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A new action model is proposed, by revisiting local binary patterns for dynamic texture

models, applied on trajectory beams calculated on the video. The use of semi dense
trajectory field allows to dramatically reduce the computation support to essential mo-

tion information, while maintaining a large amount of data to ensure robustness of
statistical bag of features action models. A new binary pattern, called Spatial Motion

Pattern (SMP) is proposed, which captures self similarity of velocity around each tracked

point(particle), along its trajectory. This operator highlights the geometric shape of rigid
parts of moving objects in a video sequence. SMPs are combined with basic velocity in-

formation to form the local action primitives. Then, a global representation of a space

× time video block is provided by using hierarchical blockwise histograms, which allows
to efficiently represent the action as a whole, while preserving a certain level of spa-

tiotemporal relation between the action primitives. Inheriting from the efficiency and

the invariance properties of both the semi dense tracker Video extruder and the LBP
based representations, the method is designed for the fast computation of action descrip-

tors in unconstrained videos. For improving both robustness and computation time in
the case of high definition video, we also present an enhanced version of the semi dense
tracker based on the so called super particles, which reduces the number of trajectories

while improving their length, reliability and spatial distribution.

Keywords: action recognition, semi dense trajectory beam, local binary pattern, dynamic
texture,. . .

1. Introduction

In the last decades, action recognition in videos has become a very active domain

of computer vision research. To face the increasingly rapid proliferation of video

contents, the design of a rapid and reliable method to automatically exploit videos

is now a crucial challenge. The recognition of activities occurring in videos is a

key problem in many applications, such as video surveillance, video annotation and

retrieval, video summarization, human computer interaction and so on.

According to [1], the design of automated activity recognition systems faces

three major problems. The first one is intra- and inter-class variations; for example
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speed or stride length may vary much from one gait to the other, whereas running

and jogging are different but similar actions. The second one comes from the huge

variety of environments and recording settings, such as lighting conditions, view-

points, backgrounds, camera motions, etc. The third one is the difficulty to obtain

relevant training data and to label them. For these reasons, and in spite of many

existing methods, designing a reliable action recognition system in real conditions

is still an open problem.

One of the most critical parts of action recognition systems is the design and

computation of the action model: what information should be extracted from the

video, and how. Many methods have been proposed for action representation (see [2]

for a comprehensive survey). One first way to classify them is according to the

data used to calculate the features, which can be (1) Space-time appearance [3–7],

(2) Apparent motion [8, 9], or (3) Body silhouette [10,11].

Another way to classify the existing action models is to distinguish global vs

local features. Global features are obtained using top-down strategy to encode the

visual observation as a whole. Such approach generally represents an action by

characterizing a region of interest. It often requires the detection of human body

in videos. Due to this pre-processing step that is usually based on background

subtraction or object tracking, these features are more sensitive to noise, occlusions

or viewpoint change. If these factors are well controlled, the global features are a

powerful representation because they encode most of the information. Therefore,

they work well in controlled environments such as the KTH dataset [12] but are

less effective in more realistic environments such as UCF Youtube [13] dataset.

The global features are often derived from silhouettes, edges or optical flow. Bobick

and Davis introduced MHI (Motion History Images) and MEI (Motion Energy

Images) [10] for encoding evolution of human body movements in temporal and

spatial dimensions. Blank et al. [11] described human actions as 3d shapes generated

by the silhouettes in the spatio-temporal space. The actions are then modelled by

Poisson equations. Efros et al. [8] represent action by global patterns produced by

optical flow fields on a figure-centric spatio temporal volume for each person in a

video.

On the other hand, the local representations rather follow a bottom-up strategy.

They are made from a collection of local patterns, usually descriptors calculated

on a set of spatio-temporal interest points. Then the collection of patterns is re-

duced using statistical techniques such as bag of features, to construct the action

descriptor. The main advantage of these approaches is that they are more robust to

noise and partial occlusions than the global representations. In addition, they don’t

require a segmentation step like background subtraction or human tracking. On the

other hand, their results depend more strongly on the choice of input feature, and

the performance of statistical classification depends on the amount of extracted

local patterns. Let us give some important examples of local feature approaches.

