|-------------|----------|--------|---------------|
| system_47   | TAYLOR4 (TP8)               | 251.600     | 0.073576 | 10.000 | 9.138e-06     |
| system_47   | TAYLOR4 (TP9)               | 370.930     | 0.073576 | 10.000 | 9.0857 e-06   |
| system_47   | TAYLOR4 (TP10)              | 574.250     | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | TAYLOR4 (TP11)              | 896.240     | 0.073576 | 10.000 | 9.08e-06      |
| system_47   | TAYLOR4 (TP12)              | 1411.760    | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | TAYLOR4 (TP13)              | 2235.520    | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | TAYLOR4 (TP14)              | 3574.470    | 0.073576 | 10.000 | 9.08e-06      |
| system_47   | RK4 (TP8)                   | 214.830     | 0.073576 | 10.000 | 9.1474e-06    |
| $system_47$ | RK4 (TP9)                   | 329.930     | 0.073576 | 10.000 | 9.0882e-06    |
| $system_47$ | RK4 (TP10)                  | 514.490     | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | RK4 (TP11)                  | 804.210     | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | RK4 (TP12)                  | 1261.520    | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | RK4 (TP13)                  | 1985.340    | 0.073576 | 10.000 | 9.08e-06      |
| $system_47$ | RK4 (TP14)                  | 3126.690    | 0.073576 | 10.000 | 9.08e-06      |
| system_47   | LA3 (TP8)                   | 172.260     | 0.073587 | 10.000 | 5.1859e-05    |
| $system_47$ | LA3 $(TP9)$                 | 253.280     | 0.073581 | 10.000 | 2.9554 e - 05 |
| $system_47$ | LA3 (TP10)                  | 387.100     | 0.073578 | 10.000 | 1.9645 e-05   |
| $system_47$ | LA3 (TP11)                  | 606.460     | 0.073577 | 10.000 | 1.4898e-05    |
| $system_47$ | LA3 (TP12)                  | 939.230     | 0.073576 | 10.000 | 1.2458e-05    |
| $system_47$ | LA3 (TP13)                  | 1476.800    | 0.073576 | 10.000 | 1.1107e-05    |
| $system_47$ | LA3 (TP14)                  | 2318.910    | 0.073576 | 10.000 | 1.0316e-05    |
| system_47   | LC3 (TP8)                   | 183.610     | 0.073588 | 10.000 | 5.7105e-05    |
| $system_47$ | LC3 (TP9)                   | 275.560     | 0.073581 | 10.000 | 3.2142e-05    |
| $system_47$ | LC3 (TP10)                  | 417.670     | 0.073578 | 10.000 | 2.056e-05     |
| $system_47$ | LC3 (TP11)                  | 655.720     | 0.073577 | 10.000 | 1.5314e-05    |
| $system_47$ | LC3 (TP12)                  | 1024.290    | 0.073576 | 10.000 | 1.2655e-05    |
| $system_47$ | LC3 (TP13)                  | 1599.140    | 0.073576 | 10.000 | 1.1206e-05    |
| $system_47$ | LC3 (TP14)                  | 2513.770    | 0.073576 | 10.000 | 1.0371e-05    |
| system_47   | Riot                        |             |          |        |               |
| system_47   | Valencia-IVP (0.00025)      | 0m19.696s   | 43.149   | 1.244  | 998.7         |
| $system_47$ | Valencia-IVP $(0.0025)$     | 0m2.122s    | 62.436   | 1.215  | 989.09        |
| system_47   | Valencia-IVP $(0.025)$      | 0 m 0.270 s | 832.17   | 0.975  | 832.17        |
| system_47   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.112s    | 0.073576 | 10.000 | 0.19992       |
| $system_47$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.063 s | 0.073576 | 10.000 | 0.19992       |
| $system_47$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.038 s | 0.073576 | 10.000 | 0.19992       |

Table 3.43: Simulation results of Problem 47

| Problems    | Methods                     | c5t                             | c5w        | c6t    | c6w         |
|-------------|-----------------------------|---------------------------------|------------|--------|-------------|
| system_48   | TAYLOR4 (TP8)               | 270.510                         | 3.5098e-08 | 10.000 | 7.1884e-07  |
| system_48   | TAYLOR4 (TP9)               | 411.140                         | 3.7378e-09 | 10.000 | 1.0437e-07  |
| $system_48$ | TAYLOR4 (TP10)              | 636.760                         | 3.9037e-10 | 10.000 | 1.5031e-08  |
| system_48   | TAYLOR4 (TP11)              | 1003.860                        | 3.9284e-11 | 10.000 | 2.1706e-09  |
| $system_48$ | TAYLOR4 (TP12)              | 1586.020                        | 4.0629e-12 | 10.000 | 3.1246e-10  |
| $system_48$ | TAYLOR4 (TP13)              | 2484.510                        | 4.9355e-13 | 10.000 | 4.4848e-11  |
| $system_48$ | TAYLOR4 (TP14)              | 3908.730                        | 1.9457e-13 | 10.000 | 6.4941e-12  |
| system_48   | RK4 (TP8)                   | 244.580                         | 4.4892e-08 | 10.000 | 9.0045e-07  |
| $system_48$ | RK4 (TP9)                   | 372.300                         | 4.8038e-09 | 10.000 | 1.306e-07   |
| $system_48$ | RK4 (TP10)                  | 583.480                         | 5.112e-10  | 10.000 | 1.8909e-08  |
| $system_48$ | RK4 (TP11)                  | 921.360                         | 5.1871e-11 | 10.000 | 2.7231e-09  |
| $system_48$ | RK4 (TP12)                  | 1449.170                        | 5.2396e-12 | 10.000 | 3.9235e-10  |
| $system_48$ | RK4 (TP13)                  | 2274.660                        | 5.6177e-13 | 10.000 | 5.6309e-11  |
| $system_48$ | RK4 (TP14)                  | 3598.580                        | 1.0719e-13 | 10.000 | 8.1017e-12  |
| system_48   | LA3 (TP8)                   | 192.150                         | 3.5165e-08 | 10.000 | 5.7435e-06  |
| $system_48$ | LA3 $(TP9)$                 | 282.410                         | 3.6459e-09 | 10.000 | 3.0749e-07  |
| $system_48$ | LA3 (TP10)                  | 432.900                         | 3.8153e-10 | 10.000 | 2.5881e-08  |
| $system_48$ | LA3 (TP11)                  | 688.310                         | 3.9668e-11 | 10.000 | 2.7242e-09  |
| $system_48$ | LA3 (TP12)                  | 1069.590                        | 4.036e-12  | 10.000 | 3.2499e-10  |
| $system_48$ | LA3 (TP13)                  | 24.680                          | 0          | 0.000  | 0           |
| system_48   | LA3 (TP14)                  | 32.600                          | 0          | 0.000  | 0           |
| system_48   | LC3 (TP8)                   | 206.350                         | 3.7145e-08 | 10.000 | 9.4115e-06  |
| $system_48$ | LC3 (TP9)                   | 303.850                         | 3.7256e-09 | 10.000 | 3.9047 e-07 |
| $system_48$ | LC3 (TP10)                  | 468.430                         | 3.9032e-10 | 10.000 | 2.9785e-08  |
| $system_48$ | LC3 (TP11)                  | 738.850                         | 3.9451e-11 | 10.000 | 3.0202e-09  |
| $system_48$ | LC3 (TP12)                  | 1151.230                        | 4.015e-12  | 10.000 | 3.5442e-10  |
| $system_48$ | LC3 (TP13)                  | 24.670                          | 0          | 0.000  | 0           |
| $system_48$ | LC3 (TP14)                  | 32.170                          | 0          | 0.000  | 0           |
| system_48   | Riot                        |                                 |            |        |             |
| system_48   | Valencia-IVP (0.00025)      | 0m24.122s                       | 0.004682   | 4.352  | 999.44      |
| system_48   | Valencia-IVP (0.0025)       | 0m2.676s                        | 0.047669   | 3.725  | 994.41      |
| system_48   | Valencia-IVP (0.025)        | $0 \mathrm{m} 0.311 \mathrm{s}$ | 0.57528    | 2.950  | 913.46      |
| system_48   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.041s                        | 8.0491e-16 | 10.000 | 9.194e-16   |
| system_48   | VNODE-LP (20, 1e-14, 1e-14) | 0m0.029s                        | 7.2164e-16 | 10.000 | 3.4001e-16  |
| system_48   | VNODE-LP (25, 1e-14, 1e-14) | 0m0.023s                        | 3.0531e-16 | 10.000 | 2.498e-16   |

Table 3.44: Simulation results of Problem 48

| Problems    | Methods                     | c5t                             | c5w     | c6t    | c6w      |
|-------------|-----------------------------|---------------------------------|---------|--------|----------|
| system_49   | TAYLOR4 (TP8)               | 309.470                         | 0.10763 | 10.000 | 0.011897 |
| system_49   | TAYLOR4 (TP9)               | 471.270                         | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | TAYLOR4 (TP10)              | 733.000                         | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | TAYLOR4 (TP11)              | 1166.480                        | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | TAYLOR4 (TP12)              | 1859.450                        | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | TAYLOR4 (TP13)              | 2949.570                        | 0.10763 | 10.000 | 0.011895 |
| system_49   | TAYLOR4 (TP14)              | 4695.330                        | 0.10763 | 10.000 | 0.011895 |
| system_49   | RK4 (TP8)                   | 272.790                         | 0.10763 | 10.000 | 0.011897 |
| $system_49$ | RK4 (TP9)                   | 422.230                         | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | RK4 (TP10)                  | 655.010                         | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | RK4 (TP11)                  | 1042.530                        | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | RK4 (TP12)                  | 1639.250                        | 0.10763 | 10.000 | 0.011895 |
| $system_49$ | RK4 (TP13)                  | 2579.950                        | 0.10763 | 10.000 | 0.011895 |
| system_49   | RK4 (TP14)                  | 4085.610                        | 0.10763 | 10.000 | 0.011895 |
| system_49   | LA3 (TP8)                   | 212.960                         | 0.11444 | 10.000 | 0.059049 |
| $system_49$ | LA3 $(TP9)$                 | 317.320                         | 0.11195 | 10.000 | 0.033987 |
| $system_49$ | LA3 (TP10)                  | 489.220                         | 0.11035 | 10.000 | 0.02343  |
| $system_49$ | LA3 $(TP11)$                | 773.440                         | 0.10933 | 10.000 | 0.018369 |
| $system_49$ | LA3 $(TP12)$                | 1212.350                        | 0.1087  | 10.000 | 0.015688 |
| $system_49$ | LA3 $(TP13)$                | 1913.060                        | 0.1083  | 10.000 | 0.01418  |
| system_49   | LA3 (TP14)                  | 3027.240                        | 0.10805 | 10.000 | 0.013295 |
| system_49   | LC3 (TP8)                   | 227.850                         | 0.11525 | 10.000 | 0.063765 |
| $system_49$ | LC3 (TP9)                   | 339.800                         | 0.11229 | 10.000 | 0.035622 |
| $system_49$ | LC3 (TP10)                  | 526.690                         | 0.11049 | 10.000 | 0.024098 |
| $system_49$ | LC3 (TP11)                  | 839.800                         | 0.10941 | 10.000 | 0.018691 |
| $system_49$ | LC3 (TP12)                  | 1309.320                        | 0.10874 | 10.000 | 0.015859 |
| $system_49$ | LC3 (TP13)                  | 2073.580                        | 0.10833 | 10.000 | 0.014276 |
| system_49   | LC3 (TP14)                  | 3273.800                        | 0.10807 | 10.000 | 0.013352 |
| system_49   | Riot                        |                                 |         |        |          |
| system_49   | Valencia-IVP (0.00025)      | 0m24.032s                       | 5.8874  | 2.488  | 999.56   |
| system_49   | Valencia-IVP (0.0025)       | 0m2.571s                        | 5.9852  | 2.475  | 998.38   |
| system_49   | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.314 \mathrm{s}$ | 7.1174  | 2.350  | 997.96   |
| system_49   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.044s                        | 0.10763 | 10.000 | 0.011895 |
| system_49   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.030 s                     | 0.10763 | 10.000 | 0.011895 |
| system_49   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.021 s                     | 0.10763 | 10.000 | 0.011895 |

Table 3.45: Simulation results of Problem 49

| Problems       | Methods                     | c5t          | c5w            | c6t    | c6w         |
|----------------|-----------------------------|--------------|----------------|--------|-------------|
| system_56      | TAYLOR4 (TP8)               | 1.210        | 1.2465e-05     | 10.000 | 8.3213e-05  |
| system_56      | TAYLOR4 (TP9)               | 1.470        | 4.9579e-06     | 10.000 | 4.0366e-05  |
| $system_56$    | TAYLOR4 (TP10)              | 2.060        | 2.875e-06      | 10.000 | 3.0631e-05  |
| $system_56$    | TAYLOR4 (TP11)              | 2.980        | 9.1925e-07     | 10.000 | 3.1768e-05  |
| $system_56$    | TAYLOR4 (TP12)              | 4.320        | 2.9164 e-07    | 10.000 | 0.00013262  |
| $system_56$    | TAYLOR4 (TP13)              | 6.340        | 8.4087 e-08    | 10.000 | 0.00010804  |
| $system_56$    | TAYLOR4 (TP14)              | 9.610        | 1.159e-08      | 10.000 | 3.8782e-05  |
| system_56      | RK4 (TP8)                   | 0.590        | 2.9768e-07     | 10.000 | 1.6874e-05  |
| system_56      | RK4 (TP9)                   | 0.800        | 4.3149e-08     | 10.000 | 1.0541e-05  |
| system_56      | RK4 (TP10)                  | 1.040        | 6.4105e-09     | 10.000 | 8.784e-06   |
| system_56      | RK4 (TP11)                  | 1.550        | 8.693e-10      | 10.000 | 2.2891e-06  |
| system_56      | RK4 (TP12)                  | 2.300        | 1.1902e-10     | 10.000 | 3.4672e-07  |
| $system_56$    | RK4 (TP13)                  | 3.410        | 1.572e-11      | 10.000 | 4.8711e-08  |
| $system_56$    | RK4 (TP14)                  | 5.200        | 2.0466e-12     | 10.000 | 6.8005e-09  |
| system_56      | LA3 (TP8)                   | 0.590        | 2.3105e-07     | 10.000 | 2.6021e-05  |
| system_56      | LA3 (TP9)                   | 0.790        | 3.7592e-08     | 10.000 | 1.2067 e-05 |
| $system_56$    | LA3 (TP10)                  | 1.090        | 5.8336e-09     | 10.000 | 9.2705e-06  |
| system_56      | LA3 (TP11)                  | 1.520        | $8.9354e{-}10$ | 10.000 | 2.7425e-06  |
| $system_56$    | LA3 (TP12)                  | 2.210        | 1.3327e-10     | 10.000 | 4.3035e-07  |
| $system_56$    | LA3 (TP13)                  | 3.110        | 1.9496e-11     | 10.000 | 6.3061e-08  |
| $system_56$    | LA3 (TP14)                  | 4.550        | 2.8287e-12     | 10.000 | 9.2639e-09  |
| system_56      | LC3 (TP8)                   | 0.600        | 2.2727e-07     | 10.000 | 2.0461e-05  |
| system_56      | LC3 (TP9)                   | 0.780        | 3.6407 e-08    | 10.000 | 1.6216e-05  |
| system_56      | LC3 (TP10)                  | 1.090        | 5.4528e-09     | 10.000 | 9.3004e-06  |
| system_56      | LC3 (TP11)                  | 1.570        | 7.8127e-10     | 10.000 | 2.411e-06   |
| $system_56$    | LC3 (TP12)                  | 2.350        | 1.062e-10      | 10.000 | 3.3882e-07  |
| $system_56$    | LC3 (TP13)                  | 3.370        | 1.3902e-11     | 10.000 | 4.5448e-08  |
| $system_56$    | LC3 (TP14)                  | 5.080        | 1.8026e-12     | 10.000 | 6.1851e-09  |
| system_56      | Riot (02, 1e-11)            | 0m2.480s     | 2.643e-07      | -0.000 | 0.001449    |
| $system_{-}56$ | Riot (05, 1e-11)            | 0 m 0.300 s  | 6.8263e-11     | -0.000 | 2.0833e-07  |
| $system_56$    | Riot (10, 1e-11)            | 0 m 0.259 s  | 1.0353e-12     | -0.000 | 1.1906e-09  |
| $system_56$    | Riot $(15, 1e-11)$          | 0 m 0.375 s  | 4.563e-14      | -0.000 | 6.2571e-12  |
| system_56      | Valencia-IVP (0.00025)      | 0m1.982s     | 0.00019354     | 10.000 | 4.7911      |
| $system_56$    | Valencia-IVP $(0.0025)$     | 0m0.184s     | 0.0019484      | 10.000 | 48.755      |
| $system_56$    | Valencia-IVP $(0.025)$      | 0m0.026s     | 0.020834       | 10.000 | 582.16      |
| system_56      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.015s     | 4.6629e-15     | 10.000 | 6.9611e-14  |
| $system_56$    | VNODE-LP (20, 1e-14, 1e-14) | 0m $0.017$ s | 3.5527e-15     | 10.000 | 5.948e-14   |
| $system_56$    | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.019 s  | 2.7756e-15     | 10.000 | 3.9801e-14  |

