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Abstract. We review recent developments in the field of femtosecond laser filamentation. 

1.  Introduction 

We review recent developments in the field of femtosecond filamentation. In a first part, we describe 

the physical effects contributing to induce filamentation during the propagation of intense short laser 

pulses through transparent media. The importance of group velocity dispersion is illustrated in the case 
of fused silica. In the normal dispersion regime, the pulse evolution during propagation is complex and 

depends critically on input parameters such as the beam convergence, pulse duration, laser intensity. 

By contrast, a simple reproducible behavior is obtained in the anomalous dispersion region. The 
filamentary pulse is then closely parented to a lossy spatio-temporal soliton.  

In a second part, we discuss the interaction between two air filaments in the normal dispersion 

regime. Interference between the fields of the crossing pulses leads to the formation of a plasma 

grating. We show how one can characterize the plasma density, its decay and the mechanism for this 
decay. Both ambipolar diffusion and plasma recombination play a role in molecules, whereas the 

decay is dominated by ambipolar diffusion in atoms. We show how energy can be exchanged between 

two crossing filaments due to scattering by a moving plasma grating. We also discuss the interaction 
between two counter-propagating filaments. The two filaments act as a retro-reflecting mirror: a third 

probe pulse of same frequency, incident at an arbitrary angle on this mirror, is retro-reflected with a 

spectacular improvement in beam profile quality and contrast ratio (ratio between precursor light and 
the pulse peak intensity). 

In a third part, we discuss two applications making use of filaments in air. The first concerns the 

generation of THz pulses. A laser pulse undergoing filamentation emits a radially polarized THz pulse 

along a forward oriented cone. We discuss the origin of this effect and describe methods to enhance 
the THz emission by several orders of magnitude. This includes the application of an electric field, 

either static or optic, or the constructive THz emission from several filaments. The second application 

is the triggering of guided electric discharges by filaments and their use as RF antennas. 

2.  Filamentation in the normal/anomalous dispersion regime 

Ultrashort, intense laser pulses are now commonly available, thanks to the development of laser-

amplifiers systems based on Ti: Sapphire as the active medium and chirped pulsed amplification 
(CPA) technique. Pulses at 800 nm emitted by such lasers have typically a duration between 10 and 

100 fs. A strongly non linear propagation regime sets in when such pulses, even with a modest energy 

of a few millijoules, are launched through atmosphere. This nonlinear propagation is complex and 

involves a subtle interplay between many effects. No analytical or semi-analytical treatment can be 



 

 

 

 

 

 

 

 

used to describe it. One must resort to a numerical treatment. This is usually done by solving an 

extended non linear Schrödinger equation for the evolution of the pulse envelope treated as a scalar 

quantity. It allows a proper description in the paraxial approximation for rapid temporal changes, 

down to the single optical cycle limit, but fails to describe fast spatial changes, on a scale comparable 
to the wavelength. We refer to references [1, 2] for a description of the numerical code and its limits. 

 

 

Figure 1. (a) Beam width of a collimated femtosecond laser 

pulses during filamentation propagation in air, obtained from 

numerical simulation. (b) The corresponding plasma density as 
a function of propagation distance.  

 

Figure 1 shows the result of a simulation for the propagation in air of an initially collimated pulse 
of Gaussian profile (pulse duration: 100 fs, pulse energy: 5 mJ, beam diameter: 40 mm, wavelength: 

800 nm). The first effect coming into play is the optical Kerr effect. It induces a change of the medium 

refractive index according to the law:  

                 (1) 

This leads to beam self focusing, because the index is larger around the beam center, where the 

intensity is highest, than on the wings and therefore bends the pulse wavefront. The effect is 

cumulative upon propagation because the focusing reinforces the change of n which in turn increases 
the intensity. This self focusing overcomes the defocusing effect of diffraction and leads to a collapse 

of the beam upon itself, if the initial pulse peak power exceeds a critical value Pcr [3-5] where 

                   .   (2) 

In the example given, the initial region dominated by the optical Kerr effect extend over a distance 

of 6 meters at which point the beam diameter decreases abruptly and the pulse intensity increases 

correspondingly.  

