
HAL Id: hal-01118205
https://ensta-paris.hal.science/hal-01118205v1

Submitted on 18 Feb 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backward stimulated radiation from filaments in
Nitrogen gas and air pumped by circularly polarized 800

nm femtosecond laser pulses
Sergey Mitryukovskiy, Yi Liu, Pengji Ding, Aurélien Houard, André

Mysyrowicz

To cite this version:
Sergey Mitryukovskiy, Yi Liu, Pengji Ding, Aurélien Houard, André Mysyrowicz. Backward stimulated
radiation from filaments in Nitrogen gas and air pumped by circularly polarized 800 nm femtosecond
laser pulses. Optics Express, 2014, 22, pp.12750. �10.1364/OE.22.012750�. �hal-01118205�

https://ensta-paris.hal.science/hal-01118205v1
https://hal.archives-ouvertes.fr


Backward stimulated radiation from filaments in 

Nitrogen gas and air pumped  

by circularly polarized 

800 nm femtosecond laser pulses 

Sergey Mitryukovskiy,
1
 Yi Liu,

1,
* Pengji Ding,

1
 Aurélien Houard,

1
 

and André Mysyrowicz
1,2 

1 Laboratoire d’Optique Appliquée, ENSTA ParisTech/CNRS/Ecole Polytechnique, 828, Boulevard des Maréchaux, 

Palaiseau, F-91762, France 
2
andre.mysyrowicz@ensta-paristech.fr 

* yi.liu@ensta-paristech.fr;  

 
Abstract: We report on strong backward stimulated emission at 337 nm in 

Nitrogen gas pumped by circularly polarized femtosecond laser pulses at 

800 nm. A distinct dependence of the backward UV spectrum on pump laser 

polarization and intensity is observed, pointing to the occurrence of 

backward amplified spontaneous emission inside filaments. We attribute the 

population inversion to inelastic collision between the free electrons 

produced by the pump laser and neutral N2 molecules. The addition of 

Oxygen molecules is detrimental for the gain, reducing it to near threshold at 

atmospheric concentration.  
OCIS codes: (190.7110) Ultrafast nonlinear optics; (140.4130) Molecular gas lasers.  
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1. Introduction  

Ambient air pumped by intense ultrashort laser pulses can give birth to stimulated radiation in 

both the forward and backward directions [1-15]. The backward stimulated radiation 

(propagating in the direction opposite to the pump laser) is of particular interest for remote 
sensing, and has therefore attracted considerable attention [1-8]. The advantage of the 

backward stimulated radiation for remote sensing lies in the fact that it can bring information 

about pollutants towards the ground observer with a well defined directionality. This has to be 

compared to the omni-directionality of the fluorescence or scattered optical signal from the 

same pollutants. In addition, if the information is carried to the ground observer via coherent 

Stokes- (SRS) or anti-stokes Raman scattering (CARS), the signal is proportional to N², as 

compared to the N dependence of the fluorescence or spontaneous scattering process. Here N 

is the number of pollutant molecules.  

     Up to now, two different schemes for backward stimulated radiation in air have been 

demonstrated experimentally, based on population inversion either of O atoms or N2 

molecules. In the first scheme, inversion in the population of Oxygen atoms was obtained with 

an intense UV pulses at 266 nm. The UV pulse served two functions, first to photo-dissociate 

Oxygen molecules, then to pump the Oxygen atoms to the      state via two-photon 

excitation [1]. Strong stimulated emission at 845 nm, corresponding to the           

transition, was observed in both the backward and forward direction. A serious limitation of 
this scheme is the significant absorption of 226 nm light by atmosphere, preventing its use for 

remote pollutant sensing.  