Many local spatio-temporal features are designed by extending classical space

detectors and descriptors, such as SIFT [14], SURF [15], or HOG [16] to 3d space-
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time. Laptev [3] detected space-time interest points in videos extending Harris

corner criteria from 2d images to 3d. Similarly, Dollár [4] extracted spatio tempo-

ral keypoints in the energy map referred to as cuboids by performing symmetric

temporal Gabor filtering. It avoids the problem of sparse corner detection reported

in [3]. A 3d extension of SURF descriptor is given in [5] using 3d Haar wavelets.

Klaser [6] introduced HOG3D by using polyhedral structures for quantization of the

3d spatio-temporal edge orientations. Inspired from HOG, Histogram of Oriented

Optical Flow (HOOF) [9] that was first proposed for human detection, uses the op-

tical flow instead of the gradient as basis of the orientation distribution. Willems [7]

performed an extension of the Hessian saliency measure to detect dense and scale-

invariant spatio-temporal interest points. Chakraborty [17] proposed a surround

suppression of detected interest points combined with spatial and temporal con-

straints to be robust with respect to camera motion and background cluster. An

interesting approach is to consider the action as a texture pattern, and to apply dy-

namic or static texture based methods to action modelling and recognition. Thanks

to the effective properties of Local Binary Patterns (LBP) for texture representa-

tion, several LBP-based methods have also been proposed for action recognition.

The existing LBP-based methods will be reviewed in the next section.

In this paper, we present a new action model which can be seen as a hybrid

solution between optical flow methods and dynamic texture based approaches. The

motion is locally represented using a binary pattern, whose support is a space-time

neighbourhood, located along a trajectory obtained by point tracking. We propose

a new self-similarity operator to capture spatial relations in a trajectory beam, by

representing the similarity of motion between the tracked point along its trajectory,

and its neighbourhood. The semi-dense point tracker computes the displacement

of many points in real time, then we apply self-similarity operator on appearance

information to represent the motion information of a larger zone surrounding the

trajectory.

The remainder is organized as follows. Section 2 presents the background knowl-

edge on LBP based (dynamic) texture representations. Section 3 presents the algo-

rithm used to extract the trajectories. Section 4 combines trajectories and LBPs to

form the Spatial Motion Patterns (SMP), which are the descriptors used in action

classification. Section 5 presents and discusses the evaluation of the SMP for action

recognition on three classic datasets. The last section presents the conclusion and

perspectives of this work.

2. LBP based representations

2.1. Brief review of LBP

Local Binary Patterns [18] were introduced by Ojala et al. Their idea is to capture

the local structures of texture images using binary patterns obtained by comparing

a pixel value with its surrounding neighbours. The LBP encoding of one pixel can
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Spot Flat Line end Edge Corner

Fig. 1. Texture primitives corresponding to Uniform LBPs [18].

be defined as follows:

LBPP,R =

P−1∑
p=0

s(gp − gc).2p, s(x) =

{
1, x ≥ 0

0, otherwise

where gc is the value of the pixel c and {gp}0≤p<P are the values of the P neigh-

bours evenly located on a circle of radius R and centre c. The values of neighbours

can be obtained by direct sampling or estimated by interpolation.

Ojala et al. observed that most of the patterns in natural images have 0 or 2

bitwise transitions (i.e. 0-1 or 1-0 change occurring in a circular scan). Such patterns

are called uniform (LBPu2) and defined by U(LBPP,R) ≤ 2, where:

U(LBPP,R) =

P∑
p=1

|s(gp − gc)− s(gp−1 − gc)|,

with gP = g0.

The LBP operator has two important properties: it is invariant to monotonic

gray scale changes, and its complexity is very low. Initially proposed for texture

modelling and recognition, LBP-based approaches have proved suitable for many

other applications, including face recognition, object modelling and action recogni-

tion. The uniform pattern coding (LBPu2
P,R, which corresponds to ignoring the non

uniform patterns) is widely used in real applications because it reduces significantly

the length of feature vectors while capturing important texture primitives: Fig. 1

displays the local geometry classification induced by LBPu2
P,R.

2.2. Dynamic texture representation using LBP-based methods

An intuitive extension of LBP is to represent dynamic texture in a 2d+t space,

and applying the notion of self-similarity to the spatio-temporal domain. We recall

hereafter two spatio-temporal LBP operators for image sequences.