 Table 3.46: Simulation results of Problem 56

| Problems       | Methods                     | c5t         | c5w       | c6t    | c6w       |
|----------------|-----------------------------|-------------|-----------|--------|-----------|
| system_57      | TAYLOR4 (TP8)               | 1.060       | 0.0067999 | 10.000 | 0.0034968 |
| system_57      | TAYLOR4 (TP9)               | 1.420       | 0.0067971 | 10.000 | 0.0033828 |
| $system_57$    | TAYLOR4 (TP10)              | 2.050       | 0.0067966 | 10.000 | 0.003375  |
| $system_57$    | TAYLOR4 (TP11)              | 2.970       | 0.0067958 | 10.000 | 0.0033756 |
| $system_57$    | TAYLOR4 (TP12)              | 4.230       | 0.0067957 | 10.000 | 0.0034279 |
| $system_57$    | TAYLOR4 (TP13)              | 6.310       | 0.0067956 | 10.000 | 0.0034369 |
| $system_57$    | TAYLOR4 (TP14)              | 9.570       | 0.0067956 | 10.000 | 0.0033881 |
| system_57      | RK4 (TP8)                   | 0.580       | 0.0067958 | 10.000 | 0.0033643 |
| system_57      | RK4 (TP9)                   | 0.780       | 0.0067956 | 10.000 | 0.0033621 |
| system_57      | RK4 (TP10)                  | 1.060       | 0.0067956 | 10.000 | 0.0033584 |
| system_57      | RK4 (TP11)                  | 1.530       | 0.0067956 | 10.000 | 0.0033523 |
| system_57      | RK4 (TP12)                  | 2.410       | 0.0067956 | 10.000 | 0.0033504 |
| $system_57$    | RK4 (TP13)                  | 3.320       | 0.0067956 | 10.000 | 0.0033501 |
| $system_57$    | RK4 (TP14)                  | 5.180       | 0.0067956 | 10.000 | 0.00335   |
| system_57      | LA3 (TP8)                   | 0.580       | 0.0069796 | 10.000 | 0.013207  |
| system_57      | LA3 (TP9)                   | 0.770       | 0.0069339 | 10.000 | 0.0083059 |
| system_57      | LA3 (TP10)                  | 1.060       | 0.0068985 | 10.000 | 0.0086576 |
| system_57      | LA3 (TP11)                  | 1.480       | 0.0068688 | 10.000 | 0.0060924 |
| $system_57$    | LA3 (TP12)                  | 2.160       | 0.0068461 | 10.000 | 0.0054237 |
| $system_57$    | LA3 (TP13)                  | 3.030       | 0.0068304 | 10.000 | 0.0045981 |
| $system_{-}57$ | LA3 (TP14)                  | 4.490       | 0.0068194 | 10.000 | 0.004046  |
| system_57      | LC3 (TP8)                   | 0.590       | 0.0070117 | 10.000 | 0.014465  |
| $system_57$    | LC3 (TP9)                   | 0.770       | 0.0069595 | 10.000 | 0.0095625 |
| $system_57$    | LC3 (TP10)                  | 1.070       | 0.0069121 | 10.000 | 0.010461  |
| $system_57$    | LC3 (TP11)                  | 1.520       | 0.0068748 | 10.000 | 0.0065855 |
| $system_57$    | LC3 (TP12)                  | 2.280       | 0.0068492 | 10.000 | 0.0056602 |
| $system_57$    | LC3 (TP13)                  | 3.300       | 0.0068311 | 10.000 | 0.0047481 |
| $system_57$    | LC3 (TP14)                  | 5.050       | 0.0068188 | 10.000 | 0.004001  |
| system_57      | Riot (05, 1e-11)            | 0m0.342s    | 0.013481  | -0.000 | 33.434    |
| $system_{-}57$ | Riot (10, 1e-11)            | 0 m 0.308 s | 0.012937  | -0.000 | 4.2549    |
| $system_57$    | Riot $(15, 1e-11)$          | 0 m 0.517 s | 0.012937  | -0.000 | 1.078     |
| system_57      | Valencia-IVP (0.00025)      | 0m1.863s    | 0.015962  | 10.000 | 288.91    |
| $system_57$    | Valencia-IVP (0.0025)       | 0m0.180s    | 0.017692  | 10.000 | 337.44    |
| $system_57$    | Valencia-IVP $(0.025)$      | 0m0.024s    | 0.035905  | 10.000 | 921.84    |
| system_57      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.015s    | 0.0067956 | 10.000 | 0.054773  |
| system_57      | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.018 s | 0.0067956 | 10.000 | 0.054773  |
| system_57      | VNODE-LP (25, 1e-14, 1e-14) | 0m0.018s    | 0.0067956 | 10.000 | 0.054773  |

Table 3.47: Simulation results of Problem 57

| Problems    | Methods                     | c5t         | c5w         | c6t    | c6w         |
|-------------|-----------------------------|-------------|-------------|--------|-------------|
| system_58   | TAYLOR4 (TP8)               | 0.180       | 7.7141e-08  | 10.000 | 3.4549e-05  |
| system_58   | TAYLOR4 (TP9)               | 0.260       | 8.0285e-09  | 10.000 | 2.1271e-05  |
| $system_58$ | TAYLOR4 (TP10)              | 0.410       | 8.2963e-10  | 10.000 | 9.8007e-06  |
| $system_58$ | TAYLOR4 (TP11)              | 0.640       | 8.5321e-11  | 10.000 | 3.2405e-06  |
| $system_58$ | TAYLOR4 (TP12)              | 1.000       | 8.848e-12   | 10.000 | 3.459e-07   |
| $system_58$ | TAYLOR4 (TP13)              | 1.550       | 1.6449e-12  | 10.000 | 5.4546e-08  |
| $system_58$ | TAYLOR4 (TP14)              | 2.730       | 1.3616e-12  | 10.000 | 3.6384 e-08 |
| system_58   | RK4 (TP8)                   | 0.130       | 1.1435e-07  | 10.000 | 3.0612e-05  |
| system_58   | RK4 (TP9)                   | 0.190       | 1.5557e-08  | 10.000 | 1.7471e-05  |
| $system_58$ | RK4 (TP10)                  | 0.280       | 1.8288e-09  | 10.000 | 8.2663e-06  |
| system_58   | RK4 (TP11)                  | 0.440       | 1.9948e-10  | 10.000 | 4.5881e-06  |
| system_58   | RK4 (TP12)                  | 0.680       | 2.3118e-11  | 10.000 | 5.8802e-07  |
| $system_58$ | RK4 (TP13)                  | 1.030       | 2.7485e-12  | 10.000 | 7.0181e-08  |
| system_58   | RK4 (TP14)                  | 1.600       | 6.4215e-13  | 10.000 | 1.6374e-08  |
| system_58   | LA3 (TP8)                   | 0.100       | 7.7582e-08  | 10.000 | 3.862e-05   |
| $system_58$ | LA3 (TP9)                   | 0.150       | 8.4071e-09  | 10.000 | 1.8014 e-05 |
| $system_58$ | LA3 (TP10)                  | 0.230       | 1e-09       | 10.000 | 5.9569e-06  |
| $system_58$ | LA3 (TP11)                  | 0.350       | 1.1954e-10  | 10.000 | 4.7884e-06  |
| $system_58$ | LA3 (TP12)                  | 0.550       | 1.4015e-11  | 10.000 | 5.7684 e-07 |
| $system_58$ | LA3 (TP13)                  | 0.840       | 1.6018e-12  | 10.000 | 6.6192 e-08 |
| system_58   | LA3 (TP14)                  | 1.300       | 4.8228e-13  | 10.000 | 1.4357e-08  |
| system_58   | LC3 (TP8)                   | 0.110       | 7.6055e-08  | 10.000 | 3.2019e-05  |
| $system_58$ | LC3 (TP9)                   | 0.160       | 7.0379e-09  | 10.000 | 1.7252e-05  |
| $system_58$ | LC3 (TP10)                  | 0.240       | 7.073e-10   | 10.000 | 8.826e-06   |
| $system_58$ | LC3 (TP11)                  | 0.370       | 6.9519e-11  | 10.000 | 2.7407e-06  |
| $system_58$ | LC3 (TP12)                  | 0.570       | 7.0854e-12  | 10.000 | 2.6685e-07  |
| $system_58$ | LC3 (TP13)                  | 0.880       | 9.0639e-13  | 10.000 | 3.0817e-08  |
| system_58   | LC3 (TP14)                  | 1.360       | 4.0279e-13  | 10.000 | 1.0658e-08  |
| system_58   | Riot (05, 1e-11)            | 0 m 0.386 s | 6.7986e-11  | -0.000 | 1.8892e-06  |
| $system_58$ | Riot (10, 1e-11)            | 0 m 0.225 s | 7.1609e-13  | -0.000 | 3.3649e-08  |
| system_58   | Riot (15, 1e-11)            | 0 m 0.310 s | 2.1094e-14  | -0.000 | 7.9267 e-07 |
| system_58   | Valencia-IVP (0.00025)      | 0m1.907s    | 0.0032029   | 4.129  | 968.02      |
| $system_58$ | Valencia-IVP $(0.0025)$     | 0 m 0.289 s | 0.032453    | 3.468  | 825.8       |
| system_58   | Valencia-IVP (0.025)        | 0 m 0.063 s | 0.36874     | 2.325  | 2.7348      |
| system_58   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.007s    | 9.992e-15   | 10.000 | 5.2854e-13  |
| system_58   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.007 s | 5.9952e-15  | 10.000 | 3.5797e-13  |
| $system_58$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.008 s | 5.107 e- 15 | 10.000 | 2.6821e-13  |

 Table 3.48: Simulation results of Problem 58

| Problems    | Methods                     | c5t                             | c5w     | c6t   | c6w          |
|-------------|-----------------------------|---------------------------------|---------|-------|--------------|
| system 59   | TAYLOB4 (TP8)               | 0.320                           | 0.61888 | 2 332 | 409.62       |
| system 59   | TAYLOR4 (TP9)               | 0.500                           | 0.61763 | 2.342 | 627.45       |
| system_59   | TAYLOR4 (TP10)              | 0.780                           | 0.62016 | 2.343 | 947.95       |
| system_59   | TAYLOR4 (TP11)              | 1.220                           | 0.61634 | 2.353 | 1393.3       |
| system_59   | TAYLOR4 (TP12)              | 1.960                           | 0.61604 | 2.356 | 2026.9       |
| system_59   | TAYLOR4 (TP13)              | 3.070                           | 0.61584 | 2.358 | 2938.4       |
| system_59   | TAYLOR4 (TP14)              | 4.880                           | 0.61601 | 2.356 | 1820.2       |
| system_59   | RK4 (TP8)                   | 0.190                           | 0.61554 | 2.340 | 309.16       |
| $system_59$ | RK4 (TP9)                   | 0.290                           | 0.61552 | 2.346 | 482.14       |
| $system_59$ | RK4 (TP10)                  | 0.460                           | 0.61552 | 2.351 | 729.25       |
| $system_59$ | RK4 (TP11)                  | 0.700                           | 0.61571 | 2.354 | 1074.3       |
| $system_59$ | RK4 (TP12)                  | 1.150                           | 0.61887 | 2.351 | 1577.8       |
| $system_59$ | RK4 (TP13)                  | 1.740                           | 0.61551 | 2.358 | 2300         |
| $system_59$ | RK4 (TP14)                  | 2.740                           | 0.61551 | 2.359 | 2656.2       |
| system_59   | LA3 (TP8)                   | 0.170                           | 0.62868 | 2.301 | 256.97       |
| $system_59$ | LA3 (TP9)                   | 0.240                           | 0.6239  | 2.322 | 405.24       |
| $system_59$ | LA3 (TP10)                  | 0.370                           | 0.62081 | 2.335 | 610.27       |
| $system_59$ | LA3 (TP11)                  | 0.580                           | 0.61885 | 2.344 | 914.53       |
| $system_59$ | LA3 (TP12)                  | 0.890                           | 0.61796 | 2.350 | 1348.2       |
| $system_59$ | LA3 (TP13)                  | 1.410                           | 0.61684 | 2.354 | 1965         |
| $system_59$ | LA3 (TP14)                  | 2.230                           | 0.61635 | 2.357 | 2848.1       |
| system_59   | LC3 (TP8)                   | 0.170                           | 0.63191 | 2.285 | 262.91       |
| $system_59$ | LC3 (TP9)                   | 0.260                           | 0.6259  | 2.312 | 421.05       |
| $system_59$ | LC3 (TP10)                  | 0.390                           | 0.62194 | 2.329 | 642.8        |
| $system_59$ | LC3 (TP11)                  | 0.610                           | 0.61954 | 2.341 | 952.94       |
| $system_59$ | LC3 (TP12)                  | 1.050                           | 0.62126 | 2.343 | 1402.2       |
| $system_59$ | LC3 (TP13)                  | 1.490                           | 0.61753 | 2.352 | 2043.1       |
| system_59   | LC3 (TP14)                  | 2.350                           | 0.61652 | 2.356 | 2965.4       |
| system_59   | Riot (05, 1e-11)            | 0 m 7.354 s                     | 0       | 0.000 | 0            |
| $system_59$ | Riot $(10, 1e-11)$          | 6m33.869s                       | 0.58244 | 0.000 | 0            |
| system_59   | Riot $(15, 1e-11)$          | 53m34.326s                      | 0.58244 | 0.000 | 0            |
| system_59   | Valencia-IVP $(0.00025)$    | 0 m 3.563 s                     | 1.4356  | 1.733 | 990.17       |
| $system_59$ | Valencia-IVP $(0.0025)$     | 0 m 0.469 s                     | 1.5086  | 1.698 | 818.5        |
| system_59   | Valencia-IVP (0.025)        | $0 \mathrm{m} 0.100 \mathrm{s}$ | 3.003   | 1.300 | 23.135       |
| system_59   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.013s                        | 1.4378  | 1.641 | 3.7929e + 05 |
| $system_59$ | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.013 s                     | 1.8859  | 1.527 | 1.176e + 06  |
| $system_59$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.011 s                     | 2.2062  | 1.455 | 1.9992e + 06 |

 Table 3.49:
 Simulation results of Problem 59

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Problems    | Methods                     | c5t                             | c5w          | c6t    | c6w          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|---------------------------------|--------------|--------|--------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | TAYLOR4 (TP8)               | 0.980                           | 3.6313e-08   | 10.000 | 2.0172e-05   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | TAYLOR4 (TP9)               | 1.510                           | 3.91e-09     | 10.000 | 1.0452 e- 05 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | TAYLOR4 (TP10)              | 2.370                           | 4.1545e-10   | 10.000 | 2.449e-06    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | TAYLOR4 (TP11)              | 3.760                           | 4.2142e-11   | 10.000 | 2.5501e-07   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | TAYLOR4 (TP12)              | 5.900                           | 4.5062 e- 12 | 10.000 | 2.7482e-08   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | TAYLOR4 (TP13)              | 9.510                           | 8.6153e-13   | 10.000 | 4.9282e-09   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | TAYLOR4 (TP14)              | 15.000                          | 7.2609e-13   | 10.000 | 3.8885e-09   |
| system_60         RK4 (TP9)         0.850         5.3363e-09         10.000         6.8093e-06           system_60         RK4 (TP10)         1.280         5.4613e-10         10.000         3.8676e-06           system_60         RK4 (TP11)         2.460         5.5102e-11         10.000         4.6275e-07           system_60         RK4 (TP12)         3.240         5.5893e-12         10.000         4.885e-08           system_60         RK4 (TP13)         5.110         6.1329e-13         10.000         5.556e-09           system_60         RK4 (TP14)         7.970         2.0783e-13         10.000         1.3849e-09           system 60         LA3 (TP8)         0.550         5.2924e-08         10.000         1.3089e-05 | system_60   | RK4 (TP8)                   | 0.560                           | 5.1365e-08   | 10.000 | 1.0619e-05   |
| system_60         RK4 (TP10)         1.280         5.4613e-10         10.000         3.8676e-06           system_60         RK4 (TP11)         2.460         5.5102e-11         10.000         4.6275e-07           system_60         RK4 (TP12)         3.240         5.5893e-12         10.000         4.885e-08           system_60         RK4 (TP13)         5.110         6.1329e-13         10.000         5.556e-09           system_60         RK4 (TP14)         7.970         2.0783e-13         10.000         1.3849e-09           system 60         LA3 (TP8)         0.550         5.2924e-08         10.000         1.3089e-05                                                                                                          | system_60   | RK4 (TP9)                   | 0.850                           | 5.3363e-09   | 10.000 | 6.8093e-06   |
| system_60         RK4 (TP11)         2.460         5.5102e-11         10.000         4.6275e-07           system_60         RK4 (TP12)         3.240         5.5893e-12         10.000         4.885e-08           system_60         RK4 (TP13)         5.110         6.1329e-13         10.000         5.556e-09           system_60         RK4 (TP14)         7.970         2.0783e-13         10.000         1.3849e-09           system 60         LA3 (TP8)         0.550         5.2924e-08         10.000         1.3089e-05                                                                                                                                                                                                                    | system_60   | RK4 (TP10)                  | 1.280                           | 5.4613 e- 10 | 10.000 | 3.8676e-06   |
| system_60         RK4 (TP12)         3.240         5.5893e-12         10.000         4.885e-08           system_60         RK4 (TP13)         5.110         6.1329e-13         10.000         5.556e-09           system_60         RK4 (TP14)         7.970         2.0783e-13         10.000         1.3849e-09           system 60         LA3 (TP8)         0.550         5.2924e-08         10.000         1.3089e-05                                                                                                                                                                                                                                                                                                                              | system_60   | RK4 (TP11)                  | 2.460                           | 5.5102e-11   | 10.000 | 4.6275e-07   |
| system_60         RK4 (TP13)         5.110         6.1329e-13         10.000         5.556e-09           system_60         RK4 (TP14)         7.970         2.0783e-13         10.000         1.3849e-09           system 60         LA3 (TP8)         0.550         5.2924e-08         10.000         1.3089e-05                                                                                                                                                                                                                                                                                                                                                                                                                                       | system_60   | RK4 (TP12)                  | 3.240                           | 5.5893e-12   | 10.000 | 4.885e-08    |
| system_60         RK4 (TP14)         7.970         2.0783e-13         10.000         1.3849e-09           system 60         LA3 (TP8)         0.550         5.2924e-08         10.000         1.3089e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | system_60   | RK4 (TP13)                  | 5.110                           | 6.1329e-13   | 10.000 | 5.556e-09    |
| system 60 LA3 (TP8) 0.550 5.2924e-08 10.000 1.3089e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | RK4 (TP14)                  | 7.970                           | 2.0783e-13   | 10.000 | 1.3849e-09   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | system_60   | LA3 (TP8)                   | 0.550                           | 5.2924e-08   | 10.000 | 1.3089e-05   |
| system_60 LA3 (TP9) 0.840 5.5683e-09 10.000 1.2154e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | LA3 (TP9)                   | 0.840                           | 5.5683e-09   | 10.000 | 1.2154e-05   |
| system_60 LA3 (TP10) 1.230 5.7092e-10 10.000 2.8252e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LA3 (TP10)                  | 1.230                           | 5.7092e-10   | 10.000 | 2.8252e-06   |
| system_60 LA3 (TP11) 2.120 5.8239e-11 10.000 3.2878e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LA3 (TP11)                  | 2.120                           | 5.8239e-11   | 10.000 | 3.2878e-07   |
| system_60 LA3 (TP12) 3.040 5.9095e-12 10.000 3.4149e-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LA3 (TP12)                  | 3.040                           | 5.9095e-12   | 10.000 | 3.4149e-08   |
| system_60 LA3 (TP13) 4.770 6.4371e-13 10.000 4.0022e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $system_60$ | LA3 (TP13)                  | 4.770                           | 6.4371e-13   | 10.000 | 4.0022e-09   |
| system_60 LA3 (TP14) 7.540 1.9762e-13 10.000 1.2146e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LA3 (TP14)                  | 7.540                           | 1.9762e-13   | 10.000 | 1.2146e-09   |
| system_60 LC3 (TP8) 0.580 3.2515e-08 10.000 1.2785e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | LC3 (TP8)                   | 0.580                           | 3.2515e-08   | 10.000 | 1.2785e-05   |
| system_60 LC3 (TP9) 0.850 3.4269e-09 10.000 1.1738e-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | system_60   | LC3 (TP9)                   | 0.850                           | 3.4269e-09   | 10.000 | 1.1738e-05   |
| system_60 LC3 (TP10) 1.330 3.5506e-10 10.000 2.5568e-06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LC3 (TP10)                  | 1.330                           | 3.5506e-10   | 10.000 | 2.5568e-06   |
| system_60 LC3 (TP11) 2.090 3.6346e-11 10.000 2.6495e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LC3 (TP11)                  | 2.090                           | 3.6346e-11   | 10.000 | 2.6495e-07   |
| system_60 LC3 (TP12) 3.310 3.6904e-12 10.000 2.7388e-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LC3 (TP12)                  | 3.310                           | 3.6904 e- 12 | 10.000 | 2.7388e-08   |
| system_60 LC3 (TP13) 5.160 4.6496e-13 10.000 3.3249e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LC3 (TP13)                  | 5.160                           | 4.6496e-13   | 10.000 | 3.3249e-09   |
| system_60 LC3 (TP14) 8.120 2.0606e-13 10.000 1.1795e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | system_60   | LC3 (TP14)                  | 8.120                           | 2.0606e-13   | 10.000 | 1.1795e-09   |
| system_60 Riot (05, 1e-11) 0m0.401s 1.0846e-10 -0.000 4.1356e-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | system_60   | Riot (05, 1e-11)            | 0m0.401s                        | 1.0846e-10   | -0.000 | 4.1356e-07   |
| system_60 Riot (10, 1e-11) 0m0.208s 1.3138e-12 -0.000 1.4383e-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $system_60$ | Riot (10, 1e-11)            | 0 m 0.208 s                     | 1.3138e-12   | -0.000 | 1.4383e-08   |
| system_60 Riot (15, 1e-11) 0m0.293s 2.3981e-14 -0.000 1.4009e-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | system_60   | Riot $(15, 1e-11)$          | 0 m 0.293 s                     | 2.3981e-14   | -0.000 | 1.4009e-09   |
| system_60 Valencia-IVP (0.00025) 0m2.208s 0.0012113 10.000 21.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | system_60   | Valencia-IVP (0.00025)      | 0m2.208s                        | 0.0012113    | 10.000 | 21.282       |
| system_60 Valencia-IVP (0.0025) 0m0.282s 0.012152 8.033 944.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | system_60   | Valencia-IVP (0.0025)       | $0 \mathrm{m} 0.282 \mathrm{s}$ | 0.012152     | 8.033  | 944.65       |
| system_60 Valencia-IVP (0.025) 0m0.049s 0.12493 5.225 615.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60          | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.049 \mathrm{s}$ | 0.12493      | 5.225  | 615.14       |
| system_60 VNODE-LP (15, 1e-14,1e-14) 0m0.015s 6.3283e-15 10.000 1.8436e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | system_60   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.015s                        | 6.3283e-15   | 10.000 | 1.8436e-12   |
| system_60 VNODE-LP (20, 1e-14,1e-14) 0m0.013s 5.9952e-15 10.000 2.2619e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | system_60   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.013 s                     | 5.9952e-15   | 10.000 | 2.2619e-12   |
| system_60 VNODE-LP (25, 1e-14,1e-14) 0m0.013s 3.9968e-15 10.000 1.127e-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | system_60   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.013 s                     | 3.9968e-15   | 10.000 | 1.127e-12    |