     The second scheme deals with population inversion in neutral N2 molecules. About 10 

years ago, Q. Luo and coworkers announced the existence of a backward amplified 

spontaneous emission (ASE) from femtosecond laser filaments in air with linearly polarized 

800 nm laser pulses. The evidence was based on the observation of a weak exponential 

increase of the backward UV luminescence at 357 nm upon filament length [5]. The UV 

emission corresponded to a transition between the      ( = 0) and the      ( =1) triplet 

states of the N2 molecules, where  is the vibrational quantum number. Similar results have 



been confirmed recently by S. Owada and coworkers [8]. In 2012 D. Kartashov et al. reported 

a strong backward ASE lasing from N2 molecules.  A high power mid-infrared (3.9 m or 

1.06 m) femtosecond pulses was used to induce a filament plasma column in a high pressure 
mixture of Nitrogen and Argon gas. Microjoule amounts of backward ASE from the plasma 

column were observed with a well-defined spatial profile [2]. In this experiment, the 

population inversion mechanism was the traditional Bennet scheme, where collisions transfer 

the excitation energy of Argon atoms to molecular Nitrogen. Unfortunately, this scheme 

cannot be employed for remote sensing application in atmospheric air, because of its 

requirement of high pressure Argon gas (p > 3 bar). 
     In this paper, we demonstrate that an intense backward stimulated radiation from filaments 

in Nitrogen gas can be achieved with circularly polarized femtosecond laser pulses at 800 nm. 

Filaments offer a favorable geometry for ASE because of the high aspect ratio of the plasma 

strings at the origin of the emission. Existence of the stimulated radiation is confirmed by the 

distinct dependence of the backward UV spectrum on the incident laser polarization and 

intensity. We attribute the population inversion between the triplet      and      states to 

inelastic collision between the electrons liberated by the pump laser and surrounding neutral 

ground state N2 molecules.  The dependence of the lasing effect on the incident laser pulse 

polarization is explained by the fact that a circularly polarized laser produces more energetic 

electrons than a linearly polarized one. We find that the presence of Oxygen molecules results 

in a significant quenching of the lasing action. With our present experimental parameters, 

significant gain occurs up to an Oxygen concentration of ~ 12%.  

2. Experimental setup 

In our experiments, femtosecond laser pulses with duration of 50 fs were focused by a convex 

lens of 1000 mm in a gas chamber filled with 1 bar of pure Nitrogen gas or a mixture of 

Nitrogen and Oxygen. A broadband dielectric beam splitter was used to steer the incident 

pulses into the gas chamber, while transmitting the backward UV emission from the gas 

plasma to the detector. A quarter-wave plate was inserted before the incident windows of the 

gas chamber to change the laser polarization between linear and circular. The backward 

emission was focused by a f = 100 mm fused silica lens to the slit of a monochromator (Jobin- 

Yvon H-20 UV, grating: 1200 g/mm) combined with a photomultiplier tube (PMT). 

Typically, an average over 500 laser shots was performed for each individual measurement. 

  

Fig. 1. Schematic experimental setup. The incident femtosecond pulse is focused by an f = 1000 

mm lens. The dichromatic beam splitter (BS) steers the 800 nm pulses inside the gas cell filled 

with Nitrogen gas or its mixture with air. The backward radiation from the plasma is collected 

by a f = 100 mm fused silica lens into the slit of a monochromator. The signal is measured with 

a photomultiplier tube (PMT). 



The transverse fluorescence from the plasma channel was also measured. In this case a 

vertical slit of 1 mm was installed close to the center of the filament in order to limit the 

investigated plasma volume. The fluorescence transmitted through the slit was first collimated 

by a f = 2.5 mm fused silica lens and then focused by another f = 100 mm fused silica lens to 

the incident slit of the same monochromator and PMT (see Fig. 1). 

3. Experimental results  

3.1. Spontaneous UV emission from filaments in Nitrogen gas 

We first examine the spontaneous UV fluorescence emitted by filaments in a pure Nitrogen 

gas. The fluorescence spectra recorded in the transverse detection geometry are shown in Fig. 