2.2.1. VLBP

Volumetric LBP [19] is a direct extension of [18] for image sequence. Zhao and

Pietikäinen defined dynamic texture at voxel c(x, y, t) considering 3P neighbours

located on 3 circles of radius R, and centres c1(x, y, t−δt), c(x, y, t) and c2(x, y, t+
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δt), where δt is a time interval. Each circle provides a LBP binary code of length P .

Similarly, comparing the values of the 3 centres c, c1 and c2 leads to a 2-bit code.

Finally, the VLBP, made by concatenating the 4 patterns, is a (3P + 2)-bit code.

2.2.2. LBP-TOP

VLBP produces very long codewords when P is large, and only takes into account

one time interval δt. LBP-Three Orthogonal Patterns [20] were also introduced by

Zhao and Pietikäinen to address this problem. LBP-TOP pattern at pixel c is made

by the LBPs on 3 circles from the 3 orthogonal planes (x, y), (x, t) and (y, t) which

intersect at c. This approach provides 3 shorter codewords which, unlike VLBP,

are gathered in separated histograms.

2.3. LBP-based methods for action recognition

Kellokumpu et al. [21] used dynamic texture operator (LBP-TOP) to represent

human movements. They also presented another approach [22] using classical LBPs

on temporal templates (MEI and MHI images [10], which are gray level images

representing motion information). In the two methods the features were used as

observations of a Hidden Markov Model which actually represented the action.

Mattivi and Shao [23] presented a different method using LBP-TOP to describe

cuboids detected by Dollár’s feature detector. Nanni et al. [24] improved LBP-TOP

using ternary units in the encoding step. Yeffet and Wolf proposed LTP (Local

Trinary Patterns) [25] that combines the effective description of LBP with the

adaptivity and appearance invariance of patch matching methods. They capture the

motion effect on the local structure of self-similarities considering 3 neighbourhood

circles at a spatial position and different instants. Kliper-Gross et al. developed

this idea by capturing local changes in motion directions with Motion Interchange

Patterns (MIP) [26].

3. Motion Representation from a Beam of Trajectories

Trajectories are compact and rich information source, and a natural support for the

representation of actions. They have been used before for action recognition [27].

However, to obtain reliable trajectories, the spatial information is often dramatically

reduced to a small number of keypoints, and then it may be hazardous to compute

statistics on the set of trajectories. In this work we use Video Extruder [28], a semi

dense point tracking method (see also Fig. 2) which is a trade-off between long term

tracking and dense optical flow, and allows the tracking of a high number of weak

keypoints in a video in real time, thanks to its high degree of parallelism.

To optimise the recognition, it is important to have a flexible compromise be-

tween the number of trajectories and their reliability. To this end, we introduce

in this paper the new concept of super particles, which aggregate the information

worn by a set of particles forming different trajectories. Super particles lead to a
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Table 1. Performances of Video extruder semi dense tracker. # p is the number of particles, Mpix/s

(resp. fps) is the computation frequency, in Megapixels (resp. in frames) per second, cpp is the
number of cycles per particle.

Architecture Resolution # p Mpix/s (fps) cpp

GPU Geforce GTX 460 1.35GHz 640× 480 8 500 50 (166) 957

CPU quad-core I5 2500k 3.3GHz 640× 480 8 500 46 (152) 2 550

ARM dual-core STE U8500 1GHz 320× 240 3 000 0.84 (11) 30 300

ARM single-core IMX.53 1GHz 720× 288 2 000 2.07 (10) 50 000

better distribution of motion information, reduce the influence of noise and provide

longer trajectories.

We give in this section a brief overview of the tracker, explain how the super

particles are formed and tracked, and finally compare them with the original Video

Extruder.

3.1. Overview of Video Extruder

To improve robustness to large motion (including motion of the camera itself),

Video Extruder follows a coarse to fine pyramidal scheme: It starts by estimating

the motion at the coarsest resolution level and iterates to the finest resolution level.

For each level l of the pyramid, Video Extruder performs the following steps :

• Particle detection: A weakly salient point detector [28], designed to de-

tect as many trackable points as possible, extracts a semi dense field of key

points (particles).

