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Introduction

The guaranteed solution of initial value problem of ordinary differential
equations is well studied from interval analysis community. In the most
of the cases Taylor models are used in this context, see [1] and the
references therein. In contrast, in numerical analysis community other
numerical integration methods, e.g., Runge-Kutta methods, are used.
Indeed, these methods have very good stability properties [2] and they
can be applied on a wide variety of problems.

We propose a new method to validate the solution of initial value
problem of ordinary differential equations based on Runge-Kutta meth-
ods. The strength of our contribution is to adapt any explicit and
implicit Runge-Kutta methods to make them guaranteed. We exper-
imentally verify our approach against Vericomp benchmark2 and the
results are reported in [3]. We hence extend our previous work [5] on
explicit Runge-Kutta methods.

1This research benefited from the support of the “Chair Complex Systems Engineering - Ecole
Polytechnique, THALES, DGA, FX, DASSAULT AVIATION, DCNS Research, ENSTA ParisTech,
Télécom ParisTech, Fondation ParisTech and FDO ENSTA”

2http://vericomp.inf.uni-due.de, we consider results dated back to October 2014.
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Main idea

We want to solve

ẋ(t) = f(t,x(t)) with x(0) = x0 . (1)

We denote by x(t;x0) the solution of Equation (1) at a time t associated
to the initial value x0. Applying a s-stage Runge-Kutta method on
Equation (1), we have the following recurrence relation

ki = f

(
tn + cihn,xn + h

s∑
j=1

aijkj

)
, xn+1 = xn + h

s∑
i=1

biki .

The coefficients ci, bi and aij with i, j = 1, 2, . . . , s are associated to a
given Runge-Kutta methods, see [2] for more details. That is for each
time instant tn, we have xn ≈ x(tn;xn−1).

The challenge to make Runge-Kutta guaranteed is to compute a
safe bound of the local truncation error (LTE for short) at each time
tn, that is x(tn;xn−1) − xn must be bounded. An elegant solution
to compute the formula of the LTE is based on the order condition
of Runge-Kutta methods. A Runge-Kutta method has order p, i.e.,
x(t;xn−1)− xn ≤ C · O(hp+1), with C a constant independent of f , if
and only if the Taylor expansion of the true solution and that of the
numerical solution have the same coefficients for the p+ 1 first terms.
In consequence, the formula of the LTE of a Runge-Kutta methods is
given by the difference of the remainders of the two Taylor expansions.

Main results

John Butcher in [4] defines a generic method to compute the Taylor
expansion of the true and a numerical solutions of Equation (1). It
is based on the Fréchêt derivatives F of the function x(t). The great
idea of John Butcher is to connect these Fréchêt derivatives of a given
order m to a combinatorial problem to enumerate the number of trees



τ with q nodes. In summary, in [4] we have

x(q)(t) =
∑
r(τ)=q

α(τ)F (τ), and x(q)
n =

∑
r(τ)=q

α(τ)γ(τ)ψ(τ)F (τ) .

with x(q)(t) the q-th time derivative of the true solution and x
(q)
n the

q-th time derivative of the numerical solution of Equation (1). Coef-
ficients α(τ) and γ(τ) are characteristics of trees τ , see [4] for more
details. Note that the coefficient ψ(τ) is a function of the coefficients
ci, bi and aij, i = 1, 2, · · · , s.

Using the approach of John Butcher, we can validate any Runge-
Kutta methods of order p using the following expression of the LTE

LTE(t,x(ξ)) =
hp+1

(p+ 1)!

∑
r(τ)=q

α(τ)[1− γ(τ)ψ(τ)]F (τ) (x(ξ)) with ξ ∈]tn, tn+1[ .

Using a classical 2-step approach of guaranteed integration, see [1],
from a given guaranteed initial value [xn] at time instant tn:

i) compute an a priori enclosure [x̃] of x(t) on the time interval
[tn, tn+1];

ii) compute tight enclosure of the solution [xn+1] using Runge-Kutta
method with the LTE formula and [x̃].

In summary our approach is given by

ki(t,xn) = f

(
tj + ci(t− tj),xn + (t− tn)

s∑
j=1

aijkj

)
,

xn+1(t, ξ) = xn + (t− tn)
s∑
i=1

biki(t,xn) + LTE(t,x(ξ)) .

These formula can be used for computing a priori enclosure and tight-
ening the solution. Note that in case of implicit Runge-Kutta methods,
the equations ki, i = 1, . . . , s form a contracting system of equations.



In consequence, we can easily build an interval contractor from the
system of ki and so we can solve it easily.

To illustrate the result of our approach, we consider the Vericomp
Problem 61 defined by

ẋ1 = 1, x1(0) = 0

ẋ2 = x3, x2(0) = 0

ẋ3 =
1

6
x3

2 − x2 + 2 sin(p · x1) with p ∈ [2.78, 2.79], x3(0) = 0 .

Using a validated version, with our approach, of Lobatto-3C implicit
Runge-Kutta method of order 4, we obtain 10.597 as the maximal
width of the solution enclosure at 10 seconds (tolerance 10−10 on LTE)
while none of Riot, Valencia-IVP, nor VNODE-LP can produce a so-
lution at 10 seconds.

Conclusion

We presented a new class of validated numerical integration method
based on explicit and implicit Runge-Kutta methods. We have a
generic formula to compute the LTE. We show that our approach has
the ability to solve problems that state-of-the art methods cannot.
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