2(a) for linearly and circularly polarized pump laser pulses. The emission peaks centered at 

315, 337, 357, 380, 405 nm have been previously identified as due to transitions between 

various vibronic levels of the triplet      and      states of the neutral N2 molecule, i.e. the 

second positive band of the N2 molecules [2]. For all these five spectral lines, the signals are ~ 

2 times stronger with circularly polarized laser than with linear laser polarization. A possible 

explanation will be discussed below.   

 

Fig. 2. Spectra of (a) transverse fluorescence and (b) backward UV emission for circular and 

linear laser polarization. The incident laser pulse energy is 9.3 mJ. 

     Before discussing the backward emission at 337 nm with circularly polarized laser, we first 

examine in more details the results obtained with linear laser polarization in the backward 

direction, a geometry where ASE was reported previously [5, 8]. In Fig. 3(a), we present the 

measured backward 337 nm signal as a function of the incident laser pulse energy up to 9.3mJ. 

We also measured the length and the width of the plasma channel (defined at 1/e2 level of the  

 

Fig. 3. (a) Backward 337 nm signal as a function of incident laser pulse energy. (b) Measured 

length and width of plasma as a function of pump laser energy. In both cases the pump laser is 

linearly polarized. 



plasma luminescence intensity) as a function of laser pulse energy (see Fig. 3(b)). With an 

increase of the laser energy, the filament length increases linearly, in agreement with a recent 

observation [8].       

     In Fig. 4, we plot the 337 nm signal as a function of the filament length, as it was 

previously done for identification of ASE [5, 8]. A weak nonlinear dependence is observed, 

which is tentatively fitted with an exponential law. We note that a more satisfying procedure 
consists in plotting the signal as a function of plasma volume, in view of the fact that the 

filament size increases slightly with pump laser energy (see Fig. 3(b)). A plot of the backward 

signal as a function of plasma volume is best fitted by a linear dependence, as shown in Fig. 4. 

Therefore, we come to the conclusion that stimulated radiation at 337 nm is not achieved with 

linearly polarized femtosecond pulses in our experiments. We also performed measurements 

at 357 nm and observed a similar dependence. 

        

Fig. 4. Backward 337 nm signal as a function of plasma length (black squares, lower scale) and 

plasma volume (red circles, upper scale). The curves are best fitted with an exponential or linear 

law respectively. 

3.2. Stimulated UV emission from filaments in Nitrogen gas 

We now concentrate on the backward emission at 337 nm obtained with circularly polarized 

femtosecond laser pulses. It corresponds to the (0-0) vibronic transition of the second positive 

band system of N2 molecule. In Fig. 2(b), the spectra of the backward UV emission are shown 

for circular and linear polarization of the laser. The emission intensity at 337 nm is now about 

10 times larger with circular pump laser polarization than with linear polarization. Others lines 

at 315, 357, 380, and 405 nm increase by a factor of ~1.5, an increase similar to that of the 

spontaneous fluorescence presented in Fig. 2(a). The remarkable behavior of the 337 nm 

signal suggests that backward stimulated emission is initiated for this particular line with 

circularly polarized laser pulses.   
     In Fig. 5, the backward emission intensity at 337 nm is plotted as a function of incident 

laser energy. The 337 nm signal displays a superlinear dependence on incident laser energy.  

     To get further insight into the distinct pump polarization dependence presented in Fig. 5, 

we measured the backward radiation intensity at 337 nm as a function of the incident laser 

ellipticity. In Fig. 6, the measured signals are presented as a function of the rotation angle of 

the quarter-wave plate for different incident laser energies. The angles φ = 90º × mcorrespond 
to linearly polarized laser, with m = 0, 1, 2, 3. The angles φ = 45º + 90º × m correspond to 

circularly polarized laser. For a low pulse energy of 300 J, linearly polarized pulses 
generates a UV radiation with an intensity twice that obtained with circular polarization (Fig. 