 Table 3.50:
 Simulation results of Problem 60

| Problems Methods c5t c5w c6t                                       | c6w       |
|--------------------------------------------------------------------|-----------|
| system_61 TAYLOR4 (TP8) 1.180 0.0054407 10.000                     | 8.3228    |
| system_61 TAYLOR4 (TP9) 1.830 0.0053657 10.000                     | 15.453    |
| system_61 TAYLOR4 (TP10) 2.860 0.0054044 10.000                    | 14.813    |
| system_61 TAYLOR4 (TP11) 4.600 0.0054132 10.000                    | 320.66    |
| system_61 TAYLOR4 (TP12) 7.210 0.0054145 10.000                    | 11.811    |
| system_61 TAYLOR4 (TP13) 11.320 0.0053453 10.000                   | 313.11    |
| system_61 TAYLOR4 (TP14) 18.070 0.0054383 10.000                   | 725.35    |
| system_61 RK4 (TP8) 0.620 0.0052643 10.000                         | 3.3273    |
| system_61 RK4 (TP9) 0.920 0.0052883 10.000                         | 12.87     |
| system_61 RK4 (TP10) 1.420 0.0054387 10.000                        | 8.7345    |
| system_61 RK4 (TP11) 2.330 0.0053817 10.000                        | 14.179    |
| system_61 RK4 (TP12) 3.520 0.0053906 10.000 9                      | 90.053    |
| system_61 RK4 (TP13) 5.520 0.0054731 10.000                        | 40.322    |
| system_61 RK4 (TP14) 8.640 0.0054604 10.000                        | 52.883    |
| system_61 LA3 (TP8) 0.600 0.0053293 10.000                         | 11.103    |
| system_61 LA3 (TP9) 0.890 0.0053306 10.000                         | 15.398    |
| system_61 LA3 (TP10) 1.340 0.0053562 10.000                        | 10.597    |
| system_61 LA3 (TP11) 2.080 0.0054059 10.000                        | 24.382    |
| system_61 LA3 (TP12) 3.320 0.0054158 10.000                        | 22.094    |
| system_61 LA3 (TP13) 5.200 0.0054598 9.972                         | 75209     |
| system_61 LA3 (TP14) 8.110 0.0054368 10.000 8                      | 84.479    |
| system_61 LC3 (TP8) 0.620 0.0053219 10.000                         | 15.264    |
| system_61 LC3 (TP9) 0.930 0.0053593 10.000                         | 13.911    |
| system_61 LC3 (TP10) 1.430 0.005359 10.000                         | 12.418    |
| system_61 LC3 (TP11) 2.270 0.0054463 10.000 (                      | 63.773    |
| system_61 LC3 (TP12) 3.630 0.0054206 10.000                        | 26.739    |
| system_61 LC3 (TP13) 5.640 0.0054502 9.731                         | 81583     |
| system_61 LC3 (TP14) 8.820 0.0054423 10.000                        | 44.156    |
| system_61 Riot (05, 1e-11) 0m29.113s 0.016523 0.000                | 0         |
| system_61 Riot (10, 1e-11) 2m2.447s 0.016523 0.000                 | 0         |
| system_61 Riot (15, 1e-11) 9m16.121s 0.016523 0.000                | 0         |
| system_61 Valencia-IVP (0.00025) 0m2.193s 0.0070886 7.850 9        | 995.84    |
| system_61 Valencia-IVP (0.0025) 0m0.314s 0.018078 7.098            | 938.56    |
| system_61 Valencia-IVP (0.025) 0m0.049s 0.13117 5.150              | 535.8     |
| system_61 VNODE-LP (15, 1e-14, 1e-14) 0m0.015s 0.0064256 9.464 1.0 | 425e + 08 |
| system_61 VNODE-LP (20, 1e-14, 1e-14) 0m0.011s 0.007766 9.213 4.7  | 889e + 08 |
| system_61 VNODE-LP (25, 1e-14,1e-14) 0m0.012s 0.0087521 9.173 1.0  | 624e + 09 |

 Table 3.51: Simulation results of Problem 61

| Problems    | Methods                     | c5t         | c5w         | c6t    | c6w        |
|-------------|-----------------------------|-------------|-------------|--------|------------|
| system_62   | TAYLOR4 (TP8)               | 0.020       | 1.2802e-09  | 10.000 | 1.0457e-06 |
| system_62   | TAYLOR4 (TP9)               | 0.020       | 1.2802e-09  | 10.000 | 1.4972e-07 |
| system_62   | TAYLOR4 (TP10)              | 0.020       | 9.382e-10   | 10.000 | 1.6447e-08 |
| system_62   | TAYLOR4 (TP11)              | 0.030       | 1.4039e-10  | 10.000 | 1.7013e-09 |
| system_62   | TAYLOR4 (TP12)              | 0.030       | 1.5092e-11  | 10.000 | 1.7605e-10 |
| $system_62$ | TAYLOR4 (TP13)              | 0.050       | 2.1814e-12  | 10.000 | 2.251e-11  |
| $system_62$ | TAYLOR4 (TP14)              | 0.070       | 9.8055e-13  | 10.000 | 9.5852e-12 |
| system_62   | RK4 (TP8)                   | 0.020       | 7.5438e-11  | 10.000 | 6.0009e-07 |
| system_62   | RK4 (TP9)                   | 0.020       | 7.5438e-11  | 10.000 | 2.0981e-07 |
| system_62   | RK4 (TP10)                  | 0.020       | 7.5438e-11  | 10.000 | 2.6419e-08 |
| system_62   | RK4 (TP11)                  | 0.020       | 7.5438e-11  | 10.000 | 2.6952e-09 |
| $system_62$ | RK4 (TP12)                  | 0.020       | 1.1987e-11  | 10.000 | 2.6037e-10 |
| $system_62$ | RK4 (TP13)                  | 0.020       | 1.7266e-12  | 10.000 | 2.6858e-11 |
| $system_62$ | RK4 (TP14)                  | 0.040       | 4.0501e-13  | 10.000 | 4.7393e-12 |
| system_62   | LA3 (TP8)                   | 0.020       | 2.0744e-10  | 10.000 | 3.7513e-07 |
| $system_62$ | LA3 $(TP9)$                 | 0.020       | 2.0744e-10  | 10.000 | 6.8085e-08 |
| $system_62$ | LA3 (TP10)                  | 0.020       | 2.0744e-10  | 10.000 | 8.2075e-09 |
| $system_62$ | LA3 (TP11)                  | 0.020       | 8.3048e-11  | 10.000 | 9.0913e-10 |
| $system_62$ | LA3 (TP12)                  | 0.020       | 2.4023e-11  | 10.000 | 1.1102e-10 |
| $system_62$ | LA3 (TP13)                  | 0.030       | 3.3396e-12  | 10.000 | 1.3493e-11 |
| system_62   | LA3 (TP14)                  | 0.040       | 6.0396e-13  | 10.000 | 3.4959e-12 |
| system_62   | LC3 (TP8)                   | 0.020       | 8.3944e-11  | 10.000 | 2.7272e-07 |
| $system_62$ | LC3 (TP9)                   | 0.020       | 8.3944e-11  | 10.000 | 1.0016e-07 |
| $system_62$ | LC3 (TP10)                  | 0.020       | 8.3944e-11  | 10.000 | 1.1054e-08 |
| $system_62$ | LC3 (TP11)                  | 0.020       | 7.875e-11   | 10.000 | 1.1258e-09 |
| $system_62$ | LC3 (TP12)                  | 0.020       | 1.1283e-11  | 10.000 | 1.1067e-10 |
| $system_62$ | LC3 (TP13)                  | 0.030       | 1.5774e-12  | 10.000 | 1.2335e-11 |
| system_62   | LC3 (TP14)                  | 0.040       | 3.8369e-13  | 10.000 | 3.304e-12  |
| system_62   | Riot (05, 1e-11)            | 0 m 0.096 s | 7.887e-13   | -0.000 | 3.9957e-11 |
| $system_62$ | Riot $(10, 1e-11)$          | 0 m 0.116 s | 7.9226e-13  | -0.000 | 2.2027e-13 |
| system_62   | Riot $(15, 1e-11)$          | 0 m 0.139 s | 9.3081e-13  | -0.000 | 5.0093e-13 |
| system_62   | Valencia-IVP $(0.00025)$    | 0m1.501s    | 8e-06       | 10.000 | 9.0701e-05 |
| $system_62$ | Valencia-IVP $(0.0025)$     | 0m0.135s    | 8.0004 e-05 | 10.000 | 0.00090724 |
| $system_62$ | Valencia-IVP $(0.025)$      | 0m0.017s    | 0.00080027  | 10.000 | 0.0090954  |
| system_62   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.006s    | 1.0658e-14  | 10.000 | 1.0303e-13 |
| system_62   | VNODE-LP (20, 1e-14, 1e-14) | 0m0.006s    | 1.0658e-14  | 10.000 | 1.1013e-13 |
| $system_62$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.005 s | 1.0658e-14  | 10.000 | 1.1013e-13 |

Table 3.52: Simulation results of Problem 62

| Problems      | Methods                     | c5t                             | c5w        | c6t    | c6w        |
|---------------|-----------------------------|---------------------------------|------------|--------|------------|
| system_63     | TAYLOR4 (TP8)               | 0.050                           | 0.91819    | 10.000 | 4.9513     |
| system_63     | TAYLOR4 (TP9)               | 0.060                           | 0.91498    | 10.000 | 4.7543     |
| system_63     | TAYLOR4 (TP10)              | 0.090                           | 0.9127     | 10.000 | 4.6373     |
| system_63     | TAYLOR4 (TP11)              | 0.130                           | 0.9111     | 10.000 | 4.5661     |
| system_63     | TAYLOR4 (TP12)              | 0.200                           | 0.91002    | 10.000 | 4.5221     |
| system_63     | TAYLOR4 (TP13)              | 0.320                           | 0.90932    | 10.000 | 4.4947     |
| $system_63$   | TAYLOR4 (TP14)              | 0.500                           | 0.90886    | 10.000 | 4.4776     |
| system_63     | RK4 (TP8)                   | 0.030                           | 0.90814    | 10.000 | 4.452      |
| system_63     | RK4 (TP9)                   | 0.030                           | 0.9081     | 10.000 | 4.4501     |
| $system_63$   | RK4 (TP10)                  | 0.050                           | 0.90808    | 10.000 | 4.4493     |
| system_63     | RK4 (TP11)                  | 0.070                           | 0.90808    | 10.000 | 4.449      |
| system_63     | RK4 (TP12)                  | 0.110                           | 0.90807    | 10.000 | 4.4489     |
| $system_63$   | RK4 (TP13)                  | 0.160                           | 0.90807    | 10.000 | 4.4488     |
| $system_{63}$ | RK4 (TP14)                  | 0.250                           | 0.90807    | 10.000 | 4.4488     |
| system_63     | LA3 (TP8)                   | 0.030                           | 0.94854    | 10.000 | 5.196      |
| $system_63$   | LA3 (TP9)                   | 0.030                           | 0.93622    | 10.000 | 4.9019     |
| $system_63$   | LA3 (TP10)                  | 0.040                           | 0.927      | 10.000 | 4.7292     |
| system_63     | LA3 (TP11)                  | 0.060                           | 0.9205     | 10.000 | 4.6236     |
| $system_63$   | LA3 (TP12)                  | 0.090                           | 0.91616    | 10.000 | 4.5583     |
| $system_63$   | LA3 (TP13)                  | 0.140                           | 0.91325    | 10.000 | 4.5176     |
| system_63     | LA3 (TP14)                  | 0.220                           | 0.91136    | 10.000 | 4.492      |
| system_63     | LC3 (TP8)                   | 0.030                           | 0.95645    | 10.000 | 5.5166     |
| $system_63$   | LC3 (TP9)                   | 0.030                           | 0.94129    | 10.000 | 5.0708     |
| $system_63$   | LC3 (TP10)                  | 0.050                           | 0.9303     | 10.000 | 4.8246     |
| $system_63$   | LC3 (TP11)                  | 0.060                           | 0.92279    | 10.000 | 4.6803     |
| $system_63$   | LC3 (TP12)                  | 0.100                           | 0.91757    | 10.000 | 4.5928     |
| $system_63$   | LC3 (TP13)                  | 0.140                           | 0.91414    | 10.000 | 4.5388     |
| system_63     | LC3 (TP14)                  | 0.230                           | 0.91192    | 10.000 | 4.5052     |
| system_63     | Riot (05, 1e-11)            | $0 \mathrm{m} 0.226 \mathrm{s}$ | 6.1391e-12 | -0.000 | 2.1793e-10 |
| $system_63$   | Riot $(10, 1e-11)$          | 0 m 0.219 s                     | 6.1391e-12 | -0.000 | 8.3134e-13 |
| system_63     | Riot $(15, 1e-11)$          | 0 m 0.222 s                     | 3.6238e-13 | -0.000 | 3.979e-13  |
| system_63     | Valencia-IVP (0.00025)      | 0m3.804s                        | 1.4207     | 4.983  | 939.4      |
| $system_63$   | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.416 \mathrm{s}$ | 1.4208     | 4.960  | 184.88     |
| system_63     | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.067 \mathrm{s}$ | 1.4224     | 3.675  | 6.8657     |
| system_63     | VNODE-LP (15, 1e-14, 1e-14) | 0m0.006s                        | 1.1898     | 5.765  | 12397      |
| system_63     | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.006 \mathrm{s}$ | 1.1582     | 4.716  | 24367      |
| system_63     | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.004 s                     | 1.161      | 4.394  | 39403      |