      When the collapsing pulse intensity reaches a value above 10
13

 W/cm², multi-photon ionization of 
air molecules sets in. The creation of free electrons leads to a defocusing effect. Indeed, the refractive 

index decreases according to the law: 
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where        is the density of free electrons and 
22

00 emec   the critical plasma density above 

which the plasma becomes opaque (me and e denote the electron mass and charge). The plasma of 
highest density is created at the center of the beam and acts therefore as a defocusing lens. The 

combined dynamic interplay between beam self focusing and defocusing leads to the formation of a 

contracted pulse with an intense ionizing core that maintains a radius of ~ 50 µm over large distances. 
The filament core is surrounded by a reservoir of laser energy that sustains the core by supplying an 

inflow of energy.  Figure 1(b) illustrates the action of the plasma. It surges and acts to prevent collapse 

when the pulse intensity reaches ~ 10
15

 W/cm². It first gives rise to a continuous meter long plasma 

string, followed by a quasi-periodic cycles of focusing and defocusing. At larger distances, plasma 
surges only intermittently. In the regions between and beyond these occasional surges of ionization, 

the nonlinear propagation is dominated by a dynamic competition between self focusing and 

diffraction (bright channels formation). It should be stressed that the behavior shown in figure 1 is not 
generic but depends on initial beam conditions (beam size and convergence, pulse energy, pulse 

duration, etc). With multi TW lasers, continuous plasma strings have been observed at a distance of 1 

km with the plasma string extending over more than 50 m [6]. Bright channels persist over several km. 

[7-8] 
There is a profound restructuring of the pulse time profile during filamentation. Figure 2 shows the 

calculated evolution of an initial converging pulse with initial Gaussian profile upon propagation in 

Argon. A complex pulse splitting pattern takes place, which evolves during propagation and leads to 
the fortuitous emergence of isolated compressed pulses at certain distances. Pulses of initial duration 

35 fs have been shown to compress down to 5 fs during filamentation in Argon [11]. It should be 

stressed again that the location and duration of such shortest isolated pulses depends on initial 
conditions. 

 

 

Figure 2. Calculated evolution of an initial converging femtosecond 
pulse with initial Gaussian profile upon propagation in Argon. 

 

A spectacular effect of filamentation is beam profile self-cleaning. It occurs in the region 
dominated by the Kerr effect, during the catastrophic collapse. The filament core acquires a Townes 



 

 

 

 

 

 

 

 

mode profile that is retained in the bright channels emerging after the end of the ionization region [12-

13].  

We now address the influence of group velocity dispersion on the filamentation process. One can 

readily understand why it plays an important role. Consider the evolution of the pulse spectrum in the 
self-focusing region. Because of self-phase modulation [14], instantaneous frequencies are created that 

shift to the red (blue) the ascending (descending) part of the pulse, according to the following formula: 
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  In the normal dispersion region, red frequencies move faster than blue frequencies and therefore 

there is a detrimental pulse stretching during propagation. In the anomalous dispersion region, by 

contrast, red frequencies have a slower velocity than blue components. The generated frequencies are 
swept back to the main pulse. As a consequence, one expects lower threshold for filamentation and 

more stable filamentary pulses in the region of negative group velocity dispersion (GVD). 

 

 

  

Figure 3. Numerical calculation of the pulse evolution during 
filamentation in silica for a femtosecond pulse with a central 

wavelength at 1.6 µm (a) and at 800 nm (b). 

 
Experimental verification of the role of the dispersion regime would be difficult to achieve in 

gases, because of the lack of extended regions of negative group velocity. Transparent solids such as 

fused silica offer a compact system where it can be experimentally verified [15]. Indeed, there is a 

wide frequency range of anomalous dispersion starting around 0.97 µm and extending beyond 3.85 
µm in SiO2. The critical power in SiO2 is a few MW instead of GW for gases. Figure 3 shows a 

comparison between the calculated filamentation in both dispersion regions. With positive GVD, the 

behavior is complex, showing complex pulse breaking, analog to what happens in air. With negative 
GVD, a single compressed pulse is formed after 0.5 cm of propagation. The slightly subluminal pulse 

then conserves its diameter and duration over the remaining length of the 3 cm thick sample.  