6(a)). For an increased incident energy of 660 J, an octagon-shaped dependence is observed 
(Fig. 6(b)), indicating the onset of a new mechanism for the emission at 337 nm. In the case 



 

Fig. 5. Measured backward signal at 337 nm as a function of incident laser pulse energy, for 

both circular and linear laser polarization.  

of Ein = 9.3 mJ, the signal obtained with circular laser polarization totally dominates and 

decreases rapidly when the laser polarization deviates slightly from circular. This critical 

dependence of the emission signal at 337 nm with laser polarization reinforces the hypothesis 

that backward stimulated emission at 337 nm occurs inside the filament plasma.  

 

Fig. 6. Backward emission signal at 337 nm as a function of the rotation angle of the quarter-

wave plate. The incident laser energy for (a), (b), (c) are 0.3 mJ, 0.6 mJ, and 9.3 mJ, 

respectively. Angle 0º corresponds to linearly polarized light. 



4. Discussion of results  

We now discuss possible mechanisms for population inversion between the      and      

states of the neutral N2 molecule, at the origin of the backward stimulated radiation. First, it is 

worth reminding that a direct population transition between the ground singlet state     
  and 

the excited triplet     
  state is forbidden in the electric dipole approximation. One widely 

discussed mechanism to populate     
  state inside filaments in air is the following reaction 

[16]:  

  
       

   
  

      
      

       
   

  . 

With this mechanism, one expects that a linearly polarized laser produces a stronger 

fluorescence signal for two reasons. First, it is known that the ionization rate of atoms and 

molecules is higher for linear polarization both in the multiple photon ionization and tunneling 

ionization regime [17]. As a result, the densities of electrons and positive ions   
  are higher 

in the case of linear laser polarization and should result in a higher density of    
      

  . 
Second, the nonlinear refractive index of ambient air n2 is higher for linear polarized laser [17]. 

This results in slightly higher laser intensity inside filaments, which should again lead to 
higher densities of electrons and ions. We therefore assume that this collision-assisted 

recombination process of the electron on the parent ion is responsible for the fluorescence of 

filaments at relatively low laser energy, such as that of Ein = 300 J in Fig. 6(a), but not to the 
stimulated emission observed at higher pump powers. 

     Another mechanism for the transition from the ground state to the     
  state is the 

electron-molecule inelastic collision:  

    
   

         
   

    . 

This is actually the main reaction responsible for population inversion in a traditional N2 laser, 

where the electrons are accelerated to obtain sufficient energy by the discharge electric field 

[18]. The cross section of the above reaction is sensitive to the kinetic energy of the incident 

electron. It is nearly zero for electron energy below the threshold kinetic energy Eth ~ 10 eV, 

exhibits a resonant peak around 14.1 eV, and then decreases progressively for higher energy 
electrons [19]. For electrons born in the intense laser field inside filaments, the distribution of 

kinetic energies depends strongly upon pump laser polarization. With linear polarization, free 

electrons are accelerated back and forth along the laser polarization direction at each optical 

cycle, so that at the end of the pulse most of them have a low kinetic energy, with a weak tail 

distribution extending to a few eV. For circularly polarized light, where electrons are always 

accelerated away from the ion core, the final electron distribution is nearly mono-kinetic with 

a peak at twice the ponderomotive energy.  Calculations performed for a filament show that 

the peak of this distribution is between 5 and 7 eV assuming a laser intensity of 5×1013 W/cm² 

and should scale up linearly with laser intensity [20]. The widely quoted clamped intensity 

value in air filaments of 5×1013 W/cm² is therefore insufficient by a factor 2 to be an effective 

excitation mechanism. On the other hand, it is now well established that intensity clamping is 
not a rigorous concept. Intensity spikes exceeding the clamped value by order of magnitude 

have been measured in filaments [21].  