 Table 3.53:
 Simulation results of Problem 63
| system_64         TAYLOR4 (TP8)         0.390         1.4114e-06         10.000         0.00068375           system_64         TAYLOR4 (TP9)         0.390         1.2487e-06         10.000         0.00015597           system_64         TAYLOR4 (TP10)         0.430         4.3621e-07         10.000         4.6461e-05           system_64         TAYLOR4 (TP11)         0.560         1.2507e-07         10.000         1.1767e-05  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| system_64         TAYLOR4 (TP9)         0.390         1.2487e-06         10.000         0.00015597           system_64         TAYLOR4 (TP10)         0.430         4.3621e-07         10.000         4.6461e-05           system_64         TAYLOR4 (TP11)         0.560         1.2507e-07         10.000         1.1767e-05           system_64         TAYLOR4 (TP11)         0.560         1.2507e-07         10.000         1.0767e-05 |
| system_64         TAYLOR4 (TP10)         0.430         4.3621e-07         10.000         4.6461e-05           system_64         TAYLOR4 (TP11)         0.560         1.2507e-07         10.000         1.1767e-05           system_64         TAYLOR4 (TP11)         0.560         1.2507e-07         10.000         1.1767e-05                                                                                                              |
| system_64         TAYLOR4 (TP11)         0.560         1.2507e-07         10.000         1.1767e-05           system_64         TAYLOR4 (TP11)         0.720         2.2404-09         10.000         2.0077-06                                                                                                                                                                                                                              |
| $T_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| system_04   IAYLOR4 (1P12)   0.730 3.3494e-08 10.000 2.9977e-06                                                                                                                                                                                                                                                                                                                                                                              |
| system_64 TAYLOR4 (TP13) 0.980 8.5987e-09 10.000 7.7019e-07                                                                                                                                                                                                                                                                                                                                                                                  |
| system_64 TAYLOR4 (TP14) 1.400 2.3403e-09 10.000 1.9712e-07                                                                                                                                                                                                                                                                                                                                                                                  |
| system_64 RK4 (TP8) 0.330 4.21e-11 10.000 4.7828e-07                                                                                                                                                                                                                                                                                                                                                                                         |
| system_64 RK4 (TP9) 0.330 4.21e-11 10.000 4.7336e-08                                                                                                                                                                                                                                                                                                                                                                                         |
| system_64 RK4 (TP10) 0.330 3.0917e-11 10.000 4.8889e-09                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 RK4 (TP11) 0.400 4.2763e-12 10.000 5.0111e-10                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 RK4 (TP12) 0.470 4.4072e-13 10.000 5.0163e-11                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 RK4 (TP13) 0.610 4.842e-14 10.000 5.218e-12                                                                                                                                                                                                                                                                                                                                                                                        |
| system_64 RK4 (TP14) 0.840 5.6413e-15 10.000 7.4518e-13                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LA3 (TP8) 0.330 4.4317e-11 10.000 3.2208e-07                                                                                                                                                                                                                                                                                                                                                                                       |
| system_64 LA3 (TP9) 0.330 4.4317e-11 10.000 3.4219e-08                                                                                                                                                                                                                                                                                                                                                                                       |
| system_64 LA3 (TP10) 0.360 2.6981e-11 10.000 3.3887e-09                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LA3 (TP11) 0.400 3.1899e-12 10.000 3.4486e-10                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LA3 (TP12) 0.470 3.5908e-13 10.000 3.4774e-11                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LA3 (TP13) 0.640 3.9885e-14 10.000 3.6753e-12                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LA3 (TP14) 0.890 4.7254e-15 10.000 6.1373e-13                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LC3 (TP8) 0.330 4.1986e-11 10.000 3.5873e-07                                                                                                                                                                                                                                                                                                                                                                                       |
| system_64 LC3 (TP9) 0.330 4.1986e-11 10.000 3.7852e-08                                                                                                                                                                                                                                                                                                                                                                                       |
| system_64 LC3 (TP10) 0.370 2.5936e-11 10.000 3.8917e-09                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LC3 (TP11) 0.400 3.0693e-12 10.000 3.9943e-10                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LC3 (TP12) 0.470 3.4297e-13 10.000 4.0659e-11                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 LC3 (TP13) 0.650 3.849e-14 10.000 4.2375e-12                                                                                                                                                                                                                                                                                                                                                                                       |
| system_64 LC3 (TP14) 0.880 4.5519e-15 10.000 6.6169e-13                                                                                                                                                                                                                                                                                                                                                                                      |
| system_64 Riot (05, 1e-11) 0m0.136s 3.194e-14 -0.000 1.1558e-10                                                                                                                                                                                                                                                                                                                                                                              |
| system_64 Riot (10, 1e-11) 0m0.253s 5.4123e-16 -0.000 1.35e-13                                                                                                                                                                                                                                                                                                                                                                               |
| system_64 Riot (15, 1e-11) 0m0.252s 5.4123e-16 -0.000 6.9278e-14                                                                                                                                                                                                                                                                                                                                                                             |
| system_64 Valencia-IVP (0.00025) 0m1.721s 1.0417e-05 10.000 0.00016797                                                                                                                                                                                                                                                                                                                                                                       |
| system_64 Valencia-IVP (0.0025) 0m0.165s 0.00010417 10.000 0.0016797                                                                                                                                                                                                                                                                                                                                                                         |
| system_64         Valencia-IVP (0.025)         0m0.019s         0.0010417         10.000         0.016797                                                                                                                                                                                                                                                                                                                                    |
| system_64 VNODE-LP (15, 1e-14, 1e-14) 0m0.004s 6.245e-17 10.000 9.77e-15                                                                                                                                                                                                                                                                                                                                                                     |
| system_64 VNODE-LP (20, 1e-14, 1e-14) 0m0.005s 6.9389e-17 10.000 1.199e-14                                                                                                                                                                                                                                                                                                                                                                   |
| system_64   VNODE-LP (25, 1e-14,1e-14)   0m0.004s 6.9389e-17 10.000 1.0658e-14                                                                                                                                                                                                                                                                                                                                                               |

 Table 3.54:
 Simulation results of Problem 64

| Problems       | Methods                     | c5t         | c5w     | c6t    | c6w    |
|----------------|-----------------------------|-------------|---------|--------|--------|
| system_65      | TAYLOR4 (TP8)               | 0.410       | 0.25212 | 10.000 | 2.7137 |
| $system_65$    | TAYLOR4 (TP9)               | 0.410       | 0.25212 | 10.000 | 2.7126 |
| $system_65$    | TAYLOR4 (TP10)              | 0.500       | 0.25212 | 10.000 | 2.7121 |
| $system_65$    | TAYLOR4 (TP11)              | 0.590       | 0.25211 | 10.000 | 2.7118 |
| $system_65$    | TAYLOR4 (TP12)              | 0.760       | 0.25211 | 10.000 | 2.7116 |
| $system_{65}$  | TAYLOR4 (TP13)              | 1.070       | 0.25211 | 10.000 | 2.7115 |
| $system_65$    | TAYLOR4 (TP14)              | 1.570       | 0.25211 | 10.000 | 2.7114 |
| system_65      | RK4 (TP8)                   | 0.340       | 0.25211 | 10.000 | 2.7113 |
| $system_65$    | RK4 (TP9)                   | 0.330       | 0.25211 | 10.000 | 2.7113 |
| $system_65$    | RK4 (TP10)                  | 0.370       | 0.25211 | 10.000 | 2.7113 |
| $system_65$    | RK4 (TP11)                  | 0.400       | 0.25211 | 10.000 | 2.7113 |
| $system_{65}$  | RK4 (TP12)                  | 0.470       | 0.25211 | 10.000 | 2.7113 |
| $system_65$    | RK4 (TP13)                  | 0.650       | 0.25211 | 10.000 | 2.7113 |
| $system_65$    | RK4 (TP14)                  | 0.860       | 0.25211 | 10.000 | 2.7113 |
| system_65      | LA3 (TP8)                   | 0.330       | 0.25211 | 10.000 | 2.7134 |
| $system_65$    | LA3 $(TP9)$                 | 0.330       | 0.25211 | 10.000 | 2.7127 |
| system_65      | LA3 (TP10)                  | 0.370       | 0.25211 | 10.000 | 2.7122 |
| system_65      | LA3 (TP11)                  | 0.400       | 0.25211 | 10.000 | 2.7119 |
| $system_65$    | LA3 (TP12)                  | 0.500       | 0.25211 | 10.000 | 2.7117 |
| $system_65$    | LA3 (TP13)                  | 0.690       | 0.25211 | 10.000 | 2.7115 |
| system_65      | LA3 (TP14)                  | 0.940       | 0.25211 | 10.000 | 2.7115 |
| system_65      | LC3 (TP8)                   | 0.330       | 0.25211 | 10.000 | 2.7145 |
| $system_65$    | LC3 (TP9)                   | 0.330       | 0.25211 | 10.000 | 2.7133 |
| $system_65$    | LC3 (TP10)                  | 0.370       | 0.25211 | 10.000 | 2.7126 |
| $system_65$    | LC3 (TP11)                  | 0.400       | 0.25211 | 10.000 | 2.7121 |
| $system_65$    | LC3 (TP12)                  | 0.500       | 0.25211 | 10.000 | 2.7118 |
| $system_65$    | LC3 (TP13)                  | 0.650       | 0.25211 | 10.000 | 2.7117 |
| system_65      | LC3 (TP14)                  | 0.900       | 0.25211 | 10.000 | 2.7115 |
| system_65      | Riot $(05, 1e-11)$          | 0m5.669s    | 0.25147 | -0.000 | 2.6697 |
| $system_{-}65$ | Riot $(10, 1e-11)$          | 0m1.551s    | 0.25147 | -0.000 | 2.6698 |
| system_65      | Riot $(15, 1e-11)$          | 0m5.042s    | 0.25147 | -0.000 | 2.6698 |
| system_65      | Valencia-IVP $(0.00025)$    | 0m1.576s    | 0.25147 | 10.000 | 2.6699 |
| $system_65$    | Valencia-IVP $(0.0025)$     | 0m0.146s    | 0.25147 | 10.000 | 2.6716 |
| system_65      | Valencia-IVP $(0.025)$      | 0m0.021s    | 0.25177 | 10.000 | 2.6883 |
| system_65      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.006s    | 0.25278 | 10.000 | 2.7636 |
| $system_65$    | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.006 s | 0.25278 | 10.000 | 2.7636 |
| $system_{-}65$ | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.005 s | 0.25278 | 10.000 | 2.7636 |

Table 3.55: Simulation results of Problem 65

|             | Table 3.56: Simulation      | results of I                    | Problem 71 |       |          |
|-------------|-----------------------------|---------------------------------|------------|-------|----------|
| Problems    | Methods                     | c5t                             | c5w        | c6t   | c6w      |
| system_71   | TAYLOR4 (TP8)               | 0.410                           | 0.34183    | 0.723 | 0.34183  |
| $system_71$ | TAYLOR4 (TP9)               | 0.610                           | 0.34398    | 0.723 | 0.34398  |
| $system_71$ | TAYLOR4 (TP10)              | 0.930                           | 0.34513    | 0.723 | 0.34513  |
| $system_71$ | TAYLOR4 (TP11)              | 1.530                           | 0.34637    | 0.723 | 0.34637  |
| $system_71$ | TAYLOR4 (TP12)              | 2.420                           | 0.34685    | 0.723 | 0.34685  |
| $system_71$ | TAYLOR4 (TP13)              | 3.600                           | 0.34733    | 0.723 | 0.34733  |
| $system_71$ | TAYLOR4 (TP14)              | 5.500                           | 0.34747    | 0.723 | 0.34747  |
| system_71   | RK4 (TP8)                   | 0.410                           | 0.34107    | 0.710 | 0.34107  |
| $system_71$ | RK4 (TP9)                   | 0.800                           | 0.34517    | 0.718 | 0.34517  |
| $system_71$ | RK4 (TP10)                  | 0.970                           | 0.34595    | 0.719 | 0.34595  |
| $system_71$ | RK4 (TP11)                  | 0.610                           | 0.34721    | 0.721 | 0.34721  |
| $system_71$ | RK4 (TP12)                  | 0.940                           | 0.34711    | 0.721 | 0.34711  |
| $system_71$ | RK4 (TP13)                  | 1.510                           | 0.34743    | 0.722 | 0.34743  |
| $system_71$ | RK4 (TP14)                  | 2.290                           | 0.34757    | 0.722 | 0.34757  |
| system_71   | LA3 (TP8)                   | 0.320                           | 0.34419    | 0.714 | 0.34419  |
| $system_71$ | LA3 (TP9)                   | 0.270                           | 0.34689    | 0.720 | 0.34689  |
| $system_71$ | LA3 (TP10)                  | 0.390                           | 0.34737    | 0.721 | 0.34737  |
| $system_71$ | LA3 (TP11)                  | 0.570                           | 0.34704    | 0.721 | 0.34704  |
| $system_71$ | LA3 (TP12)                  | 0.900                           | 0.34744    | 0.722 | 0.34744  |
| $system_71$ | LA3 (TP13)                  | 1.440                           | 0.34753    | 0.722 | 0.34753  |
| system_71   | LA3 (TP14)                  | 2.220                           | 0.34779    | 0.722 | 0.34779  |
| system_71   | LC3 (TP8)                   | 0.310                           | 0.34572    | 0.715 | 0.34572  |
| $system_71$ | LC3 (TP9)                   | 0.270                           | 0.34545    | 0.715 | 0.34545  |
| $system_71$ | LC3 (TP10)                  | 0.400                           | 0.34696    | 0.719 | 0.34696  |
| $system_71$ | LC3 (TP11)                  | 0.600                           | 0.3477     | 0.721 | 0.3477   |
| $system_71$ | LC3 (TP12)                  | 0.940                           | 0.34745    | 0.721 | 0.34745  |
| $system_71$ | LC3 (TP13)                  | 1.490                           | 0.34765    | 0.722 | 0.34765  |
| system_71   | LC3 (TP14)                  | 2.300                           | 0.34772    | 0.722 | 0.34772  |
| system_71   | Riot                        |                                 |            |       |          |
| system_71   | Valencia-IVP (0.00025)      | 0m9.028s                        | 0          | 0.000 | 0        |
| system_71   | Valencia-IVP (0.0025)       | 0 m 0.112 s                     | 0          | 0.000 | 0        |
| system_71   | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.007 \mathrm{s}$ | 0          | 0.000 | 0        |
| system_71   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.028s                        | 0.093606   | 1.088 | 0.078438 |
| $system_71$ | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.035 \mathrm{s}$ | 0.094651   | 1.085 | 0.080607 |
| system_71   | VNODE-LP (25, 1e-14, 1e-14) | 0 m 0.034 s                     | 0.095228   | 1.083 | 0.081672 |

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                  | Problems       | Methods                     | c5t                             | c5w        | c6t    | c6w         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------------------|---------------------------------|------------|--------|-------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | system_72      | TAYLOR4 (TP8)               | 0.110                           | 1.888e-08  | 10.000 | 1.5233e-07  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | system_72      | TAYLOR4 (TP9)               | 0.160                           | 1.991e-09  | 10.000 | 8.6791e-08  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                   | system_72      | TAYLOR4 (TP10)              | 0.250                           | 2.0536e-10 | 10.000 | 9.4023e-08  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                  | $system_72$    | TAYLOR4 (TP11)              | 0.410                           | 2.076e-11  | 10.000 | 1.1399e-08  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | system_72      | TAYLOR4 (TP12)              | 0.640                           | 2.1992e-12 | 10.000 | 1.6071e-09  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | TAYLOR4 (TP13)              | 0.990                           | 3.4417e-13 | 10.000 | 2.5738e-10  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | TAYLOR4 (TP14)              | 1.550                           | 2.3176e-13 | 10.000 | 6.5053e-11  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                   | system_72      | RK4 (TP8)                   | 0.090                           | 2.476e-08  | 10.000 | 1.6617e-07  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | RK4 (TP9)                   | 0.140                           | 2.538e-09  | 10.000 | 4.0938e-08  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | RK4 (TP10)                  | 0.200                           | 2.6417e-10 | 10.000 | 5.5074 e-08 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | RK4 (TP11)                  | 0.330                           | 2.6895e-11 | 10.000 | 3.9127e-09  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | RK4 (TP12)                  | 0.520                           | 2.7741e-12 | 10.000 | 7.941e-10   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | RK4 (TP13)                  | 0.800                           | 3.2496e-13 | 10.000 | 1.5842e-10  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | RK4 (TP14)                  | 1.230                           | 1.0836e-13 | 10.000 | 3.334e-11   |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | system_72      | LA3 (TP8)                   | 0.070                           | 1.8797e-08 | 10.000 | 1.0346e-06  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LA3 $(TP9)$                 | 0.110                           | 1.9786e-09 | 10.000 | 1.3939e-07  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LA3 (TP10)                  | 0.160                           | 2.0676e-10 | 10.000 | 9.6798e-08  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LA3 (TP11)                  | 0.250                           | 2.1116e-11 | 10.000 | 1.2856e-08  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LA3 (TP12)                  | 0.750                           | 2.126e-12  | 10.000 | 1.7966e-09  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LA3 (TP13)                  | 0.620                           | 2.4913e-13 | 10.000 | 2.5436e-10  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LA3 $(TP14)$                | 0.950                           | 8.1712e-14 | 10.000 | 4.3266e-11  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                   | system_72      | LC3 (TP8)                   | 0.080                           | 1.9008e-08 | 10.000 | 3.6404e-06  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LC3 (TP9)                   | 0.120                           | 2.0101e-09 | 10.000 | 2.7038e-07  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LC3 (TP10)                  | 0.180                           | 2.0895e-10 | 10.000 | 1.3971e-07  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LC3 (TP11)                  | 0.280                           | 2.1388e-11 | 10.000 | 2.2361e-08  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $system_72$    | LC3 (TP12)                  | 0.430                           | 2.1335e-12 | 10.000 | 2.1033e-09  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                 | $system_72$    | LC3 (TP13)                  | 0.690                           | 2.5269e-13 | 10.000 | 2.8453e-10  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                 | system_72      | LC3 (TP14)                  | 1.040                           | 8.632e-14  | 10.000 | 4.7709e-11  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                  | system_72      | Riot (05, 1e-11)            | 0m1.648s                        | 6.8875e-11 | -0.000 | 0.0018269   |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                 | $system_{-}72$ | Riot $(10, 1e-11)$          | 0m1.461s                        | 4.1078e-15 | -0.000 | 7.1333e-13  |
| system_72         Valencia-IVP (0.00025)         1m10.076s         0.011379         4.194         999.68           system_72         Valencia-IVP (0.0025)         0m0.692s         0.11581         3.530         992.01 | system_72      | Riot $(15, 1e-11)$          | 0m1.542s                        | 1.4155e-15 | -0.000 | 9.9245e-15  |
| system_72 Valencia-IVP (0.0025) 0m0.692s 0.11581 3.530 992.01                                                                                                                                                            | system_72      | Valencia-IVP $(0.00025)$    | 1m10.076s                       | 0.011379   | 4.194  | 999.68      |
|                                                                                                                                                                                                                          | $system_72$    | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.692 \mathrm{s}$ | 0.11581    | 3.530  | 992.01      |
| system.72 Valencia-IVP (0.025) 0m0.061s 1.3941 2.750 956.94                                                                                                                                                              |                | Valencia-IVP $(0.025)$      | $0 \mathrm{m} 0.061 \mathrm{s}$ | 1.3941     | 2.750  | 956.94      |
| system_72 VNODE-LP (15, 1e-14, 1e-14) 0m0.014s 9.1593e-16 10.000 1.9629e-16                                                                                                                                              | system_72      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.014s                        | 9.1593e-16 | 10.000 | 1.9629e-16  |
| system.72 VNODE-LP (20, 1e-14, 1e-14) 0m0.010s 9.1593e-16 10.000 1.4984e-16                                                                                                                                              | system_72      | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.010 s                     | 9.1593e-16 | 10.000 | 1.4984e-16  |
| system_72   VNODE-LP (25, 1e-14, 1e-14)   0m0.010s 3.8858e-16 10.000 7.7839e-17                                                                                                                                          | $system_72$    | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.010 \mathrm{s}$ | 3.8858e-16 | 10.000 | 7.7839e-17  |

