Alignment of Memory Transfers of a
Time-Predictable Stack Cache

Sahar Abbaspour
Dep. of Applied Math. and Computer Science
Technical University of Denmark
sabb@dtu.dk

ABSTRACT

Modern computer architectures use features which often com-
plicate the WCET analysis of real-time software. Alterna-
tive time-predictable designs, and in particular caches, thus
are gaining more and more interest. A recently proposed
stack cache, for instance, avoids the need for the analysis of
complex cache states. Instead, only the occupancy level of
the cache has to be determined.

The memory transfers generated by the standard stack
cache are not generally aligned. These unaligned accesses
risk to introduce complexity to the otherwise simple WCET
analysis. In this work, we investigate three different ap-
proaches to handle the alignment problem in the stack cache:
(1) unaligned transfers, (2) alignment through compiler-gen-
erated padding, (3) a novel hardware extension ensuring
the alignment of all transfers. Simulation results show that
our hardware extension offers a good compromise between
average-case performance and analysis complexity.

Categories and Subject Descriptors

C.3 [Special-Purpose and Application-Based Systems|:

Real-time and embedded systems; B.3.2 [Memory Struc-
tures|: Design Styles—Cache memories

General Terms

Algorithms, Measurement, Performance

Keywords
Block-Aligned Stack Cache, Alignment, Real-Time Systems

1. INTRODUCTION

In order to meet the timing constraints in systems with
hard deadlines, the worst-case execution time (WCET) of
real-time software needs to be bounded. Many features of
modern processor architectures, such as caches and branch
predictors, improve the average performance, but have an
adverse effect on WCET analysis. Time-predictable com-
puter architectures thus propose alternative designs that are
easier to analyze, focusing in particular on analyzable cache
and memory designs [13| [8]. One such alternative cache de-
sign is the stack cache [} [9], i.e., a cache dedicated to stack
data. The stack cache is a complement to a regular data
cache and thus reduces the number of accesses through the
data cache. This promises improved analysis precision, since
unknown access addresses can no longer interfere with stack
accesses (and vice versa). Secondly, the stack cache design

Florian Brandner
Computer Science and System Eng. Dep.
. ENSTA ParisTech
florian.brandner@ensta-paristech.fr

is simple and thus easy to analyze [5]. The WCET anal-
ysis of traditional caches requires precise knowledge about
the addresses of accesses [13] and has to take the complex
replacement policy into account. The analysis of the stack
cache on the other hand is much easier and amounts to a
simple analysis of the cache’s fill level (occupancy) [5].

The original stack cache proposes three instructions to re-
serve space on the stack (sres), free space (sfree), and to
ensure the availability of stack data in the cache (sens). The
reserve and ensure instructions may cause memory transfers
between the stack cache and main memory and thus are rel-
evant for WCET analysis. Since these stack cache control
instructions operate on words, the start addresses of mem-
ory transfers are not guaranteed to be aligned to the memory
controller’s burst size. Therefore, unaligned transfers incur
a performance penalty that needs to be analyzed. This is in
contrast to traditional caches where the cache line size is typ-
ically aligned with the burst size. This risks anew to intro-
duce complexity to the otherwise simple WCET analysis of
the stack cache. We thus compare three approaches to han-
dle this alignment problem for the stack cache: (1) a stack
cache initiating unaligned transfer, (2) compiler-generated
padding to align all stack cache allocations (and thus all
transfers), and (3) a novel hardware extension that guaran-
tees that all stack cache transfers are block-aligned.

For our hardware extension a burst-sized block of the stack
cache is used as an alignment buffer, which can be used to
perform block-aligned memory transfers. The downside of
this approach is that the effective stack cache size is reduced
by one block. On the other hand, the block-aligned trans-
fers simplify WCET analysis. In addition, this allows us to
perform allocations at word granularity, which improves the
cache’s utilization. The hardware overhead of our approach
is minimal: the implementation of sres and sens is sim-
plified, while sfree requires some minor extensions. The
free instructions may need to initiate memory transfers to
preserve the alignment of the stack cache content.

Section [2] introduces the stack cache, followed by a dis-
cussion of related work. In Section [l we explain the block-
aligned stack cache and its impact on static analysis. We
finally present the results from our experiments in Section

2. BACKGROUND

The original stack cache [1] is an on-chip memory imple-
mented as a special ring buffer utilizing two pointers: stack
top (ST) and memory top (MT). The ST points to the stack
data either stored in the cache or main memory. The MT
points to the stack data in main memory. The difference

MT — ST represents the occupied space in the stack cache.
Since this value cannot exceed the total size of the stack
cache (|SC|), 0 < MT — ST < |SC| always holds.