 

 

Figure 4. Side photography of the blue fluorescence of SiO2 induced by a 

self-guided laser pulse at 1.9 µm with P = 30 Pcr. The laser pulse is focused 
on a 70 µm spot (FWHM) at the left surface of the 3 cm thick sample. 



 

 

 

 

 

 

 

 

 

Experiments confirm these simulations. Figure 4 shows a side image of the blue luminescence 

emitted by the sample at high intensity I >10
13

 W/cm². The 20 µm wide filament is formed after 0.5 

cm and is maintained over the rest of the sample.  Figure 5 compares the beam profile emerging from 
the sample to the profile measured at an equivalent distance in the absence of sample. Pulse self 

cleaning, a signature of filamentation is manifest, as well as beam contraction. Measurement of pulse 

duration of the pulse exiting the sample is shown in figure 6. In agreement with the numerical 
simulations, the pulse contracts in time and keeps the contracted value over the sample length. From 

the numerical calculations, one deduces that the filament core has a duration of 8 fs. Together with its 

surrounding reservoir, the pulse duration becomes 25 fs, in agreement with the measurement where the 

central core and its reservoir are not resolved. Thus, the filamentation process in the anomalous region 
leads to the formation of a pulse that is almost invariant with propagation and is therefore closely 

parented to a spatiotemporal soliton. It must be underlined however that the pulse is lossy since the 

pulse consumes energy to ionize the medium. Also, part of the light energy is dissipated in the form of 
a conical emission. [16] 

 

 

 

 

Figure 5. Beam profile of the laser pulse at 1.9 
µm (a) with filamentation and (b) without 

filamentation in the fused silica sample. Intensity 

scale is normalized. 

 Figure 6. Measurement of the 1.9 µm pulse 
temporal shape after propagation in the 

sample performed with a WIZZLER. 

 

3.  Interaction between two filaments 

Interaction of filaments has been observed to give rise to many interesting phenomenon such as energy 
exchange between filaments, enhanced third harmonic [17-19], plasma grating formation [20-22], 

molecular lensing effect [23], coherent control of filament fusion or repulsion [24-25], etc. In the 

following we discuss several aspects of the interaction between two filaments that enable to extract 

properties of the plasma created during filamentation, to exchange energy between crossing filaments 
and to improve spectacularly a third pulse probe pulse of same wavelength. 
 

3.1.  Plasma grating 

3.1.1. Temporal dynamic of a plasma grating. Field interference of two crossing filamentary laser 
pulses give rise to laser intensity spatial modulation in the overlapping area. As a result, a strong 

modulation of the plasma density is created due to the highly nonlinear nature of optical ionization. 

This modulated plasma structure, i.e. plasma grating, is formed instantaneously, on the time scale of 

the pulse duration p. On the other hand, its subsequent decay is long and can last for several hundreds 



 

 

 

 

 

 

 

 

of picoseconds in atomic gases. It is important to analyze this decay in view of possible applications. 

Recently, we measured the decay process of the plasma grating in different molecular and atomic 

gases. In the experiment, we employed a probe pulse at 400 nm co-propagating with one of the pump 

pulse. This 400 nm probe pulse is expected to be diffracted into the propagation direction of the other 
pump pulse in the presence of the non-sinusoidal plasma grating. Therefore, the measured 400 nm 

signal as a function of the temporal delay between the probe pulse and the two synchronized pump 

pulses allows characterizing the temporal evolution of the plasma grating. More details of the 
experimental setup can be found in ref [26]   

      It was found that in molecular gases like N2 and O2 the plasma grating decays rapidly, with a 

lifetime about 10-20 ps (Figures 7(a) and 7(b)). However, in atomic gases such as Ar and Xe the 

plasma grating persists for more than 300 ps (Figures 7(c) and 7(d)). The decay of a plasma grating 
process is expected to be due to free electron recombination and ambipolar diffusion. To obtain insight 

on the respective importance of the two effects, we varied the crossing angle of the two pump pulses. 