Table 3.57:Simulation results of Problem 72

| Problems       | Methods                     | c5t                             | c5w     | c6t    | c6w        |
|----------------|-----------------------------|---------------------------------|---------|--------|------------|
| system_73      | TAYLOR4 (TP8)               | 0.200                           | 0.64903 | 10.000 | 0.00011543 |
| system_73      | TAYLOR4 (TP9)               | 0.280                           | 0.64903 | 10.000 | 0.00011391 |
| $system_73$    | TAYLOR4 (TP10)              | 0.410                           | 0.64903 | 10.000 | 0.00011378 |
| $system_73$    | TAYLOR4 (TP11)              | 0.620                           | 0.64903 | 10.000 | 0.00011407 |
| system_73      | TAYLOR4 (TP12)              | 1.730                           | 0.64903 | 10.000 | 0.00011593 |
| $system_73$    | TAYLOR4 (TP13)              | 1.560                           | 0.64903 | 10.000 | 0.00011625 |
| system_73      | TAYLOR4 (TP14)              | 2.420                           | 0.64903 | 10.000 | 0.00011618 |
| system_73      | RK4 (TP8)                   | 0.130                           | 0.64903 | 10.000 | 0.00011568 |
| $system_73$    | RK4 (TP9)                   | 0.200                           | 0.64903 | 10.000 | 0.0001142  |
| $system_73$    | RK4 (TP10)                  | 0.310                           | 0.64903 | 10.000 | 0.00011396 |
| $system_73$    | RK4 (TP11)                  | 0.480                           | 0.64903 | 10.000 | 0.00011377 |
| $system_73$    | RK4 (TP12)                  | 0.760                           | 0.64903 | 10.000 | 0.00011457 |
| $system_73$    | RK4 (TP13)                  | 1.200                           | 0.64903 | 10.000 | 0.00011523 |
| system_73      | RK4 (TP14)                  | 1.850                           | 0.64903 | 10.000 | 0.00011523 |
| system_73      | LA3 (TP8)                   | 0.110                           | 0.90804 | 10.000 | 44.669     |
| $system_73$    | LA3 (TP9)                   | 0.160                           | 0.84683 | 10.000 | 11.972     |
| $system_73$    | LA3 (TP10)                  | 0.240                           | 0.74939 | 10.000 | 1.4182     |
| $system_73$    | LA3 (TP11)                  | 0.380                           | 0.72469 | 10.000 | 2.9375     |
| $system_73$    | LA3 (TP12)                  | 0.600                           | 0.6851  | 10.000 | 0.3029     |
| $system_73$    | LA3 (TP13)                  | 0.980                           | 0.67844 | 10.000 | 0.28271    |
| system_73      | LA3 (TP14)                  | 1.500                           | 0.66826 | 10.000 | 0.1337     |
| system_73      | LC3 (TP8)                   | 0.120                           | 0.95006 | 10.000 | 41.555     |
| $system_73$    | LC3 (TP9)                   | 0.170                           | 0.85351 | 10.000 | 4.46       |
| $system_73$    | LC3 (TP10)                  | 0.270                           | 0.78623 | 10.000 | 3.7844     |
| $system_73$    | LC3 (TP11)                  | 0.420                           | 0.72942 | 10.000 | 1.3191     |
| $system_73$    | LC3 (TP12)                  | 0.660                           | 0.69002 | 10.000 | 0.35275    |
| $system_73$    | LC3 (TP13)                  | 1.060                           | 0.67725 | 10.000 | 0.3206     |
| system_73      | LC3 (TP14)                  | 1.660                           | 0.66841 | 10.000 | 0.061096   |
| system_73      | Riot (05, 1e-11)            | 0m1.815s                        | 0.64903 | -0.000 | 0.00011995 |
| $system_{-}73$ | Riot $(10, 1e-11)$          | 0m2.136s                        | 0.64903 | -0.000 | 0.0001136  |
| system_73      | Riot $(15, 1e-11)$          | 0m3.216s                        | 0.64903 | -0.000 | 0.00011366 |
| system_73      | Valencia-IVP (0.00025)      | 1m1.164s                        | 138.84  | 1.367  | 999.11     |
| $system_73$    | Valencia-IVP $(0.0025)$     | $0 \mathrm{m} 0.278 \mathrm{s}$ | 145.77  | 1.355  | 994.94     |
| system_73      | Valencia-IVP $(0.025)$      | 0 m 0.029 s                     | 243.46  | 1.225  | 891.88     |
| system_73      | VNODE-LP (15, 1e-14, 1e-14) | 0m0.024s                        | 0.64903 | 10.000 | 3.4442     |
| $system_73$    | VNODE-LP (20, 1e-14, 1e-14) | $0 \mathrm{m} 0.015 \mathrm{s}$ | 0.64903 | 10.000 | 3.4442     |
| $system_73$    | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.016 \mathrm{s}$ | 0.64903 | 10.000 | 3.4442     |

Table 3.58: Simulation results of Problem 73

| Problems    | Methods                     | c5t                             | c5w        | c6t   | c6w         |
|-------------|-----------------------------|---------------------------------|------------|-------|-------------|
| system_74   | TAYLOR4 (TP8)               | 0.250                           | 430.91     | 0.785 | 430.91      |
| system_74   | TAYLOR4 (TP9)               | 0.350                           | 652.41     | 0.785 | 652.41      |
| system_74   | TAYLOR4 (TP10)              | 0.490                           | 283.48     | 0.785 | 283.48      |
| $system_74$ | TAYLOR4 (TP11)              | 0.670                           | 559.65     | 0.785 | 559.65      |
| system_74   | TAYLOR4 (TP12)              | 0.890                           | 576.25     | 0.785 | 576.25      |
| system_74   | TAYLOR4 (TP13)              | 1.290                           | 234.53     | 0.785 | 234.53      |
| system_74   | TAYLOR4 (TP14)              | 0.000                           | 0          | 0.000 | 0           |
| system_74   | RK4 (TP8)                   | 0.130                           | 624.24     | 0.785 | 624.24      |
| $system_74$ | RK4 (TP9)                   | 0.160                           | 57.925     | 0.785 | 57.925      |
| $system_74$ | RK4 (TP10)                  | 0.220                           | 330.01     | 0.785 | 330.01      |
| $system_74$ | RK4 (TP11)                  | 0.310                           | 268.64     | 0.785 | 268.64      |
| $system_74$ | RK4 (TP12)                  | 0.440                           | 44.208     | 0.785 | 44.208      |
| $system_74$ | RK4 (TP13)                  | 0.620                           | 267.16     | 0.785 | 267.16      |
| $system_74$ | RK4 (TP14)                  | 0.860                           | 74.118     | 0.785 | 74.118      |
| system_74   | LA3 (TP8)                   | 0.130                           | 76.095     | 0.785 | 76.095      |
| system_74   | LA3 (TP9)                   | 0.190                           | 45.448     | 0.785 | 45.448      |
| system_74   | LA3 (TP10)                  | 0.260                           | 62.95      | 0.785 | 62.95       |
| system_74   | LA3 (TP11)                  | 0.370                           | 64.448     | 0.785 | 64.448      |
| system_74   | LA3 (TP12)                  | 0.530                           | 527.45     | 0.785 | 527.45      |
| $system_74$ | LA3 (TP13)                  | 0.730                           | 21.878     | 0.785 | 21.878      |
| system_74   | LA3 (TP14)                  | 1.040                           | 266.61     | 0.785 | 266.61      |
| system_74   | LC3 (TP8)                   | 0.100                           | 90.528     | 0.785 | 90.528      |
| system_74   | LC3 (TP9)                   | 0.130                           | 61.895     | 0.785 | 61.895      |
| $system_74$ | LC3 (TP10)                  | 0.170                           | 79.971     | 0.785 | 79.971      |
| $system_74$ | LC3 (TP11)                  | 0.240                           | 104.2      | 0.785 | 104.2       |
| $system_74$ | LC3 (TP12)                  | 0.320                           | 8.7342     | 0.785 | 8.7342      |
| $system_74$ | LC3 (TP13)                  | 0.450                           | 205.63     | 0.785 | 205.63      |
| $system_74$ | LC3 (TP14)                  | 0.640                           | 258.77     | 0.785 | 258.77      |
| system_74   | Riot (05, 1e-11)            | 0m0.791s                        | 0          | 0.000 | 0           |
| $system_74$ | Riot (10, 1e-11)            | 0 m 0.430 s                     | 0          | 0.000 | 0           |
| $system_74$ | Riot $(15, 1e-11)$          | 0 m 0.613 s                     | 0          | 0.000 | 0           |
| system_74   | Valencia-IVP (0.00025)      | 0m9.104s                        | 668.07     | 0.783 | 668.07      |
| $system_74$ | Valencia-IVP (0.0025)       | $0 \mathrm{m} 0.165 \mathrm{s}$ | 60.454     | 0.765 | 60.454      |
| system_74   | Valencia-IVP (0.025)        | $0 \mathrm{m} 0.014 \mathrm{s}$ | 5.325      | 0.650 | 5.325       |
| system_74   | VNODE-LP (15, 1e-14, 1e-14) | 0m0.014s                        | 4992.7     | 0.015 | 4992.7      |
| system_74   | VNODE-LP (20, 1e-14, 1e-14) | 0 m 0.023 s                     | 2.2247e-07 | 0.785 | 2.2247 e-07 |
| $system_74$ | VNODE-LP (25, 1e-14, 1e-14) | $0 \mathrm{m} 0.010 \mathrm{s}$ | 16182      | 0.001 | 16182       |

Table 3.59: Simulation results of Problem 74

#### 3.1.3 Discussion

Firstly, we count the number of problem for which each method (for each order and each precision) is first in term of solution diameter, second or last. This account is done for the simulation at 1 second and at 10 seconds. The results are summarized in the table 3.60. Of course, we are aware that the results are biased by the number of methods we have. Nevertheless, this table allows us to consider that Valencia and Riot are not valid competitors.

| Method   | c5w (1st) | c5w (2nd) | c5w (last) | $\begin{array}{c} c6w \\ (1st) \end{array}$ | c6w (2nd) | c6w (last) |
|----------|-----------|-----------|------------|---------------------------------------------|-----------|------------|
| RK       | 103       | 35        | 8          | 58                                          | 39        | 8          |
| Vnode-LP | 70        | 28        | 9          | 44                                          | 27        | 8          |
| Riot     | 36        | 11        | 0          | 24                                          | 12        | 2          |
| Valencia | 3         | 3         | 49         | 3                                           | 2         | 49         |

Table 3.60: Number of times a method produced the sharpest enclosure or the second sharpest enclosure.

After this reduction of competitors, only the best results for our three order-4 Runge-Kutta methods, and for Vnode are kept for comparison. We present in the spider graph 3.1, respectively 3.2, the normalized results (divided by the median and multiplied by 10) for each problem for a simulation at 1 second, respectively at 10 seconds. The median used to normalize the results is computed with all the methods: Taylor4, RK4, LA3, LC3 Riot, Valencia and Vnode (for all precision and all order).

Remark: for the graph 3.1, we truncate the results at 25 for the clarity. It leads to the truncation of LC3 result for problem 44, initially at 178, the result is set at 25. In the same manner, the results are also truncated at 50 for the graph 3.2, fifteen times for Vnode, one time for LC3 and one time for RK4.



Figure 3.1: Results gathered in spider graph for a simulation of 1 second, for the methods: RK4, LC3, LA3 and Vnode

We can easily see on spider graph 3.1 that the Runge-Kutta methods are more stable, by describing a circle while Vnode results are more in a star shape. Moreover, the implicit methods (LA3 and LC3) provide better results than the explicit RK4 in a majority of problems. This fact is even more clear on the graph 3.2. On this latter graph, we can also see that Vnode fails many times while at least one of our Runge-Kutta methods performs a good simulation for all the considered problems. Finally, if Vnode are the best on many problems, by our stability and our better results for some problems, we can conclude



Figure 3.2: Results gathered in spider graph for a simulation of 10 seconds, for the methods: RK4, LC3, LA3 and Vnode

that our tool is a good competitor for Vnode. The last remark but not the least, it is important to remember that we have currently only methods of order 4, when Vnode can use a Taylor at order 25 !

## 3.2 Detest benchmark

#### 3.2.1 Disclaimer

This section reports the results of the solution of various problems coming from the DETEST benchmark. For each problem, different validated methods of Runge-Kutta of order 4 are applied among: the classical formula of Runge-Kutta (explicit), the Lobatto-3a formula (implicit) and the Lobatto-3c formula (implicit). Moreover, an homemade version of Taylor series, limited to order 5 and using affine arithmetic, is also applied on each problem.

For each problem, we report the following metrics:

- c5t: user time taken to simulate the problem for 1 second.
- c5w: the final diameter of the solution (infinity norm is used).
- c6t: the time to breakdown the method with a maximal limit of 10 seconds.
- c6w: the diameter of the solution a the breakdown time.

#### 3.2.2 Results

| Problems | Methods        | c5t   | c5w          | c6t    | c6w        |
|----------|----------------|-------|--------------|--------|------------|
| ns_A1    | TAYLOR4 (TP4)  | 0.030 | 9.146e-06    | 10.000 | 6.3861e-06 |
| ns_A1    | TAYLOR4 (TP6)  | 0.030 | 5.0222e-07   | 2.000  | 9.7332e-07 |
| $ns_A1$  | TAYLOR4 (TP8)  | 0.060 | 6.0636e-09   | 2.000  | 5.7233e-08 |
| ns_A1    | TAYLOR4 (TP10) | 0.120 | 6.3146e-11   | 2.000  | 6.7023e-10 |
| ns_A1    | TAYLOR4 (TP12) | 0.300 | 7.1687e-13   | 10.000 | 5.5133e-12 |
| ns_A1    | TAYLOR4 (TP14) | 0.020 | 9.146e-06    | 10.000 | 6.3861e-06 |
| ns_A1    | RK4 (TP4)      | 0.010 | 9.146e-06    | 10.000 | 6.2632e-06 |
| ns_A1    | RK4 (TP6)      | 0.020 | 7.1338e-07   | 2.000  | 1.236e-06  |
| $ns_A1$  | RK4 (TP8)      | 0.030 | 7.4993e-09   | 2.000  | 4.3775e-08 |
| $ns_A1$  | RK4 (TP10)     | 0.060 | 8.4251e-11   | 2.000  | 6.7118e-10 |
| ns_A1    | RK4 (TP12)     | 0.160 | 8.8185e-13   | 10.000 | 7.5966e-12 |
| ns_A1    | RK4 (TP14)     | 0.010 | 9.146e-06    | 10.000 | 6.2632e-06 |
| ns_A1    | LA3 $(TP4)$    | 0.010 | 1.531e-06    | 10.000 | 7.6554e-06 |
| ns_A1    | LA3 $(TP6)$    | 0.020 | 4.0741e-07   | 2.000  | 8.1525e-07 |
| ns_A1    | LA3 $(TP8)$    | 0.020 | 5.4981e-09   | 2.000  | 4.1256e-08 |
| ns_A1    | LA3 (TP10)     | 0.050 | 6.1542 e- 11 | 2.000  | 5.8395e-10 |
| $ns_A1$  | LA3 (TP12)     | 0.130 | 6.7724e-13   | 10.000 | 5.3249e-12 |
| ns_A1    | LA3 (TP14)     | 0.010 | 1.531e-06    | 10.000 | 7.6554e-06 |
| ns_A1    | LC3 (TP4)      | 0.010 | 2.3003e-06   | 10.000 | 7.8708e-05 |
| ns_A1    | LC3 (TP6)      | 0.020 | 3.8815e-07   | 2.000  | 1.1053e-06 |
| ns_A1    | LC3 (TP8)      | 0.030 | 5.8283e-09   | 2.000  | 4.7752e-08 |
| ns_A1    | LC3 (TP10)     | 0.060 | 6.1916e-11   | 2.000  | 6.2382e-10 |
| $ns_A1$  | LC3 (TP12)     | 0.140 | 6.7468e-13   | 10.000 | 5.3717e-12 |
| $ns_A1$  | LC3 (TP14)     | 0.020 | 2.3003e-06   | 10.000 | 7.8708e-05 |