Three control instructions manipulate the cache (more de-
tails are available elsewhere [1]):

sres x: Subtract x from ST. If this violates the equa-

tion from above, i.e., the stack cache size is ex-
ceeded, a spill is initiated, which lowers MT until
the invariant is satisfied again.
Ensure that the occupancy is larger than x. If
this is not the case, a fill is initiated, which
increments MT accordingly so that MT — ST > x.
Add x to ST. If this results in a violation of the
invariant, MT is incremented accordingly. Mem-
ory is not accessed.

The analysis of the stack cache [5] is based on the obser-
vation that the concrete values of ST and MT are not relevant
for the worst-case behavior. Instead the focus is on deter-
mining the occupancy, i.e., the value MT — ST. The impact
of function calls is taken to account by the function’s dis-
placement, i.e. the number of cache blocks spilled to main
memory during the function call. The analysis then con-
sists of the following phases: (1) an analysis of the mini-
mum,/maximum displacement for call sites on the call graph,
(2) a context-independent, function-local data-flow analysis
bounding the filling at ensure instructions, (3) a context-
independent, function-local data-flow analysis bounding the
worst-case occupancy for call sites, and (4) a fully context-
sensitive analysis bounding the worst-case spilling of reserves.

The spilling and filling bounds at the stack control instruc-
tions can then be taken into account during WCET analysis
to compute a final timing bound. Note that the alignment
is not considered here and thus handled conservatively.

sens x:

sfree x:

3. RELATED WORK

Static analysis |12} |3] of caches typically proceeds in two
phases: (1) potential addresses of memory accesses are de-
termined, (2) the potential cache content for every program
point is computed. The alignment usually is not an issue,
as the size can be aligned with the main memory’s burst
size. Through its simpler analysis model, the stack cache
does not require the precise knowledge of addresses, thus
eliminating a source of complexity and imprecision. It has
been previously shown that the stack cache serves up to 75%
of the dynamic memory accesses [1]. An extension to avoid
spilling data that is coherent between the stack cache and
main memory 9] was presented.

Our approach to compute the worst-case behavior of the
stack cache has some similarity to techniques used to stati-
cally analyze the maximum stack depth [2]. Also related to
the concept of the stack cache, is the register-window mech-
anism of the SPARC architecture, for which limited WCET
analysis support exists in Tidorum Ltd.’s Bound-T tool [11].

Alternative caching mechanisms for program data exist
with the Stack Value File [6] and several solutions based
on Scratchpad Memory (SPM) (e.g. [7]), which manage the
stack in either hardware or software.

4. BLOCK-ALIGNED STACK CACHE

As explained above, the original stack cache operates on
words and thus does not automatically align transfers ac-
cording to the main memory’s requirements. With regard

to average performance, this is less of an issue and may only
lead to a less optimal utilization of the main memory’s band-
width. For the WCET analysis the issue is more problem-
atic. The alignment of the stack cache content needs to be
known or otherwise all access have to be assumed unaligned.
This information, however, is highly dependent on execution
history and thus inevitably increases analysis complexity.

4.1 Hardware Modifications

This work proposes a hardware extension that guarantees
that the stack cache initiates aligned memory transfers only,
i.e., the start address as well as the length of the memory
transfer are multiples of the memory’s alignment require-
ment, i.e. the burst size. This avoids the need to track the
alignment of the stack cache content during the WCET anal-
ysis, while allowing us to perform all stack cache operations
at word granularity, which improves the cache’s utilization.

The stack cache is organized in blocks matching the burst
size. Moreover, we logically reserve a block in the stack cache
as an alignment buffer. Note that this reserved block is not
fixed, instead the last block pointed to by MT dynamically
serves as this alignment buffer. This block is not accessible,
for instance, to the compiler, and thus reduces the effective
size of the stack cache by one block. The buffer allows us
to align all the memory transfers to the desired block size.
With regard to the original stack cache (see Section , this
corresponds to an additional invariant that needs to be re-
spected by the stack cache hardware given a block size BS:

MT mod BS = 0. (1)

In order to respect this new invariant the stack control
instructions have to be adapted as follows:

sres x: Subtract x from ST. If the occupancy exceeds
the stack cache size, a spill is initiated, which
lowers MT by multiples of BS until the occupancy
is smaller than |SC|.