The resulting variation of grating period leads to a change of the ambipolar diffusion while the free 
electron recombination remains the same. From such experiments, we conclude that the grating 

evolution is ruled by ambipolar diffusion in atomic gases and by a combination of ambipolar diffusion 

and collision-assisted free electron recombination in molecular gases. From the systematic 
measurements, electron diffusion and recombination coefficients are extracted for Ne, Ar, Kr, Xe, N2, 

O2, CO2 and air at 1 bar [27]. 

 

 

Figure 7. Normalized intensity of diffracted probe signal as a function 

of the delay  (ps) for crossing angles  of 7°, 14° and 90° in different 

gases (Air, CO2, Ar and Kr). Measurements are represented by dots. 
Calculations are represented by solid lines. 

3.1.2. Energy exchange between filaments in the presence of travelling plasma grating. The first 

experimental observation energy exchange between two filaments was reported in 2009 by Bernstein 
et al. [28]. They demonstrated an energy exchange ratio of 7% between two filament-forming pulses 

with slight frequency difference. In their work, a travelling refractive index grating is formed due to 

the Raman effect of air molecules. As a result, the classical two-beam coupling (TBC) scheme applies 
[28-29] and laser energy transfers from the high frequency pulse to the low frequency pulse. This 

provides a control over filaments propagation by modifying their characteristics in flight.  



 

 

 

 

 

 

 

 

      Recently, we observed a new regime of energy exchange where laser energy transfers from the low 

frequency pulse to the high frequency one. This new type of energy exchange was also found in 

monatomic noble gases such as Ar and Xe, excluding a traditional TBC mechanism based on a 

retarded optical Kerr nonlinearity. We attribute this new energy exchange to the effect of a moving 
plasma grating formed at the crossing point of the two filamentary pulses. Due to its plasma nature, 

this refractive grating can sustain very high laser intensity. With tightly focused laser pulses, we have 

demonstrated energy exchange efficiency of 50% in air. The result is presented in figure 8 [22]. 
 

 

Figure 8. Energy exchange between two filaments crossed with 

an angle of 20º. 
 

3.1.3. Plasma grating in motion. To detect the movement of a plasma grating, we employed an 

experimental setup similar to that in 3.1.1. except that there was a difference in the wavelength of the 

two pump pulses [30]. We spectrally analysed the diffracted 400 nm pulse with a spectrometer. The 
movement of the plasma grating imparts a frequency shift on the probe pulse owing to the Doppler 

effect. Figure 9 presents the spectrum gravity of the reflected 400 nm signal pulse as a function of the 

time delay (frequency difference) between the two pump pulses with linear chirp. The central 
frequency of the signal pulse shifts proportional to the frequency difference between the pump pulses, 

i.e., to the velocity imparted to the grating. A calculation of the measured frequency shift based on the 

classical Doppler effect agrees well with this result [30].  
 

 

Figure 9. Spectrum center of gravity of the signal pulse as a 

function of the time delay between the two pump pulses. 

 



 

 

 

 

 

 

 

 

3.2.  Filaments mirror 

A special geometry is obtained when two filaments meet head on [31]. The encountering filaments 

form a mirror to a third probe pulse of same frequency impinging at an arbitrary angle. The mirror has 

special properties because the reflection occurs in the retro-direction. In addition, the reflected beam 
profile and pulse contrast ratio is dramatically improved.  Figure 10 shows the beam fluence profile of 

the probe pulse before and after reflection. One can understand this spectacular property by 

considering the plasma grating formed by either pump with the probe pulse. As shown in section 3.1.1, 
the other pump will diffract into the direction of the incoming probe. Therefore, the reflected pulse is 

replaced by a fraction of the pump pulses with self-cleaned beam profile. The profile fits indeed a 

Townes mode profile, as expected if the retro-signal corresponds to a diffraction from the filaments. In 

addition, the small size (4500 µm
3
) acts as a pulse cleaner removing distortions in the phase profile of 

the incoming probe pulse. 

 

   

 

 

Figure 10. Fluence profile of a femtosecond 

pulse before (a) and after (b) reflection on the 
filament mirror, as recorded in a single shot 

with a CCD camera. 

 Figure 11. Reflectivity as a function of the 

pump pulses energy. Probe pulse has energy of 
160 and 340 µJ and is incident at an angle of 

90°. The three pulses are coincident in time. 
 