     In our current experiment, we estimated the laser intensity inside the filament by inserting 

an Al foil around the middle of the filament in the case of Ein = 9.3 mJ, in ambient air. After 

several laser shots, a micrometric hole was drilled by the filament itself [22]. After 300 laser 

shots the transverse size of the hole became stable and its diameter (d) was measured to be 

170 m. At the same time, the transmitted laser energy Et was measured to be about 6.6 mJ. 
The average laser intensity can be estimated as: 

  
  

  
 

 
 
 
  

  1.45× 1014 W/cm2, 

where p is the initial laser pulse duration of 50 fs. This indicates that the electron energy 
required for impact excitation of neutral N2 molecules is well reached in filaments. More 



detailed measurements of the intensity inside filaments will be published elsewhere [22]. For 

linearly polarized laser field, this mechanism is turned off because of the low electron kinetic 

energy, even with a laser intensity above the clamped value. As a conclusion, we believe that 

the inversion of population inside the triplet manifold of N2 is due to impact excitation by 

electron collisions. The threshold character for the inelastic collision cross section with respect 

to electron energy is reflected in the sharp dependence of the lasing emission with ellipticity 
[19].   

5. Backward emission from filaments in ambient air 

For applications of this backward stimulated radiation source for remote sensing, operation in 

ambient air is required. We therefore performed measurements in atmospheric air. We first 

examined the backward UV emission from filaments formed in ambient air driven by both 

circularly and linearly polarized laser pulses. Emission spectra similar to those of Fig. 2(b) 

were observed, except that the signal at 337 nm increased only by a factor 2 for circular laser 

polarization. In Fig. 7, the measured backward 337 nm signal is shown as a function of the 

rotation angle of the quarter-wave plate. 

 

Fig. 7. Dependence of the backward 337 nm signal obtained from filaments in air as a function 

of the rotation angle of the quarter-wave plate. The incident laser energy is 9.3 mJ and the focal 

length is f = 1000 mm.  

     To further assess the influence of Oxygen gas for the lasing action, we measured the 
backward 337 nm signal in different mixtures of pure Nitrogen and Oxygen. We present in 

Fig. 8 the measured 337 nm signal for both circularly and linearly polarized laser as a function 

of the percentage of Oxygen. A slow decrease of the signal is observed upon increasing 

Oxygen concentration up to 10 %. Beyond 10 % Oxygen, the signal shows a rapid decrease, 

indicating the termination of significant lasing action. For Oxygen concentration more than 

13%, the signal obtained with circular laser polarization becomes ~ 2 times larger than that of 

linear laser polarization, similar to the transverse fluorescence presented in Fig. 2(a).   

     The detrimental influence of Oxygen molecule for the conventional discharge-pumped 

Nitrogen laser is well documented [18]. The underlying physical mechanism is attributed to 

the collision reaction  

    
   

          
   

      , 

which efficiently reduces the population density in the upper state of the lasing emission. To 

obtain a significant backward stimulated emission in atmospheric air, a higher population 

inversion density (or a higher gain) is required to overcome the quenching effect of the 

Oxygen molecules. A possible approach to achieve this is to use a pump laser at longer 

wavelengths, because the kinetic energy of the produced electrons increases like I², where I 

is the laser intensity and  its wavelength. 

 



 
 

Fig. 8. Measured backward 337 nm signal from filaments in air as a function of Oxygen gas 

concentration, for both circular and linear polarized laser pulses. The incident pulse energy is 

9.3 mJ.  

6. Conclusion  

In summary, we have shown that a strong stimulated radiation at 337 nm can be achieved in 

the backward direction from filament plasma in a Nitrogen gas pumped by a circularly 

polarized laser pulse at 800 nm. This stimulated radiation shows distinct dependence on laser 

pulse energy, compared to that obtained with linear polarized laser pulses. In a mixture of 

Nitrogen gas and Oxygen, the presence of Oxygen molecules suppresses the lasing action to a 

large extend. As to the mechanism responsible for population inversion, we attribute it to 

inelastic collisions between electrons liberated by the pump laser and neutral Nitrogen 

molecules, a process which is more efficient with circularly polarized laser pulses. We believe 

that this simple scheme for backward stimulated emission from Nitrogen gas pumped by the 
widely available 800 nm femtosecond laser pulse is a significant step towards applications for 

remote sensing.  
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