If the occupancy is not larger than x, a fill is
initiated, which increments MT by multiples of
BS so that MT — ST > x.

Add x to ST. If MT < ST, set MT to the smallest
multiple of BS larger than ST and fill a single
block from main memory.

It is easy to see that the modifications to sres and sens
are minimal. Clearly, when Eq. [T] holds, spilling and filling
in multiples of BS ensures that the equation also holds after
these instructions. The reserved block serving as an align-
ment buffer, in addition guarantees that sufficient space is
available during filling to receive data and sufficient data is
available during spilling to transmit data.

The situation is more complex for sfree. Whenever a
number of sfree instructions are executed in a sequence
such that the occupancy becomes zero, the MT pointer needs
to be updated. In order to satisfy Eq.[l} two options exist:
(a) set MT to the largest multiple of BS smaller than ST or
(b) set MT to the smallest multiple of BS larger that ST. The
former option would mean that the cache’s occupancy be-
comes negative, which would entail non-trivial modifications
to the other stack control instructions. The second option,
which represents a non-negative occupancy, thus is prefer-
able. However, in order to guarantee that the content of the
stack cache reflects the occupancy (MT — ST) a single block
has to be filled from main memory.

sens x:

sfree x:

4.2 Static Analysis

The static analysis proposed for the standard stack cache [5]
is in large parts applicable to the new block-aligned stack
cache proposed as well. The main difference is that the tim-
ing of sfree instructions also has to be analyzed.

An sfree is required to perform a fill, iff, the minimal oc-
cupancy before the instruction is smaller than the instruc-
tion’s argument x. The analysis problem for free instructions
is thus identical to the analysis of ensure instructions [5].

In addition, the displacement of function calls has to be
refined to account for data of the caller that is reloaded
to the cache by an sfree before returning from the call.
This is particularly important for the minimum displace-
ment, needed for the analysis of sens-instructions, as the
original displacement analysis is not safe anymore, unless
lazy spilling Eﬂ is used. This information can easily be de-
rived and propagated on the program’s call graph.

S. EXPERIMENTS

For our experiments we extended the hardware implemen-
tation of the stack cache available with the Patmos proces-
sor as well as the cycle-accurate simulation infrastruc-
ture and the accompanying LLVM compiler (version 3.4).
The average case performance was measured for all bench-
marks of the MiBench benchmark suite . The benchmaks
were compiled, with optimizations (-02) and stack cache
support enabled, and then executed on the Patmos simu-
lator to collect runtime statistics. The simulator was con-
figured to simulate a 2 KB data cache (32 B blocks, 4 way
set-associative, LRU replacement policy, and write-through
strategy), a 2 KB method cache (32 B blocks, associativ-
ity 8), and a 128 B stack cache (with varying configurations).
All caches are connected to a shared main memory, which
transfers data in 32 B bursts. A moderate access latency of
14 cycles for reads and 12 cycles for writes is assumed.

The benchmarks were tested under three different scenar-
ios: (1) the stack cache performs unaligned memory trans-
fers (unaligned), (2) the compiler generates suitable padding
to align all stack allocations and consequently all memory
transfers (padding), and (3) the stack cache employs the
block-aligned strategy from Section (block-aligned).
Stack data is usually aligned at word boundaries for Pat-
mos, which applies to the unaligned and block-aligned
configurations. The padding configuration, however, aligns
all data with the burst size (32 B).

1.08

3 block-aligned I Il padding 1] unaligned

S

E

= 1.02 +

=}

g

n

<

o

>

O

=1 €

I

Z

=

Q

19

%

=

E

ﬁU.QS*
»m:m:*«:~~ ~:>>>>«s:>0:<e:
EEE N EE SE S §EEcEE PSS
2 S g ¢ E g g 'oEuu':EaaE‘”E
L 2 3 5 @ @ =] 2 5 L L 2@ L5 @ @
T 2w o s 8 T 2 LiEE 8 LT H 2]
5] & S g8 95 5 5 = £ 85 3 g
g = 2 % & 2 2 3 3 a
3] kT 2 i s =
£ 3

Figure 1: Total execution cycles normalized to the
block-aligned configuration (lower is better).

block-aligned I [padding []] unaligned

-

||I|||

Stack Cache Stall Cycles (normalized)

ebf

erijndael
sha 1

nclindi il

basicmath—tiny
bitcnts
cjpeg—small
crc-32
csusan-small 5
dijkstra-small -
djpeg-small
drijndael
esusan-small 5
ifft-tiny
patricia -
gsort-small
say-tiny -
search-large -
search-small -
ssusan-small

Figure 2: Total number of stall cycles induced by the
stack cache normalized to the block-aligned config-
uration (lower is better).