Table 3.61: Simulation results of Problem ns\_A1

| Problems | Methods        | c5t   | c5w          | c6t    | c6w         |
|----------|----------------|-------|--------------|--------|-------------|
| ns_A2    | TAYLOR4 (TP4)  | 0.040 | 8.4667e-05   | 10.000 | 8.3982e-05  |
| $ns_A2$  | TAYLOR4 (TP6)  | 0.050 | 1.5064 e-06  | 2.000  | 3.1707e-06  |
| $ns_A2$  | TAYLOR4 (TP8)  | 0.080 | 2.1535e-08   | 2.000  | 1.4215e-07  |
| $ns_A2$  | TAYLOR4 (TP10) | 0.180 | 2.4119e-10   | 2.000  | 1.6527 e-09 |
| $ns_A2$  | TAYLOR4 (TP12) | 0.440 | 2.6019e-12   | 10.000 | 1.3628e-11  |
| ns_A2    | TAYLOR4 (TP14) | 0.040 | 8.4667 e-05  | 10.000 | 8.3982e-05  |
| ns_A2    | RK4 (TP4)      | 0.020 | 1.6376e-05   | 10.000 | 4.3081e-05  |
| $ns_A2$  | RK4 (TP6)      | 0.030 | 2.3535e-06   | 2.000  | 4.883e-06   |
| $ns_A2$  | RK4 (TP8)      | 0.040 | 4.9213e-08   | 2.000  | 2.9883e-07  |
| $ns_A2$  | RK4 (TP10)     | 0.060 | 5.2365e-10   | 2.000  | 3.509e-09   |
| $ns_A2$  | RK4 (TP12)     | 0.140 | 4.6034 e- 12 | 10.000 | 2.7551e-11  |
| ns_A2    | RK4 (TP14)     | 0.020 | 1.6376e-05   | 10.000 | 4.3081e-05  |
| ns_A2    | LA3 $(TP4)$    | 0.020 | 9.2675e-06   | 10.000 | 2.3649e-05  |
| $ns_A2$  | LA3 $(TP6)$    | 0.030 | 1.1342e-06   | 2.000  | 3.1789e-06  |
| $ns_A2$  | LA3 $(TP8)$    | 0.040 | 1.9817e-08   | 2.000  | 1.116e-07   |
| $ns_A2$  | LA3 $(TP10)$   | 0.080 | 2.3168e-10   | 2.000  | 1.5203e-09  |
| $ns_A2$  | LA3 $(TP12)$   | 0.200 | 2.5466e-12   | 10.000 | 1.3165e-11  |
| ns_A2    | LA3 (TP14)     | 0.020 | 9.2675e-06   | 10.000 | 2.3649e-05  |
| ns_A2    | LC3 (TP4)      | 0.020 | 7.5652e-06   | 10.000 | 2.6357e-05  |
| $ns_A2$  | LC3 (TP6)      | 0.030 | 1.4833e-06   | 2.000  | 3.5055e-06  |
| $ns_A2$  | LC3 (TP8)      | 0.040 | 2.6328e-08   | 2.000  | 1.5975e-07  |
| $ns_A2$  | LC3 (TP10)     | 0.070 | 2.9172e-10   | 2.000  | 1.9148e-09  |
| $ns_A2$  | LC3 (TP12)     | 0.150 | 2.828e-12    | 10.000 | 1.5799e-11  |
| $ns_A2$  | LC3 (TP14)     | 0.020 | 7.5652e-06   | 10.000 | 2.6357e-05  |

Table 3.62: Simulation results of Problem ns\_A2

| _ | Problems | Methods        | c5t   | c5w        | c6t    | c6w         |
|---|----------|----------------|-------|------------|--------|-------------|
|   | ns_A3    | TAYLOR4 (TP4)  | 0.050 | 0.00043573 | 10.000 | 0.0041836   |
|   | ns_A3    | TAYLOR4 (TP6)  | 0.060 | 8.3465e-06 | 2.000  | 1.6766e-05  |
|   | $ns_A3$  | TAYLOR4 (TP8)  | 0.110 | 1.0131e-07 | 2.000  | 2.4257 e-07 |
|   | $ns_A3$  | TAYLOR4 (TP10) | 0.220 | 1.5521e-09 | 2.000  | 3.3297 e-09 |
|   | ns_A3    | TAYLOR4 (TP12) | 0.550 | 1.9743e-11 | 10.000 | 1.544e-10   |
| _ | ns_A3    | TAYLOR4 (TP14) | 0.050 | 0.00043573 | 10.000 | 0.0041836   |
| - | ns_A3    | RK4 (TP4)      | 0.030 | 0.00014736 | 10.000 | 0.004336    |
|   | ns_A3    | RK4 (TP6)      | 0.040 | 8.2963e-06 | 2.000  | 2.5968e-05  |
|   | ns_A3    | RK4 (TP8)      | 0.050 | 1.1569e-07 | 2.000  | 5.2775e-07  |
|   | $ns_A3$  | RK4 (TP10)     | 0.120 | 1.4826e-09 | 2.000  | 1.0182e-08  |
|   | ns_A3    | RK4 (TP12)     | 0.260 | 1.6631e-11 | 10.000 | 4.1913e-10  |
| _ | ns_A3    | RK4 (TP14)     | 0.030 | 0.00014736 | 10.000 | 0.004336    |
| - | ns_A3    | LA3 $(TP4)$    | 0.030 | 7.0869e-05 | 10.000 | 0.0049959   |
|   | ns_A3    | LA3 $(TP6)$    | 0.040 | 4.0701e-06 | 2.000  | 9.8443e-06  |
|   | ns_A3    | LA3 $(TP8)$    | 0.060 | 4.8721e-08 | 2.000  | 1.7833e-07  |
|   | ns_A3    | LA3 $(TP10)$   | 0.130 | 5.5251e-10 | 2.000  | 2.0766e-09  |
|   | ns_A3    | LA3 $(TP12)$   | 0.310 | 5.917e-12  | 10.000 | 1.2948e-10  |
|   | ns_A3    | LA3 $(TP14)$   | 0.030 | 7.0869e-05 | 10.000 | 0.0049959   |
| - | ns_A3    | LC3 (TP4)      | 0.030 | 8.4934e-05 | 10.000 | 0.0056809   |
|   | ns_A3    | LC3 (TP6)      | 0.030 | 8.2958e-06 | 2.000  | 1.9432e-05  |
|   | ns_A3    | LC3 (TP8)      | 0.060 | 8.8322e-08 | 2.000  | 2.3749e-07  |
|   | ns_A3    | LC3 (TP10)     | 0.110 | 1.3559e-09 | 2.000  | 3.5262e-09  |
|   | ns_A3    | LC3 (TP12)     | 0.250 | 1.6706e-11 | 10.000 | 1.5879e-10  |
|   | ns_A3    | LC3 (TP14)     | 0.030 | 8.4934e-05 | 10.000 | 0.0056809   |

Table 3.63: Simulation results of Problem ns\_A3

| Problems | Methods        | c5t   | c5w        | c6t    | c6w          |
|----------|----------------|-------|------------|--------|--------------|
| ns_A4    | TAYLOR4 (TP4)  | 0.030 | 4.7235e-09 | 10.000 | 5.5164 e- 05 |
| ns_A4    | TAYLOR4 (TP6)  | 0.030 | 4.7235e-09 | 10.000 | 2.3393e-05   |
| ns_A4    | TAYLOR4 (TP8)  | 0.030 | 4.7235e-09 | 10.000 | 3.347e-07    |
| ns_A4    | TAYLOR4 (TP10) | 0.040 | 1.0831e-10 | 10.000 | 4.3438e-09   |
| ns_A4    | TAYLOR4 (TP12) | 0.080 | 1.394e-12  | 10.000 | 5.5834 e- 11 |
| ns_A4    | TAYLOR4 (TP14) | 0.030 | 4.7235e-09 | 10.000 | 5.5164 e- 05 |
| ns_A4    | RK4 (TP4)      | 0.020 | 1.9557e-09 | 10.000 | 9.2536e-06   |
| ns_A4    | RK4 (TP6)      | 0.020 | 1.9557e-09 | 10.000 | 7.5759e-06   |
| ns_A4    | RK4 (TP8)      | 0.020 | 1.4271e-09 | 10.000 | 1.0095e-07   |
| ns_A4    | RK4 (TP10)     | 0.030 | 2.1419e-11 | 10.000 | 1.0543e-09   |
| ns_A4    | RK4 (TP12)     | 0.060 | 2.9976e-13 | 10.000 | 1.1743e-11   |
| ns_A4    | RK4 (TP14)     | 0.020 | 1.9557e-09 | 10.000 | 9.2536e-06   |
| ns_A4    | LA3 $(TP4)$    | 0.020 | 8.073e-11  | 10.000 | 3.1954e-06   |
| ns_A4    | LA3 $(TP6)$    | 0.020 | 8.073e-11  | 10.000 | 3.1954e-06   |
| ns_A4    | LA3 $(TP8)$    | 0.020 | 8.073e-11  | 10.000 | 2.7486e-07   |
| ns_A4    | LA3 $(TP10)$   | 0.020 | 5.8513e-12 | 10.000 | 3.7748e-09   |
| ns_A4    | LA3 $(TP12)$   | 0.040 | 7.7716e-14 | 10.000 | 4.1114e-11   |
| ns_A4    | LA3 (TP14)     | 0.020 | 8.073e-11  | 10.000 | 3.1954e-06   |
| ns_A4    | LC3 (TP4)      | 0.020 | 4.5581e-10 | 10.000 | 4.0216e-06   |
| ns_A4    | LC3 (TP6)      | 0.020 | 4.5581e-10 | 10.000 | 4.0216e-06   |
| ns_A4    | LC3 (TP8)      | 0.020 | 4.5581e-10 | 10.000 | 2.0247 e-07  |
| ns_A4    | LC3 (TP10)     | 0.030 | 1.517e-11  | 10.000 | 3.328e-09    |
| ns_A4    | LC3 (TP12)     | 0.050 | 2.0917e-13 | 10.000 | 4.2366e-11   |
| ns_A4    | LC3 (TP14)     | 0.020 | 4.5581e-10 | 10.000 | 4.0216e-06   |

Table 3.64: Simulation results of Problem ns\_A4

| Problems | Methods        | c5t   | c5w          | c6t    | c6w         |
|----------|----------------|-------|--------------|--------|-------------|
| ns_A5    | TAYLOR4 (TP4)  | 0.070 | 3.7194e-05   | 10.000 | 0.0019729   |
| $ns_A5$  | TAYLOR4 (TP6)  | 0.070 | 3.7194 e- 05 | 10.000 | 0.00023788  |
| $ns_A5$  | TAYLOR4 (TP8)  | 0.090 | 3.5949e-05   | 10.000 | 0.00011626  |
| $ns_A5$  | TAYLOR4 (TP10) | 0.140 | 3.5909e-05   | 10.000 | 0.00011476  |
| $ns_A5$  | TAYLOR4 (TP12) | 0.310 | 3.5909e-05   | 10.000 | 0.00011475  |
| $ns_A5$  | TAYLOR4 (TP14) | 0.070 | 3.7194e-05   | 10.000 | 0.0019729   |
| ns_A5    | RK4 (TP4)      | 0.060 | 1.9565e-05   | 10.000 | 0.00017718  |
| $ns_A5$  | RK4 (TP6)      | 0.050 | 1.9565e-05   | 10.000 | 0.00013889  |
| $ns_A5$  | RK4 (TP8)      | 0.060 | 1.9565e-05   | 10.000 | 6.419e-05   |
| $ns_A5$  | RK4 (TP10)     | 0.070 | 1.9502e-05   | 10.000 | 6.2343e-05  |
| $ns_A5$  | RK4 (TP12)     | 0.120 | 1.9501e-05   | 10.000 | 6.2318e-05  |
| ns_A5    | RK4 (TP14)     | 0.060 | 1.9565e-05   | 10.000 | 0.00017718  |
| ns_A5    | LA3 $(TP4)$    | 0.060 | 1.2266e-05   | 10.000 | 0.0001074   |
| $ns_A5$  | LA3 $(TP6)$    | 0.060 | 1.2266e-05   | 10.000 | 8.3944e-05  |
| $ns_A5$  | LA3 $(TP8)$    | 0.060 | 1.2241e-05   | 10.000 | 4.0144e-05  |
| $ns_A5$  | LA3 $(TP10)$   | 0.080 | 1.2208e-05   | 10.000 | 3.9021e-05  |
| $ns_A5$  | LA3 $(TP12)$   | 0.150 | 1.2208e-05   | 10.000 | 3.9011e-05  |
| ns_A5    | LA3 (TP14)     | 0.060 | 1.2266e-05   | 10.000 | 0.0001074   |
| ns_A5    | LC3 (TP4)      | 0.060 | 3.0021e-06   | 10.000 | 8.1197e-05  |
| $ns_A5$  | LC3 (TP6)      | 0.060 | 3.0021e-06   | 10.000 | 5.8567 e-05 |
| $ns_A5$  | LC3 (TP8)      | 0.060 | 2.9819e-06   | 10.000 | 1.0499e-05  |
| $ns_A5$  | LC3 (TP10)     | 0.080 | 2.9478e-06   | 10.000 | 9.4283e-06  |
| $ns_A5$  | LC3 (TP12)     | 0.140 | 2.9474e-06   | 10.000 | 9.4188e-06  |
| $ns_A5$  | LC3 (TP14)     | 0.060 | 3.0021e-06   | 10.000 | 8.1197e-05  |

Table 3.65: Simulation results of Problem ns\_A5

| Problems | Methods        | c5t   | c5w          | c6t    | c6w          |
|----------|----------------|-------|--------------|--------|--------------|
| ns_B1    | TAYLOR4 (TP4)  | 0.120 | 0.00041929   | 10.000 | 0.16516      |
| $ns_B1$  | TAYLOR4 (TP6)  | 0.180 | 5.8337e-06   | 2.000  | 8.016e-05    |
| $ns_B1$  | TAYLOR4 (TP8)  | 0.270 | 1.5364 e- 07 | 2.000  | 3.7536e-05   |
| $ns_B1$  | TAYLOR4 (TP10) | 0.610 | 1.6928e-09   | 2.000  | 1.2351e-05   |
| ns_B1    | TAYLOR4 (TP12) | 1.500 | 1.847e-11    | 10.000 | 7.9824e-07   |
| ns_B1    | TAYLOR4 (TP14) | 0.120 | 0.00041929   | 10.000 | 0.16516      |
| ns_B1    | RK4 (TP4)      | 0.060 | 0.00054791   | 10.000 | 0.093055     |
| $ns_B1$  | RK4 (TP6)      | 0.090 | 7.7186e-06   | 2.000  | 7.0418e-05   |
| ns_B1    | RK4 (TP8)      | 0.160 | 1.4924e-07   | 2.000  | 8.8254e-06   |
| $ns_B1$  | RK4 (TP10)     | 0.370 | 1.6512e-09   | 2.000  | 3.6011e-06   |
| $ns_B1$  | RK4 (TP12)     | 1.260 | 1.7231e-11   | 10.000 | 4.5013 e-07  |
| ns_B1    | RK4 (TP14)     | 0.070 | 0.00054791   | 10.000 | 0.093055     |
| ns_B1    | LA3 $(TP4)$    | 0.060 | 0.00052296   | 10.000 | 0.7639       |
| $ns_B1$  | LA3 $(TP6)$    | 0.090 | 5.981e-06    | 2.000  | 6.7454 e- 05 |
| ns_B1    | LA3 $(TP8)$    | 0.150 | 1.3016e-07   | 2.000  | 3.6223 e-05  |
| ns_B1    | LA3 $(TP10)$   | 0.380 | 1.5537e-09   | 2.000  | 1.2472e-05   |
| $ns_B1$  | LA3 $(TP12)$   | 0.820 | 1.5877e-11   | 10.000 | 4.2412e-07   |
| ns_B1    | LA3 $(TP14)$   | 0.060 | 0.00052296   | 10.000 | 0.7639       |
| ns_B1    | LC3 (TP4)      | 0.070 | 0.00074279   | 10.000 | 7.958        |
| $ns_B1$  | LC3 (TP6)      | 0.080 | 8.5157e-06   | 2.000  | 0.00010335   |
| ns_B1    | LC3 (TP8)      | 0.160 | 1.2294e-07   | 2.000  | 3.5055e-05   |
| $ns_B1$  | LC3 (TP10)     | 0.330 | 1.1696e-09   | 2.000  | 5.7342e-06   |
| ns_B1    | LC3 (TP12)     | 0.770 | 1.1289e-11   | 10.000 | 4.7543e-07   |
| $ns_B1$  | LC3 (TP14)     | 0.070 | 0.00074279   | 10.000 | 7.958        |

Table 3.66: Simulation results of Problem ns\_B1

| Problems | Methods        | c5t   | c5w        | c6t    | c6w         |
|----------|----------------|-------|------------|--------|-------------|
| ns_B2    | TAYLOR4 (TP4)  | 0.310 | 8.7614e-05 | 10.000 | 0.00010474  |
| $ns_B2$  | TAYLOR4 (TP6)  | 0.540 | 1.0578e-06 | 2.000  | 7.0248e-06  |
| $ns_B2$  | TAYLOR4 (TP8)  | 1.030 | 2.3614e-08 | 2.000  | 4.1597 e-06 |
| $ns_B2$  | TAYLOR4 (TP10) | 2.470 | 2.5418e-10 | 2.000  | 4.92e-08    |
| $ns_B2$  | TAYLOR4 (TP12) | 6.170 | 2.8764e-12 | 10.000 | 2.2351e-10  |
| ns_B2    | TAYLOR4 (TP14) | 0.330 | 8.7614e-05 | 10.000 | 0.00010474  |
| ns_B2    | RK4 (TP4)      | 0.200 | 9.85e-05   | 10.000 | 0.00014666  |
| $ns_B2$  | RK4 (TP6)      | 0.320 | 1.4878e-06 | 2.000  | 5.1326e-06  |
| $ns_B2$  | RK4 (TP8)      | 0.630 | 2.8479e-08 | 2.000  | 2.8268e-06  |
| $ns_B2$  | RK4 (TP10)     | 1.510 | 3.244e-10  | 2.000  | 5.9749e-08  |
| $ns_B2$  | RK4 (TP12)     | 3.710 | 3.4948e-12 | 10.000 | 1.4806e-10  |
| ns_B2    | RK4 (TP14)     | 0.200 | 9.85e-05   | 10.000 | 0.00014666  |
| ns_B2    | LA3 $(TP4)$    | 0.210 | 0.00011841 | 10.000 | 0.049815    |
| $ns_B2$  | LA3 $(TP6)$    | 0.270 | 1.0755e-06 | 2.000  | 8.8929e-06  |
| $ns_B2$  | LA3 $(TP8)$    | 0.490 | 2.1817e-08 | 2.000  | 3.4971e-06  |
| $ns_B2$  | LA3 (TP10)     | 1.110 | 2.4909e-10 | 2.000  | 4.7146e-08  |
| $ns_B2$  | LA3 $(TP12)$   | 2.830 | 2.6863e-12 | 10.000 | 1.7301e-10  |
| ns_B2    | LA3 (TP14)     | 0.200 | 0.00011841 | 10.000 | 0.049815    |
| ns_B2    | LC3 (TP4)      | 0.210 | 0.00011385 | 10.000 | 0.11981     |
| $ns_B2$  | LC3 (TP6)      | 0.290 | 1.2619e-06 | 2.000  | 1.129e-05   |
| $ns_B2$  | LC3 $(TP8)$    | 0.540 | 2.2956e-08 | 2.000  | 4.0489e-06  |
| $ns_B2$  | LC3 (TP10)     | 1.240 | 2.5586e-10 | 2.000  | 4.9842e-08  |
| $ns_B2$  | LC3 (TP12)     | 3.060 | 2.7098e-12 | 10.000 | 2.22e-10    |
| ns_B2    | LC3 (TP14)     | 0.200 | 0.00011385 | 10.000 | 0.11981     |