Figure 11 shows the reflection of the filament mirror as a function of pump laser intensity for a 
probe incident at 90° from the filaments. Before the onset of ionization, the reflection is very small, 

because no plasma grating is present. There is a very steep increase of the reflection once the threshold 

for pump beam filamentation is reached, due to the high-order dependence of the ionization rate with 
intensity, followed by a near saturation, with a reflection efficiency of 20-30%, reflecting the intensity 

clamping inside a filament [1]. At an incident angle of 30°, the reflection increases to 40%. 

      This leads to the possibility of temporal pulse cleaning by removing light precursors.  Indeed, if 
the chronology of the pump and probe pulses is adjusted such that they all meet at the same time, any 

precursors present in the pump and probe pulses will not be reflected because no plasma mirror is 

formed at the time of their encounter, due to the corresponding lower intensity. The time profiles of 

the incident and retro-reflected pulse have been measured with a third order -2 cross-correlator. No 
precursor was detected in the reflected pulse within the dynamic range of the detector, as shown in 
figure 12. 

 



 

 

 

 

 

 

 

 

 

Figure 12. Temporal contrast of the probe (in black) and of the 

reflected beam (red) measured with a third order cross 

correlator. 

4.  Applications of femtosecond laser filaments 

Intrigued by the spectacular effects accompanying filamentation process, researchers have 

demonstrated plenty of scientific applications of the filaments such as triggering and guiding of 
lightning [32], Light Detection and Ranging Technique (LIDAR) [33], few-cycle light pulse 

generation [34], virtual antenna [35], micromachining in transparent solids [36], Terahertz (THz) 

pulses generation [37], control of aerodynamic flows [38], water condensation [39] and snow 
formation [40]. Some applications such as few-cycle pulse generation are already quite matured, while 

others like THz generation have just been discovered and require further investigation. In the 

following two sub-sections, we will detail two applications: THz wave generation by filaments and 

control of electric discharges with filaments. 
 

4.1.  THz generation by one filament, two filaments 

In 2007, D’Amico et al. reported a forward THz pulsed radiation stemming from a femtosecond laser 
filament in air [37]. They observed that the THz is radiated in a hollow-cone structure in the laser 

propagation direction, with a radial polarization (see figure 13). The authors developed a Transition-

Cherenkov model which reproduced the above observed features [41]. In this model, the heavily 
damped longitudinal plasma oscillation produced in the wake of the propagating pulse is at the origin 

of the THz pulsed emission. Terahertz (THz) radiation produced by ultrashort laser pulses in air 

attracted much attention in recent years, since it has some unique properties. The THz source can be 

positioned at the proximity of a remote target by displacing the onset of filamentation. This solves the 
long-standing problem of the poor propagation of THz through atmosphere due to strong absorption 

by water vapor. In contrast to other THz generation techniques with short laser pulses, there is no 

obvious limit to the laser power that can be used, since there is no material in the path of the pulse that 
can be damaged. 

      However, the energy conversion efficiency from laser to THz radiation by a single filament is low, 

on the order of 10
-9 

[42]. Therefore, it is desirable to improve the conversion efficiency and control the 

physical properties of this Terahertz radiation. Several techniques have been developed along this line.  
In a first scheme, an external electric field is applied on the filament either longitudinal or 

transverse. A THz enhancement by 3 orders of magnitude is obtained with an applied field Eext ~ 10 

kV/cm (figure 13). At the same time, the radiation pattern and polarization property of this amplified 
emission keep the same as that of the pure transition-Cherenkov THz radiation [43]. This amplified 

THz pulse is of particular significance since a radially polarized THz wave has been demonstrated to 

be compatible with the propagating mode of a metal wire THz waveguide [44]. Although, this method 



 

 

 

 

 

 

 

 

of enhancement suffers from the fact that the electric field must be applied on the plasma region of the 

filament, not an easy task for stand-off THz applications.  

 

 

Figure 13. Amplification of the transition-Cherenkov THz 
emission. The pure transition-Cherenkov THz (Eext = 0 kV/cm) 

is multiplied by a factor of 200 for visibility. 