The runtime impact of the various strategies to handle the
alignment of memory transfers between the stack cache and
the main memory is summarized in Figure Overall, the
unaligned and block-aligned configurations are very close
with respect to runtime, while the padding configuration
performs the least. In particular, the bitcnts, basicmath-
tiny, fft-tiny, and ifft-tiny benchmarks here show run-
time increases of 1.5% and more.

Note that the runtime contribution of the stack cache is
relatively small, which in general precludes very large vari-
ations in the total runtime due to the stack cache. The
simulator thus was extended to collect detailed statistics on
the number of stall cycles induced by the stack cache as well
as the spilling and filling performed. Figure [2| shows the
total number of stall cycles induced by the stack cache, nor-
malized to the block-aligned configuration. The padding
configuration increases the number of stall cycles in all cases
in relation to our block-aligned strategy (up to a factor
of more than 4). The padding introduced by the compiler
generally increases the stack cache’s occupancy and conse-
quently leads to additional memory transfers. Also for the
unaligned configuration the number of stall cycles is larger
than our new strategy, since the small unaligned memory
transfers performed by this configuration induce some over-
head. For two benchmarks, cjpeg-small and erijndael,
the number of stall cycles is considerably smaller in this
configuration. Our block-aligned stack cache here suffers
additional filling and spilling due to its reduced effective size,
as shown in the following Table.

The impact of the various configurations on the amount
of data spilled and filled from/to the stack cache is shown
in Table [1} As noted above the padding configuration per-
forms additional memory transfers (spills and fills) due to
the padding introduced by the compiler to ensure alignment.
The unaligned configuration on the other hand requires the
least filling and spilling as it transfers the precise amount
of data needed. In addition, the reduced stack cache size
available for the block-aligned strategy (recall that one
block is reserved as an alignment buffer) plays in favor of
the unaligned configuration.

To summarize, compiler generated padding is a simple so-
lution to the alignment problem for the stack cache, which
is easy to analyze and generally performs reasonably well,

Block-Aligned Padding

Benchmark Spill Fill Spill rel.

Fill

Unaligned
rel. Spill rel. Fill rel.

basicmath-tiny 791 288 968544 1696832 214 1

bitecnts 1201992 1202720 3603152 3.00 3
cjpeg-small 96 840 123048 113512 1.17
crc-32 2984 3312 11256 3.77
csusan-small 9184 10000 32136 3.50

dbf 11984 78136 22456 1.87
dijkstra-small 98056 99520 472944 4.82
djpeg-small 28 032 29112 33688 1.20
drijndael 168 584 212800 329600 1.96
ebf 37536 103624 65040 1.73
erijndael 196 240 240520 366280 1.87
esusan-small 18952 19912 57896 3.05
fft-tiny 215936 217712 448480 2.08
ifft-tiny 206 464 207952 425440 2.06
patricia 3883936 4590920 6638160 1.71 8
gsort-small 643296 1283680 1126664 1.75 2
say-tiny 261016 358976 303296 1.16

search-large 216632 322344 323680 1.49
search-small 8528 14816 12688 1.49
sha 5448 30248 8656 1.59

ssusan-small 18 280 19096 66736 3.65

981192
604 328
155672
38688
35936
124672
478152
36 336
373952
243 872
410696
61912
470464
446 864
089 800
411584
460 560
534 824
24984
33608
71336

2.05 1026895 1.30 1165108 1.20
3.00 826933 0.69 827437 0.69
1.27 12821 0.13 24500 0.20
11.68 2961 0.99 3114 0.94
3.59 13403 1.46 13619 1.36
1.60 10395 0.87 66056 0.85
4.80 49047 0.50 50518 0.51
1.25 14688 0.52 15369 0.53
1.76 29693 0.18 49823 0.23
2.35 30618 0.82 114959 1.11
1.71 34258 0.17 54502 0.23
3.11 30528 1.61 30852 1.55
2.16 277788 1.29 279011 1.28
2.15 264063 1.28 264994 1.27
1.76 3740659 0.96 4514761 0.98
1.88 772978 1.20 1493122 1.16
1.28 98239 0.38 118011 0.33
1.66 207978 0.96 366106 1.14
1.69 7963 0.93 16214 1.09
1.11 1935 0.36 2007 0.07
3.74 16247 0.89 16463 0.86