Table 3.67: Simulation results of Problem ns\_B2

| Problems | Methods        | c5t   | c5w        | c6t    | c6w         |
|----------|----------------|-------|------------|--------|-------------|
| ns_B3    | TAYLOR4 (TP4)  | 0.240 | 0.00012496 | 10.000 | 0.00010291  |
| ns_B3    | TAYLOR4 (TP6)  | 0.330 | 2.3385e-06 | 2.000  | 5.5216e-06  |
| $ns_B3$  | TAYLOR4 (TP8)  | 0.640 | 2.7922e-08 | 2.000  | 2.5563 e-07 |
| ns_B3    | TAYLOR4 (TP10) | 1.400 | 4.1428e-10 | 2.000  | 4.1314e-09  |
| ns_B3    | TAYLOR4 (TP12) | 3.370 | 5.4439e-12 | 10.000 | 8.7434e-12  |
| ns_B3    | TAYLOR4 (TP14) | 0.230 | 0.00012496 | 10.000 | 0.00010291  |
| ns_B3    | RK4 (TP4)      | 0.140 | 0.00015668 | 10.000 | 3.2946e-05  |
| ns_B3    | RK4 (TP6)      | 0.200 | 1.8062e-06 | 2.000  | 3.3727e-06  |
| $ns_B3$  | RK4 (TP8)      | 0.380 | 2.132e-08  | 2.000  | 1.8169e-07  |
| ns_B3    | RK4 (TP10)     | 0.830 | 2.2347e-10 | 2.000  | 1.9818e-09  |
| $ns_B3$  | RK4 (TP12)     | 2.050 | 2.2799e-12 | 10.000 | 5.204 e- 12 |
| ns_B3    | RK4 (TP14)     | 0.140 | 0.00015668 | 10.000 | 3.2946e-05  |
| ns_B3    | LA3 (TP4)      | 0.140 | 4.8032e-05 | 10.000 | 4.5514e-05  |
| ns_B3    | LA3 $(TP6)$    | 0.170 | 2.1365e-06 | 2.000  | 4.9673e-06  |
| ns_B3    | LA3 $(TP8)$    | 0.260 | 2.3226e-08 | 2.000  | 2.0047 e-07 |
| $ns_B3$  | LA3 (TP10)     | 0.540 | 1.8545e-10 | 2.000  | 1.8394e-09  |
| $ns_B3$  | LA3 (TP12)     | 1.220 | 1.6824e-12 | 10.000 | 6.1119e-12  |
| ns_B3    | LA3 (TP14)     | 0.150 | 4.8032e-05 | 10.000 | 4.5514e-05  |
| ns_B3    | LC3 (TP4)      | 0.150 | 7.7124e-05 | 10.000 | 8.204 e-05  |
| ns_B3    | LC3 (TP6)      | 0.210 | 1.6073e-06 | 2.000  | 3.8007e-06  |
| ns_B3    | LC3 (TP8)      | 0.290 | 3.1901e-08 | 2.000  | 2.6442 e-07 |
| ns_B3    | LC3 (TP10)     | 0.590 | 3.4737e-10 | 2.000  | 3.3251e-09  |
| $ns_B3$  | LC3 (TP12)     | 1.410 | 3.5121e-12 | 10.000 | 3.7007e-12  |
| $ns_B3$  | LC3 (TP14)     | 0.140 | 7.7124e-05 | 10.000 | 8.204e-05   |

Table 3.68: Simulation results of Problem ns\_B3

| Problems | Methods        | c5t     | c5w        | c6t    | c6w        |
|----------|----------------|---------|------------|--------|------------|
| ns_B4    | TAYLOR4 (TP4)  | 17.290  | 0.0016863  | 4.340  | 0.90148    |
| $ns_B4$  | TAYLOR4 (TP6)  | 19.640  | 8.0895e-05 | 7.751  | 1.2422     |
| $ns_B4$  | TAYLOR4 (TP8)  | 27.690  | 1.5611e-06 | 9.522  | 0.62151    |
| $ns_B4$  | TAYLOR4 (TP10) | 54.410  | 2.2374e-08 | 10.000 | 0.029197   |
| $ns_B4$  | TAYLOR4 (TP12) | 123.820 | 2.9517e-10 | 10.000 | 0.0011596  |
| ns_B4    | TAYLOR4 (TP14) | 17.280  | 0.0016863  | 4.340  | 0.90148    |
| ns_B4    | RK4 (TP4)      | 16.010  | 0.00053691 | 5.537  | 1.439      |
| ns_B4    | RK4 (TP6)      | 17.720  | 2.7416e-05 | 8.560  | 0.69971    |
| ns_B4    | RK4 (TP8)      | 19.930  | 1.0075e-06 | 10.000 | 0.54239    |
| ns_B4    | RK4 (TP10)     | 33.190  | 1.5332e-08 | 10.000 | 0.023281   |
| ns_B4    | RK4 (TP12)     | 70.370  | 1.8093e-10 | 10.000 | 0.00066257 |
| ns_B4    | RK4 (TP14)     | 16.010  | 0.00053691 | 5.537  | 1.439      |
| ns_B4    | LA3 (TP4)      | 15.970  | 0.00044803 | 3.505  | 0.031706   |
| ns_B4    | LA3 $(TP6)$    | 17.740  | 2.2201e-05 | 8.281  | 0.86537    |
| ns_B4    | LA3 $(TP8)$    | 17.980  | 1.1266e-06 | 10.000 | 0.60409    |
| ns_B4    | LA3 (TP10)     | 31.530  | 1.6075e-08 | 10.000 | 0.026108   |
| ns_B4    | LA3 (TP12)     | 65.940  | 2.1847e-10 | 10.000 | 0.00083967 |
| ns_B4    | LA3 (TP14)     | 15.940  | 0.00044803 | 3.505  | 0.031706   |
| ns_B4    | LC3 (TP4)      | 14.510  | 0.00097031 | 4.842  | 1.322      |
| ns_B4    | LC3 (TP6)      | 17.500  | 2.2588e-05 | 8.261  | 0.88373    |
| ns_B4    | LC3 (TP8)      | 18.120  | 1.2305e-06 | 9.878  | 0.61908    |
| ns_B4    | LC3 (TP10)     | 31.120  | 1.8244e-08 | 10.000 | 0.033471   |
| ns_B4    | LC3 (TP12)     | 63.970  | 2.5061e-10 | 10.000 | 0.0009416  |
| ns_B4    | LC3 (TP14)     | 14.450  | 0.00097031 | 4.842  | 1.322      |

Table 3.69: Simulation results of Problem ns\_B4

| Problems | Methods        | c5t   | c5w          | c6t    | c6w         |
|----------|----------------|-------|--------------|--------|-------------|
| ns_B5    | TAYLOR4 (TP4)  | 0.340 | 0.00024281   | 10.000 | 0.023851    |
| $ns_B5$  | TAYLOR4 (TP6)  | 0.420 | 4.2469e-06   | 10.000 | 0.00038581  |
| $ns_B5$  | TAYLOR4 (TP8)  | 0.730 | 6.5182 e-08  | 10.000 | 0.00039017  |
| $ns_B5$  | TAYLOR4 (TP10) | 1.880 | 7.267e-10    | 10.000 | 2.2839e-05  |
| $ns_B5$  | TAYLOR4 (TP12) | 4.040 | 7.7236e-12   | 10.000 | 4.2675e-07  |
| ns_B5    | TAYLOR4 (TP14) | 0.340 | 0.00024281   | 10.000 | 0.023851    |
| ns_B5    | RK4 (TP4)      | 0.230 | 0.00012717   | 10.000 | 0.018828    |
| $ns_B5$  | RK4 (TP6)      | 0.280 | 3.3117e-06   | 10.000 | 0.00050419  |
| $ns_B5$  | RK4 (TP8)      | 0.710 | 4.9849e-08   | 10.000 | 0.00028774  |
| $ns_B5$  | RK4 (TP10)     | 0.960 | 5.6878e-10   | 10.000 | 2.2317e-05  |
| $ns_B5$  | RK4 (TP12)     | 2.320 | 5.9515e-12   | 10.000 | 3.4427 e-07 |
| ns_B5    | RK4 (TP14)     | 0.230 | 0.00012717   | 10.000 | 0.018828    |
| ns_B5    | LA3 $(TP4)$    | 0.230 | 4.6884 e-05  | 10.000 | 0.085944    |
| $ns_B5$  | LA3 $(TP6)$    | 0.250 | 3.5205e-06   | 10.000 | 0.00074212  |
| $ns_B5$  | LA3 $(TP8)$    | 0.410 | 5.4075e-08   | 10.000 | 0.00049104  |
| $ns_B5$  | LA3 (TP10)     | 0.860 | 6.3172e-10   | 10.000 | 2.4014e-05  |
| $ns_B5$  | LA3 $(TP12)$   | 1.930 | 6.5794 e- 12 | 10.000 | 3.4972e-07  |
| ns_B5    | LA3 (TP14)     | 0.230 | 4.6884e-05   | 10.000 | 0.085944    |
| ns_B5    | LC3 (TP4)      | 0.230 | 4.1633e-05   | 10.000 | 0.099077    |
| $ns_B5$  | LC3 (TP6)      | 0.260 | 3.8362e-06   | 10.000 | 0.0014268   |
| $ns_B5$  | LC3 (TP8)      | 0.390 | 5.3813e-08   | 10.000 | 0.00028027  |
| $ns_B5$  | LC3 (TP10)     | 0.770 | 4.7183e-10   | 10.000 | 2.0975e-05  |
| $ns_B5$  | LC3 (TP12)     | 1.730 | 4.3485e-12   | 10.000 | 2.4349e-07  |
| $ns_B5$  | LC3 (TP14)     | 0.230 | 4.1633e-05   | 10.000 | 0.099077    |

Table 3.70: Simulation results of Problem ns\_B5

| Problems | Methods        | c5t     | c5w        | c6t    | c6w      |
|----------|----------------|---------|------------|--------|----------|
| ns_D1    | TAYLOR4 (TP4)  | 25.810  | 0.006207   | 5.396  | 2.925    |
| ns_D1    | TAYLOR4 (TP6)  | 34.860  | 0.0034041  | 9.153  | 1.8021   |
| $ns_D1$  | TAYLOR4 (TP8)  | 53.420  | 0.0033342  | 10.000 | 1.3536   |
| $ns_D1$  | TAYLOR4 (TP10) | 99.050  | 0.0033352  | 8.847  | 2.0949   |
| ns_D1    | TAYLOR4 (TP12) | 188.630 | 0.0016658  | 8.083  | 2.7048   |
| ns_D1    | TAYLOR4 (TP14) | 25.820  | 0.006207   | 5.396  | 2.925    |
| ns_D1    | RK4 (TP4)      | 20.920  | 0.0028112  | 6.395  | 1.7957   |
| $ns_D1$  | RK4 (TP6)      | 31.130  | 0.0016874  | 10.000 | 0.38124  |
| $ns_D1$  | RK4 (TP8)      | 44.450  | 0.0016637  | 10.000 | 0.30351  |
| $ns_D1$  | RK4 (TP10)     | 46.830  | 0.0016633  | 10.000 | 0.21176  |
| $ns_D1$  | RK4 (TP12)     | 90.540  | 0.00083237 | 9.009  | 1.8083   |
| ns_D1    | RK4 (TP14)     | 20.910  | 0.0028112  | 6.395  | 1.7957   |
| ns_D1    | LA3 $(TP4)$    | 18.400  | 0.0022911  | 3.265  | 0.023256 |
| $ns_D1$  | LA3 $(TP6)$    | 24.620  | 0.00073054 | 9.243  | 1.7605   |
| $ns_D1$  | LA3 $(TP8)$    | 32.510  | 0.0006961  | 10.000 | 0.5364   |
| $ns_D1$  | LA3 $(TP10)$   | 48.120  | 0.00069491 | 10.000 | 0.532    |
| $ns_D1$  | LA3 $(TP12)$   | 91.680  | 0.0006949  | 8.836  | 1.8679   |
| ns_D1    | LA3 $(TP14)$   | 18.470  | 0.0022911  | 3.265  | 0.023256 |
| ns_D1    | LC3 (TP4)      | 18.290  | 0.0019492  | 3.291  | 0.023226 |
| $ns_D1$  | LC3 (TP6)      | 24.570  | 0.00026326 | 9.563  | 1.9057   |
| ns_D1    | LC3 (TP8)      | 30.500  | 0.00022948 | 10.000 | 0.19742  |
| $ns_D1$  | LC3 (TP10)     | 48.300  | 0.00022838 | 10.000 | 0.72164  |
| $ns_D1$  | LC3 (TP12)     | 95.330  | 9.4802e-05 | 9.079  | 1.8038   |
| $ns_D1$  | LC3 (TP14)     | 18.230  | 0.0019492  | 3.291  | 0.023226 |

Table 3.71: Simulation results of Problem ns\_D1

| Problems | Methods        | c5t   | c5w       | c6t    | c6w        |
|----------|----------------|-------|-----------|--------|------------|
| ns_E1    | TAYLOR4 (TP4)  | 0.570 | 1.4351    | 2.719  | 18.977     |
| ns_E1    | TAYLOR4 (TP6)  | 0.930 | 0.42517   | 2.000  | 0.00010071 |
| $ns_E1$  | TAYLOR4 (TP8)  | 1.450 | 0.20741   | 2.000  | 8.381e-06  |
| $ns_E1$  | TAYLOR4 (TP10) | 3.080 | 0.13387   | 2.000  | 1.0032e-07 |
| $ns_E1$  | TAYLOR4 (TP12) | 7.210 | 0.050696  | 10.000 | 22.567     |
| ns_E1    | TAYLOR4 (TP14) | 0.570 | 1.4351    | 2.719  | 18.977     |
| ns_E1    | RK4 (TP4)      | 0.420 | 0.012668  | 10.000 | 1.2214     |
| $ns_E1$  | RK4 (TP6)      | 0.500 | 0.017561  | 2.000  | 6.1085e-05 |
| $ns_E1$  | RK4 (TP8)      | 0.700 | 0.031314  | 2.000  | 5.143e-06  |
| $ns_E1$  | RK4 (TP10)     | 1.140 | 0.030614  | 2.000  | 6.6196e-08 |
| $ns_E1$  | RK4 (TP12)     | 2.540 | 0.031647  | 10.000 | 0.91288    |
| ns_E1    | RK4 (TP14)     | 0.410 | 0.012668  | 10.000 | 1.2214     |
| ns_E1    | LA3 $(TP4)$    | 0.410 | 0.013204  | 10.000 | 0.34595    |
| $ns_E1$  | LA3 $(TP6)$    | 0.500 | 0.010426  | 2.000  | 8.1548e-05 |
| ns_E1    | LA3 $(TP8)$    | 0.690 | 0.013066  | 2.000  | 3.5913e-06 |
| $ns_E1$  | LA3 $(TP10)$   | 1.110 | 0.015096  | 2.000  | 5.1198e-08 |
| $ns_E1$  | LA3 $(TP12)$   | 2.420 | 0.011244  | 10.000 | 0.33604    |
| ns_E1    | LA3 (TP14)     | 0.420 | 0.013204  | 10.000 | 0.34595    |
| ns_E1    | LC3 (TP4)      | 0.410 | 0.0095702 | 10.000 | 0.26912    |
| $ns_E1$  | LC3 (TP6)      | 0.500 | 0.01023   | 2.000  | 8.7855e-05 |
| ns_E1    | LC3 (TP8)      | 0.720 | 0.010676  | 2.000  | 3.8404e-06 |
| $ns_E1$  | LC3 (TP10)     | 1.080 | 0.0095686 | 2.000  | 4.2571e-08 |
| $ns_E1$  | LC3 (TP12)     | 2.050 | 0.0091033 | 10.000 | 0.22942    |
| $ns_E1$  | LC3 (TP14)     | 0.410 | 0.0095702 | 10.000 | 0.26912    |