 
      For most THz applications, a THz beam with maximum intensity on the axis is preferable. This 

requires the presence of a transverse current in the filament and an orthogonal electric field should be 

able to fulfill this task. In the experiment, we applied an external electric field perpendicularly to the 

filament axis. With the increase of the external electric field strength, the asymmetrical radiation 
pattern becomes more and more symmetrical (figure 14). As a result, a THz beam with above desired 

feature was obtained when Eext exceeds 3 kV/cm. More important, the THz intensity was enhanced by 

3 orders of magnitude with respect to the transition-Cherenkov THz with Eext = 9 kV/cm. Concerning 
the THz polarization, we found it is linear polarized and the polarization plane is dictated simply by 

the direction of the external field. In addition, we demonstrated that the polarity of the THz can be 

easily controlled by the direction of the electric field [45].  

 

Figure 14. THz Radiation pattern from a laser filament in the presence of increasing transverse 

electric field. In the top (bottom) row, the external electric field is directed downward (upward). 



 

 

 

 

 

 

 

 

Another approach is to use an oscillating transverse field, by combining a short IR pulse at 800 nm 

with its harmonic generated in a thin BBO crystal. After the first demonstration of this two-color 

method [46], it has been extensively studied with a millimeter scale long filament (L ~  THz) [47-52]. 
It was found that the optical biased at second harmonic frequency can lead to a THz amplitude 

enhancement by two orders of magnitude compared to the air plasma driven by just 800 nm 
femtosecond laser pulses [47, 49]. The relative phase between the fundamental laser field and its 

second harmonic was found to be critical for the yield and polarity of the THz radiation [47, 53]. 

Recently, this method was also extended to long air plasma (L >>  THz) obtained in the filamentation 
regime [54-55]. For such long filaments, it was confirmed that the two-color scheme is more efficient 

than just a pulses at 800 nm. But, the temporal separation of the 800 nm and 400 nm pulses during 
their propagation inside the long filaments due to group delay dispersion of air sets a limit of 

interaction length (~ 2 m) and results in a strong THz yield decrease for standoff THz generation [55]. 

      One advantage of the filaments-based THz source lies in the fact that it is laser damage-free due to 

its plasma nature, and one can expect high energy THz radiation with powerful incident femtosecond 
laser pulses. However, it is well known that multiple filamentation forms when the incident laser 

power well exceeds the critical power for self-focusing in air Pcr (~ 5 GW [1]). The underlying 

mechanism of multiple filamentation is the imperfection of the laser beam spatial profile as well as the 
turbulence in air during propagation. As a result, the process of multiple filamentation changes from 

shot-to-shot, which hinders the usage of multiple filaments as a stable THz source. Is there possible 

solution? 
      Inspired by the phased antenna array in the RF domain, we recently proposed and demonstrated 

experimentally the coherent synthesis of THz radiations of an array of organized filaments [56].  We 

find that the THz intensity scales up with N
2 

provided that proper filament separation and laser pulse 

time delays are chosen. Moreover, the THz radiation pattern can be controlled, which is a useful 
property for many applications. For example, in figure 15 we presented the THz radiation patterns 

obtained from two filaments separated by a distance of 2.4 mm for increasing time delay between the 

two pulses. Upon increase of the delay p, the radiation pattern becomes asymmetric. Withp = 3.7 ps, 
the radiation is totally directed along one lobe. This is particular interesting for applications where 

irradiation of targets with intense laser pulse should be avoided. Our simulations based on the 
Cherenkov-Transition model reproduced well our experimental observations. 

 

 

Figure 15. Evolution of emission diagrams of the THz radiation from two neighbouring 
filaments as a function of the temporal delay between the two laser pulses. The two filaments 

are separated by d = 2.4 mm. Top row: experimental results. Bottom row: calculations. 



 

 

 

 

 

 

 

 

 

      We further extrapolated the simulation to a higher number of filaments. We have calculated the 

THz radiation distribution for N = 4, 6, 8, 9, 12, 16 filaments organized in a square grid. With a 

properly optimized delay, the total THz energy can be channeled towards a preferential direction. With 
two filaments and zero delay, a butterfly wing pattern appears in the XOZ plane (figure 16 (a)). A 

single leaf radiation pattern is obtained with p = 3.5 ps (figure 16(b)). For a larger number of 
filaments, similar leaf-shape radiation pattern appear with properly chosen pulse delays, as presented 

for 16 filaments in figure 16(c), where its peak intensity is found to be ~ 250 times that of a single 

filament. 
 