Table 1: Words spilled and filled by the stack cache configurations block-aligned, padding, and unaligned (lower
is better, rel. indicates the normalized value in comparison to the block-aligned configuration).

but may suffer from bad outliers. It generally leads to in-
creased spilling and filling as well as a reduced utilization
of the stack cache. Generating unaligned memory transfers
naturally performs well for the average case. but, compli-
cates WCET analysis since the alignment of the stack data
is highly context dependent. The new solution proposed in
this work, the block-aligned stack cache, offers a reasonable
trade-off, which combines moderate hardware overhead with
good average-case performance and simple WCET analysis.

Acknowledgment

This work was partially funded under the European Union’s
7th Framework Programme under grant agreement no. 288008:
Time-predictable Multi-Core Architecture for Embedded Sys-
tems (T-CREST).

6. REFERENCES

[1] S. Abbaspour, F. Brandner, and M. Schoeberl. A
time-predictable stack cache. In Proc. of the Workshop
on Software Technologies for Embedded and
Ubiquitous Systems. 2013.

[2] C. Ferdinand, R. Heckmann, and B. Franzen. Static
memory and timing analysis of embedded systems
code. In Proc. of Symposium on Verification and
Validation of Software Systems, pages 153—163.
Eindhoven Univ. of Techn., 2007.

[3] C. Ferdinand and R. Wilhelm. Efficient and precise
cache behavior prediction for real-time systems.
Real-Time Systems, 17(2-3):131-181, 1999.

[4] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M.
Austin, T. Mudge, and R. B. Brown. MiBench: A free,
commercially representative embedded benchmark
suite. In Proc. of the Workshop on Workload
Characterization, WWC 01, 2001.

[5] A. Jordan, F. Brandner, and M. Schoeberl. Static
analysis of worst-case stack cache behavior. In Proc. of
the Conf. on Real-Time Networks and Systems, pages
55-64. ACM, 2013.

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

H.-H. S. Lee, M. Smelyanskiy, G. S. Tyson, and C. J.
Newburn. Stack value file: Custom microarchitecture
for the stack. In Proc. of the International Symposium
on High-Performance Computer Architecture, HPCA
01, pages 5-14. IEEE, 2001.

S. Park, H. woo Park, and S. Ha. A novel technique to
use scratch-pad memory for stack management. In In
Proc. of the Design, Automation Test in Europe
Conference, DATE 07, pages 1-6. ACM, 2007.

J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee.
PRET DRAM controller: Bank privatization for
predictability and temporal isolation. In Proc. of the
Conference on Hardware/Software Codesign and
System Synthesis, pages 99-108. ACM, 2011.
S.Abbaspour, A. Jordan, and F. Brandner. Lazy
spilling for a time-predictable stack cache:
Implementation and analysis. In Proc. of the
International Workshop on Worst-Case Execution
Time Analysis, volume 39 of OASICS, pages 83-92.
Schloss Dagstuhl, 2014.

M. Schoeberl, P. Schleuniger, W. Puffitsch,

F. Brandner, C. Probst, S. Karlsson, and T. Thorn.
Towards a Time-predictable Dual-Issue
Microprocessor: The Patmos Approach, volume 18,
pages 11-21. OASICS, 2011.

BoundT time and stack analyzer - application note
SPARC/ERC32 V7, V8, V8E. Technical Report
TR-~AN-SPARC-001, Version 7, Tidorum Ltd., 2010.
R. T. White, C. A. Healy, D. B. Whalley, F. Mueller,
and M. G. Harmon. Timing analysis for data caches
and set-associative caches. In Proceedings of the
Real-Time Technology and Applications Symposium,
RTAS ’97, pages 192-203, 1997.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling,
M. Pister, and C. Ferdinand. Memory hierarchies,
pipelines, and buses for future architectures in
time-critical embedded systems. Trans. Comp.-Aided
Des. Integ. Cir. Sys., 28(7):966-978, 2009.

	Introduction
	Background
	Related Work
	Block-Aligned Stack Cache
	Hardware Modifications
	Static Analysis

	Experiments
	References