Table 3.72: Simulation results of Problem ns\_E1

| Problems | Methods        | c5t   | c5w        | c6t    | c6w         |
|----------|----------------|-------|------------|--------|-------------|
| ns_E2    | TAYLOR4 (TP4)  | 0.080 | 0.00040596 | 10.000 | 0.015868    |
| $ns_E2$  | TAYLOR4 (TP6)  | 0.120 | 5.6232e-06 | 2.000  | 0.00010071  |
| $ns_E2$  | TAYLOR4 (TP8)  | 0.180 | 7.7141e-08 | 2.000  | 8.381e-06   |
| $ns_E2$  | TAYLOR4 (TP10) | 0.410 | 8.2963e-10 | 2.000  | 1.0032 e-07 |
| $ns_E2$  | TAYLOR4 (TP12) | 1.010 | 8.848e-12  | 10.000 | 3.459e-07   |
| ns_E2    | TAYLOR4 (TP14) | 0.080 | 0.00040596 | 10.000 | 0.015868    |
| ns_E2    | RK4 (TP4)      | 0.050 | 0.0003214  | 10.000 | 0.015258    |
| $ns_E2$  | RK4 (TP6)      | 0.070 | 7.4223e-06 | 2.000  | 6.1085 e-05 |
| $ns_E2$  | RK4 (TP8)      | 0.130 | 1.1435e-07 | 2.000  | 5.143e-06   |
| $ns_E2$  | RK4 (TP10)     | 0.280 | 1.8288e-09 | 2.000  | 6.6196e-08  |
| $ns_E2$  | RK4 (TP12)     | 0.670 | 2.3118e-11 | 10.000 | 5.8802e-07  |
| ns_E2    | RK4 (TP14)     | 0.050 | 0.0003214  | 10.000 | 0.015258    |
| ns_E2    | LA3 $(TP4)$    | 0.050 | 0.00025275 | 10.000 | 0.066185    |
| $ns_E2$  | LA3 $(TP6)$    | 0.060 | 3.8427e-06 | 2.000  | 8.1548e-05  |
| $ns_E2$  | LA3 $(TP8)$    | 0.100 | 7.7582e-08 | 2.000  | 3.5913e-06  |
| $ns_E2$  | LA3 $(TP10)$   | 0.230 | 1e-09      | 2.000  | 5.1198e-08  |
| $ns_E2$  | LA3 $(TP12)$   | 0.550 | 1.4015e-11 | 10.000 | 5.7683e-07  |
| $ns_E2$  | LA3 $(TP14)$   | 0.050 | 0.00025275 | 10.000 | 0.066185    |
| ns_E2    | LC3 (TP4)      | 0.050 | 0.00027974 | 10.000 | 0.10799     |
| $ns_E2$  | LC3 (TP6)      | 0.060 | 3.9986e-06 | 2.000  | 8.7855e-05  |
| $ns_E2$  | LC3 (TP8)      | 0.110 | 7.6055e-08 | 2.000  | 3.8404 e-06 |
| $ns_E2$  | LC3 (TP10)     | 0.230 | 7.073e-10  | 2.000  | 4.2571e-08  |
| $ns_E2$  | LC3 (TP12)     | 0.580 | 7.085e-12  | 10.000 | 2.6685e-07  |
| $ns_E2$  | LC3 (TP14)     | 0.060 | 0.00027974 | 10.000 | 0.10799     |

Table 3.73: Simulation results of Problem ns\_E2

| Problems | Methods        | c5t   | c5w          | c6t    | c6w         |
|----------|----------------|-------|--------------|--------|-------------|
| ns_E3    | TAYLOR4 (TP4)  | 0.300 | 0.0001603    | 10.000 | 0.015971    |
| $ns_E3$  | TAYLOR4 (TP6)  | 0.500 | 2.0937e-06   | 2.000  | 9.0741e-06  |
| $ns_E3$  | TAYLOR4 (TP8)  | 0.990 | 3.6313e-08   | 2.000  | 2.1037 e-07 |
| $ns_E3$  | TAYLOR4 (TP10) | 2.430 | 4.1545e-10   | 2.000  | 2.2064 e-09 |
| $ns_E3$  | TAYLOR4 (TP12) | 5.990 | 4.5057e-12   | 10.000 | 2.7482e-08  |
| ns_E3    | TAYLOR4 (TP14) | 0.300 | 0.0001603    | 10.000 | 0.015971    |
| ns_E3    | RK4 (TP4)      | 0.230 | 0.00012793   | 10.000 | 0.020574    |
| $ns_E3$  | RK4 (TP6)      | 0.320 | 2.9744e-06   | 2.000  | 1.12e-05    |
| $ns_E3$  | RK4 (TP8)      | 0.570 | 5.1365e-08   | 2.000  | 3.5177e-07  |
| $ns_E3$  | RK4 (TP10)     | 1.270 | 5.4612e-10   | 2.000  | 4.1754e-09  |
| $ns_E3$  | RK4 (TP12)     | 3.160 | 5.5893e-12   | 10.000 | 4.885e-08   |
| ns_E3    | RK4 (TP14)     | 0.240 | 0.00012793   | 10.000 | 0.020574    |
| ns_E3    | LA3 $(TP4)$    | 0.190 | 0.00026818   | 10.000 | 0.036244    |
| $ns_E3$  | LA3 $(TP6)$    | 0.340 | 2.8738e-06   | 2.000  | 1.0633e-05  |
| $ns_E3$  | LA3 $(TP8)$    | 0.540 | 5.2924e-08   | 2.000  | 2.7291e-07  |
| $ns_E3$  | LA3 $(TP10)$   | 1.230 | 5.7092e-10   | 2.000  | 2.9675e-09  |
| $ns_E3$  | LA3 $(TP12)$   | 3.000 | 5.9095e-12   | 10.000 | 3.4149e-08  |
| ns_E3    | LA3 (TP14)     | 0.190 | 0.00026818   | 10.000 | 0.036244    |
| ns_E3    | LC3 (TP4)      | 0.210 | 0.00014667   | 10.000 | 0.047597    |
| $ns_E3$  | LC3 (TP6)      | 0.300 | 1.9905e-06   | 2.000  | 9.1701e-06  |
| $ns_E3$  | LC3 (TP8)      | 0.560 | 3.2515e-08   | 2.000  | 2.1352e-07  |
| $ns_E3$  | LC3 (TP10)     | 1.300 | 3.5506e-10   | 2.000  | 2.2933e-09  |
| $ns_E3$  | LC3 (TP12)     | 3.230 | 3.6904 e- 12 | 10.000 | 2.7388e-08  |
| $ns_E3$  | LC3 (TP14)     | 0.210 | 0.00014667   | 10.000 | 0.047597    |

Table 3.74: Simulation results of Problem ns\_E3

| Problems | Methods        | c5t   | c5w        | c6t    | c6w         |
|----------|----------------|-------|------------|--------|-------------|
| ns_E4    | TAYLOR4 (TP4)  | 0.040 | 1.2137e-09 | 10.000 | 3.702e-06   |
| ns_E4    | TAYLOR4 (TP6)  | 0.040 | 1.2137e-09 | 2.000  | 7.75e-08    |
| ns_E4    | TAYLOR4 (TP8)  | 0.040 | 1.2137e-09 | 2.000  | 7.75e-08    |
| ns_E4    | TAYLOR4 (TP10) | 0.040 | 9.0002e-10 | 2.000  | 2.5812e-09  |
| ns_E4    | TAYLOR4 (TP12) | 0.060 | 1.4914e-11 | 10.000 | 1.7366e-10  |
| ns_E4    | TAYLOR4 (TP14) | 0.040 | 1.2137e-09 | 10.000 | 3.702e-06   |
| ns_E4    | RK4 (TP4)      | 0.020 | 7.5673e-11 | 10.000 | 7.2614e-07  |
| ns_E4    | RK4 (TP6)      | 0.020 | 7.5673e-11 | 2.000  | 3.0567 e-09 |
| ns_E4    | RK4 (TP8)      | 0.020 | 7.5673e-11 | 2.000  | 3.0567 e-09 |
| ns_E4    | RK4 (TP10)     | 0.020 | 7.5673e-11 | 2.000  | 1.7044e-09  |
| ns_E4    | RK4 (TP12)     | 0.030 | 1.1987e-11 | 10.000 | 2.519e-10   |
| ns_E4    | RK4 (TP14)     | 0.020 | 7.5673e-11 | 10.000 | 7.2614e-07  |
| ns_E4    | LA3 $(TP4)$    | 0.020 | 2.0709e-10 | 10.000 | 3.5712e-07  |
| ns_E4    | LA3 $(TP6)$    | 0.020 | 2.0709e-10 | 2.000  | 1.1984e-08  |
| ns_E4    | LA3 $(TP8)$    | 0.020 | 2.0709e-10 | 2.000  | 1.1984e-08  |
| ns_E4    | LA3 $(TP10)$   | 0.020 | 2.0709e-10 | 2.000  | 2.0098e-09  |
| ns_E4    | LA3 (TP12)     | 0.030 | 2.4286e-11 | 10.000 | 1.1126e-10  |
| ns_E4    | LA3 (TP14)     | 0.020 | 2.0709e-10 | 10.000 | 3.5712e-07  |
| ns_E4    | LC3 (TP4)      | 0.020 | 8.4192e-11 | 10.000 | 3.6162e-07  |
| ns_E4    | LC3 (TP6)      | 0.020 | 8.4192e-11 | 2.000  | 6.1039e-09  |
| ns_E4    | LC3 (TP8)      | 0.020 | 8.4192e-11 | 2.000  | 6.1039e-09  |
| ns_E4    | LC3 (TP10)     | 0.020 | 8.4192e-11 | 2.000  | 2.083e-09   |
| $ns_E4$  | LC3 (TP12)     | 0.030 | 1.1283e-11 | 10.000 | 1.1097e-10  |
| ns_E4    | LC3 (TP14)     | 0.020 | 8.4192e-11 | 10.000 | 3.6162e-07  |

Table 3.75: Simulation results of Problem ns\_E4

## 3.2.3 Discussion

## 3.3 Other problems

some problems very hard and proof that we win ?

#### 3.3.1 Affine-uncertain

LC3 1e-12

```
Solution at t=2.000000 :
([-2.39334, 2.05433] ; [-2.19454, 2.48459] ; [-0.0626994, 0.0651442] ; [-0.0672006, 0.0606297] ; [-0
Diameter : (4.44767 ; 4.67913 ; 0.127844 ; 0.12783 ; 0.120356)
Rejected picard :2
Accepted picard :673
Step min :0.00174779
Step max :0.00313099
Truncature error max :2.06329e-12
```

#### 3.3.2 circle

```
rk<br/>41\mathrm{e}\text{-}8
```

```
Solution at t=100.000000 :
([0.476077, 0.622885] ; [0.763549, 0.910451])
Diameter : (0.146808 ; 0.146902)
Rejected picard :0
Accepted picard :1400
Step min :0.01
Step max :0.0730046
Truncature error max :1.60132e-08
```



Figure 3.3: Simulation of the circle system

#### 3.3.3 Lambert\_prob2\_lin\_p213

```
Solution at t=10.000000 :
([-0.544487, -0.543374] ; [-0.839843, -0.838119] ; [10, 10])
Diameter : (0.00111361 ; 0.00172438 ; 0)
Rejected picard :3
Accepted picard :26873
Step min :0.000204486
Step max :0.00040387
Truncature error max :7.99348e-06
```



Figure 3.4: Simulation of the Lambert linear system

#### 3.3.4 Lambert\_stiff\_nl\_p223

```
Solution at t=1.500000 :
([0.399984, 0.400016] ; [0.00193044, 0.00193047] ; [2.5, 2.5])
Diameter : (3.26431e-05 ; 3.27931e-08 ; 9.19886e-12)
Rejected picard :1
Accepted picard :21060
Step min :4.79902e-06
Step max :0.0152239
Truncature error max :2.70897e-08
```



Figure 3.5: Simulation of the Lambert stiff system

#### 3.3.5 Lorentz

```
Solution at t=4.000000 :
([-4.89107, -4.60361] ; [-0.207979, 0.199418] ; [28.8958, 29.2391])
Diameter : (0.287467 ; 0.407397 ; 0.343226)
Rejected picard :5
Accepted picard :7419
Step min :0.0003125
Step max :0.000924129
Truncature error max :2.52501e-13
```

#### 3.3.6 moins10u

#### 3.3.7 oil-reservoir

```
 \begin{array}{c} {\rm meth=imidpoint\ prec=1e-12\ picard=taylor3\ hmin=1e-6}\\ 0.001 \end{array}
```



Figure 3.6: Simulation of the Lorentz system

```
Solution at t=50.000000 :
([-8.27752, -8.27751] ; [-0.224547, -0.224547])
Diameter : (6.2308e-06 ; 1.56923e-07)
Rejected picard :3
Accepted picard :71076
Step min :1e-06
Step max :0.016677
Truncature error max :6.57475e-11
```



Figure 3.7: Simulation of the oil-reservoir system (stiffness=1e - 03)

```
0.0001
```

```
Solution at t=50.000000 :
([-8.56149, -8.56146] ; [-0.216578, -0.216577])
Diameter : (2.91622e-05 ; 6.85792e-07)
Rejected picard :2
Accepted picard :73200
Step min :1e-06
Step max :0.0166808
Truncature error max :2.2382e-08
```

## 3.3.8 vanderpol

```
Solution at t=50.000000 :
([-2.03535, -1.97923] ; [0.0419892, 0.0988844])
Diameter : (0.0561216 ; 0.0568952)
Rejected picard :1
```



Figure 3.8: Simulation of the oil-reservoir system (stiffness=1e - 04)

Accepted picard :6789 Step min :0.00140294 Step max :0.012461 Truncature error max :2.53534e-12



Figure 3.9: Simulation of the vanderpol system  $(\mu = 1)$ 

```
Solution at t=40.000000 :
([1.0493, 1.49018] ; [-0.879307, -0.404504])
Diameter : (0.440879 ; 0.474803)
Rejected picard :2
Accepted picard :7163
Step min :0.00217604
Step max :0.0106292
Truncature error max :3.89696e-12
```

```
3.3.9 volterra
```

```
Solution at t=5.488138 :
([1, 1] ; [3, 3])
Diameter : (2.25385e-10 ; 3.90135e-10)
Rejected picard :3
Accepted picard :1642
Step min :0.00115543
Step max :0.00830212
Truncature error max :3.11242e-14
```



Figure 3.10: Simulation of the vanderpol system  $(\mu = 2)$ 



Figure 3.11: Simulation of the volterra system

```
Solution at t=5.488138 :
([0.919632, 1.08037] ; [2.92806, 3.07194])
Diameter : (0.160737 ; 0.14388)
Rejected picard :3
Accepted picard :1702
Step min :0.000912773
Step max :0.00819498
Truncature error max :3.13532e-14
```



Figure 3.12: Simulation of the volterra system with uncertainties

3.3.10 orbit

Imidpoint

Solution at t=5.000000 :

([-0.00635623, 0.0513502] ; [0.826695, 0.905428] ; [-0.188858, -0.0486894] ; [-0.496981, -0.351559]) Diameter : (0.0577065 ; 0.0787324 ; 0.140169 ; 0.145422) Rejected picard :0 Accepted picard :45489 Step min :1e-07 Step max :0.000310353 Truncature error max :2.18118e-12



Figure 3.13: Simulation of the orbit system

- 3.3.11 Neumaier 1
- 3.3.12 Neumaier 2
- 3.3.13 Neumaier 3
- 3.3.14 Quadratic
- 3.3.15 Rossler

```
Solution at t=50.0000000 :
([10.1496, 11.4172] ; [-7.78271, -5.69522] ; [0.0544862, 0.0971181])
Diameter : (1.26763 ; 2.08749 ; 0.0426319)
Rejected picard :6
Accepted picard :7123
Step min :0.001
Step max :0.0132739
Truncature error max :1.3313e-11
```



Figure 3.14: Simulation of the Rossler system

## 3.3.16 Discussion

In this section, we perform some testes on others problem, coming from the literature. It is not to compare with the other tools, but just to prove that we can model and perform come classical problems.

Chapter 4

# Conclusion

## Bibliography

- Martin Berz and Kyoko Makino. Verified integration of odes and flows using differential algebraic methods on high-order taylor models. *Reliable Computing*, 4(4):361–369, 1998.
- [2] Olivier Bouissou, Alexandre Chapoutot, and Adel Djoudi. Enclosing temporal evolution of dynamical systems using numerical methods. In NASA Formal Methods, number 7871 in LNCS, pages 108–123. Springer, 2013.
- [3] Olivier Bouissou and Matthieu Martel. GRKLib: a Guaranteed Runge Kutta Library. In Scientific Computing, Computer Arithmetic and Validated Numerics, 2006.
- [4] Olivier Bouissou, Samuel Mimram, and Alexandre Chapoutot. HySon: Set-based simulation of hybrid systems. In *Rapid System Prototyping*. IEEE, 2012.
- [5] Gilles Chabert and Luc Jaulin. Contractor programming. Artificial Intelligence, 173(11):1079–1100, 2009.
- [6] Xin Chen, Erika Abraham, and Sriram Sankaranarayanan. Taylor model flowpipe construction for non-linear hybrid systems. In *IEEE 33rd Real-Time Systems Symposium*, pages 183–192. IEEE Computer Society, 2012.
- [7] L. H. de Figueiredo and J. Stolfi. Self-Validated Numerical Methods and Applications. Brazilian Mathematics Colloquium monographs. IMPA/CNPq, 1997.
- [8] Karol Gajda, Małgorzata Jankowska, Andrzej Marciniak, and Barbara Szyszka. A survey of interval runge-kutta and multistep methods for solving the initial value problem. In *Parallel Processing and Applied Mathematics*, volume 4967 of *LNCS*, pages 1361–1371. Springer Berlin Heidelberg, 2008.
- [9] Eric Goubault and Sylvie Putot. Static analysis of finite precision computations. In Verification, Model Checking, and Abstract Interpretation, volume 6538 of LNCS, pages 232–247. Springer Berlin Heidelberg, 2011.
- [10] Ernst Hairer, Syvert Paul Norsett, and Grehard Wanner. Solving Ordinary Differential Equations I: Nonstiff Problems. Springer-Verlag, 2nd edition, 2009.
- [11] Tomas Kapela and Piotr Zgliczyński. A lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and continuous dynamical systems - series B, 11(2):365–385, 2009.
- [12] Youdong Lin and Mark A. Stadtherr. Validated solutions of initial value problems for parametric odes. Appl. Numer. Math., 57(10):1145–1162, 2007.
- [13] Rudolf J. Lohner. Enclosing the solutions of ordinary initial and boundary value problems. Computer Arithmetic, pages 255–286, 1987.
- [14] Ramon Moore. Interval Analysis. Prentice Hall, 1966.
- [15] Ned Nedialkov, K. Jackson, and Georges Corliss. Validated solutions of initial value problems for ordinary differential equations. Appl. Math. and Comp., 105(1):21 – 68, 1999.
- [16] Arnold Neumaier. The wrapping effect, ellipsoid arithmetic, stability and confidence regions. In Validation Numerics, volume 9 of Computing Supplementum, pages 175–190. Springer Vienna, 1993.

- [17] Siegfried M. Rump and Masahide Kashiwagi. Implementation and improvements of affine arithmetic. Technical report, Under submission, 2014.
- [18] Daniel Wilczak and Piotr Zgliczyński. Cr-lohner algorithm. Schedae Informaticae, 20:9–46, 2011.