 

Figure 16. Calculated THz radiation diagram from two parallel filaments separated by 2.4 mm 

without time delay (a) and with a time delay p = 3.5 ps (b). (c) Calculated THz radiation diagram 

from 16 filaments with proper time delays. 

4.2.  Control of electric discharges with laser filaments 

Plasma strings produced by femtosecond laser filaments proved to be particularly useful for remote 

manipulation of high voltage discharges. The physical mechanism is the following [57-58]. In the 
presence of a static electric field, free electrons formed during filamentation release their kinetic 

energy in the gas by Joule heating, leading to the appearance of a depressurized channel at the center 

of the filament path. The resulting low density column offers a privileged path for discharge [59-60]. 
In parallel, a fraction of the free electrons does not recombine on the parent ions but become attached 

to neutral oxygen molecules. Such loosely bound electrons can be easily released by current heating, 

leading to a decrease of the leader inception voltage [61]. As a consequence, a filament decreases the 

breakdown voltage in a gas by more than 30% and guides the discharge over the perfectly straight path 
defined by the laser. 

  Femtosecond filament can trigger and guide megavolts discharges over several meters [62-64], carry 

high DC currents with reduced losses [65] or deviate arcs from their natural path [66]. These properties 
are of great interest for applications such as the laser lightning rod [32], virtual plasma antennas for 

radiofrequency transmission, plasma aerodynamic control or high voltage switch.  

4.2.1. High current spark gap. A previous experiment had shown that plasma filaments were able to 
initiate high current DC discharge with reduced losses [65]. To analyse further this property we 

studied the triggering of atmospheric kA spark gap by laser filamentation [67]. The beam (300 mJ, 700 

fs at a central wavelength λ0 = 800 nm) was focused in air with a 5 m focal length lens leading to a 

quasi-homogeneous plasma column with an effective length of 2 m and a diameter of ~ 3 mm. The 
experimental spark gap was installed in the middle of the plasma column. Figure 17 gives a schematic 

overview of the experimental setup. Electrodes with a central hole optimized the contact between the 

laser created plasma column and the high voltage. The high voltage (up to U0 ≤ 30 kV) was applied to 

the spark gap set in parallel with a 50  resistance by activating a conventional switch T. It created on 

the spark gap electrodes a voltage pulse with rise time (10% - 90%) ~ 50 ns and exponential decay  = 



 

 

 

 

 

 

 

 

RC ≈ 14 µs. In this case the laser triggered discharges yielded a current maximal amplitude reaching 

~12.5 kA with a 30 kV charge. 

An important parameter of the spark gap is the jitter, which is usually defined as the standard 

deviation of the switching time delay. Figure 18 presents the measured jitter for different gap lengths 
D as a function of Unorm, the breakdown voltage normalized to the self-breakdown voltage threshold in 

static regime. One can see that it is possible to have a jitter of 0.2-0.4 ns in the region 0.7 < Unorm < 1.2 

with a 10 mm gap. The measured jitter is close to the time resolution of the oscilloscope (1 GHz and 
10 GSa). 

 

 

 

 

Figure 17. Schematic view of the experimental 
set-up with a pulsed voltage applied to the axial 

gap switch. The laser beam passes through the 

axial holes in the electrodes. 

 Figure 18. Jitter of the switch as a function 
of normalized voltage for gaps of 6, 8 and 

10 mm. 

 

      Triggering via filamentation has several advantages. Since filament generated plasma column can 

be created at a distance of several hundreds of meters from the laser, remote triggering can be 

achieved. Because filaments have a near constant longitudinal electron density over several meters, 
they connect the two electrodes quasi-instantaneously, circumventing the complex process required in 

the case of an initial localized plasma, and reducing thereby the jitter. Thus, this spark gap combines 

the advantages of large inter-electrode air gaps capable of switching high voltages and the low jitter of 
narrow spark gaps or SF6 filled cells. The long and uniform plasma channels formed by the filament 

also offer the possibility to trigger simultaneously several spark gaps with an excellent 

synchronization. 

4.2.2. Tesla coil discharges. Experiment on triggering and guiding of large scale (0.5 – 3 m) 

discharges by use of laser-induced ionized filament have been performed so far with unipolar pulsed 

or DC high voltage sources, where the electric field direction remains constant, typically with MARX 

generators [61]. Recently demonstration of large discharge triggering and guiding by femtosecond 
laser filaments using a Tesla coil generator has been reported by our group and by Henrikson et al.  

[68-69]. 

  The Tesla coil generator is basically a voltage elevator transformer, where the coupling of two 
resonant R L C circuits allows obtaining voltage bursts of voltage oscillations. Our system delivers 

voltage pulses oscillating at 100 kHz with peak amplitude ~ 350 kV. The particularity of our Tesla 

transformer is that it can be synchronized with an external TTL signal with a temporal jitter below 20 
nanoseconds. The laser beam is focused in air producing a continuous plasma column about 2 m long, 

touching tangentially the two spherical electrodes connected to the Tesla output.  

 



 

 

 

 

 

 

 

 

 

Figure 19. Photography of a Tesla guided discharge of 1.7 m. 
The laser beam comes from the left. 

    

The discharges can be triggered and guided with 100 % success; however successful operation 

requires a precise timing of the trigger with respect to the laser arrival time. Optimum repeatability is 
achieved when the laser initiates the discharge during a maximum of the oscillatory voltage at the 

output of the Tesla. No electric discharge is produced by the Tesla generator in the absence of laser 

when the electrode gap is larger than 32 cm. Guided discharges activated by the filament are obtained 
up to an inter-electrode distance of 200 cm corresponding to a decrease of 80 % of the breakdown 

voltage. With optimal laser parameters, reproducible guided discharges of 1 meter at a repetition rate 

of 10 Hz were demonstrated. 

    Measurement of voltage and discharge current allows an estimation of the plasma column 
resistance around 1 kΩ. This resistance appears to increase linearly with the gap length. The influence 

of the laser input energy on the triggering and guiding effect is also studied showing that the 

multifilamentation regime significantly increases the probability to trigger long discharges. 

4.2.3. Virtual RF antenna. An application of long laser guided electric discharge is the virtual plasma 

antenna [35]. Plasma antennas, where plasma replaces metal as the conducting element, have long 

been known and used [70]. However, most designs use low-pressure plasmas confined inside solid 
dielectric vessels. We experimentally demonstrated a functional plasma antenna in air, which brings 

about many advantages like tunability in a large frequency range (100 MHz – 1 GHz), stealth when 

de-activated and quick reconfiguration capabilities. 

   In this experiment we used the filament induced high-voltage electric discharge generated by the 
compact Tesla coil as a plasma antenna at atmospheric pressure. The guided discharge had a length of 

about 100 cm. Radio-frequency (RF) power was injected in the plasma by means of an inductive 

coupler in the form of a hollow metallic cylindrical cavity, fed by a 35 W solid-state RF amplification 
chain. Radio emission was then detected using a remote patch antenna with a 100 MHz - 1 GHz 

bandwidth (see setup in figure 20). As shown in the example given in figure 21, when the coupler is 

excited at 990 MHz and no plasma is present, there is no signal observed at this frequency (black 

curve), whereas a clear emission peak appears when the laser guided discharge is generated (red 
curve). RF energy coupling in the plasma has consequently been achieved, which resulted in the 

plasma column behaving as an emitting antenna. The emission level from a copper rod with a length 

similar to that of the plasma is approximately equal to four times the plasma signal strength, 
demonstrating the applicability of this technology in real situations. 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 20. Experimental setup used for RF 

coupling in the plasma. 

 Figure 21. RF signal strength with (red) or 

without (black) the plasma column when the 

coupler is excited at 990 MHz. The insert 
corresponds to a zoom of the highlighted 

region around 990 MHz. 

5.  Conclusion 

In summary, the physics underlying femtosecond laser filamentation has been introduced. Several 
examples of interaction between filaments have been described. Finally we have discussed 

applications of femtosecond filamentation to the generation of THz pulses in air and to the initiation 

and control of high voltage discharges. 
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