• Particle matching and tracking: The matcher finds the new position of

each particle in the current frame. Using velocities estimated at level l+ 1

and the previous velocity of the particle, it predicts the position, and then

minimises the distance between descriptors using a gradient descent (the

descriptor is a vector of 16 pixel values sampled at two different scales).

• Error filtering: A filtering step finally remove particles that diverge from

their neighbours.

Table 1 shows how the tracker performs on a GPU, a CPU, and two low-powered

ARM processors.

3.2. Super particle segmentation and tracking

We present the algorithm to segment and track groups of analogous particles. Such

groups are called super particles in the following. From the semi dense field of

keypoints, a super particle is a set of particles that are close in both image and

motion spaces.

Initialisation: The image is split in a grid of D×D pixel cells, and assume that
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Fig. 2. Comparison of the particles and the super particles.

every particle of cell x belongs to the super particle Px. The position of Px is

initialised to the centre of its cell.

The super particles are updated as follows: Let mx and my be the median

horizontal (resp. vertical) displacement of the particles that belong to Px. We

compute the new position of Px as: Px
t = Px

t−1 + (mx,my)ᵀ.

To add the new particles and discard the divergent particles from the super

particle, we apply the following: If the distance between an orphaned particle and

Px is smaller than D pixels, we add it to Px. If the distance between a particle and

Px is bigger that 2D, it is removed from the super particle and set as orphaned.

Finally, to enhance the robustness of super particles, they are discarded if they

contain less than θ particles.

This algorithm can be seen as a simplified mobile object segmentation and

tracking. It does not segment objects, but aggregates small groups of particles

moving with similar motion.

Super particles have several advantages over simple particles. The trajectories

of these groups are more robust and then track motion over a longer period of

time. Furthermore, they are better distributed over the image domain, lowering the

over-representation of highly textured areas in the statistics. Figure 2 and Table

2 compares the trajectories of the particles and the super particles on the same

video. In this example D = 10 and θ = 5. It is also the configuration chosen for

experimentation in Section 5.4.
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Table 2. Comparison of moving particles and super particles. An entity is classified as moving if

it moved more than 100 pixels over its entire life. The average trajectory lifetime represents the
average number of frames the particles were tracked.

Particles Super particles

Number of entities 2 289 178

Average trajectory lifetime (in frames) 30.68 48.53

4. Action Descriptor using Spatial Motion Patterns

This section details the construction of our action descriptor. The input data is the

semi-dense trajectory beam described in Section 3, and no appearance information

is explicitely used. A classic approach to action description using velocity informa-

tion is to consider histogram of (orientation of) optical flow (HOOF). This method

is simple and computationnally efficient, but suffers from limited discrimination

capability, since it neglects the spatio-temporal relations between moving points.

One partial solution is to compute the histograms in different sub-volumes defined

by a spatio-temporal grid. The descriptor defined in this section aims at addressing

more finely this problem. It is constructed in a way to exploit motion information

at different context levels:

• Point level: The velocity vector is provided by the semi-dense tracker, at

each frame and for every particle (or super particle).

• Local spatio-temporal level: Spatial Motion Pattern (SMP) is defined as a

self-similarity operator for capturing the motion similarity between every

(super) particle and its surrounding points.

• Regional to global spatio-temporal level: A hierarchical bag of feature (BoF)

histogram vector is built to describe the action at different spatiotemporal

scales.

These levels are detailed in the following subsections, then we discuss the properties

of this action model, compared with other descriptors from related works.

4.1. Point level

The velocity of particles from frame to frame is provided by the semi-dense tracker.

Let −→pt be the 2d displacement of the particle between frames t and t+ δ. The first

part of the encoding is simply a dartboard quantisation of vector −→pt (see Fig. 3).

In our implementation, we used intervals of π/6 for the angles and 2 pixels for the

norm (the last interval being [6,+∞[), resulting in 12 bins for direction angle, 4

bins for norm.

This code corresponds to motion information at the finest level, i.e. point con-

text. However, its information range is much wider than the pixel, since a particle

represent a certain spatial structure, and in the case of super particles, the range

is even wider, since it depends on D, the space radius of super particles.
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−→pi

Fig. 3. Dartboard quantisation of the motion vector.

4.2. Local spatio-temporal level

At the local spatio-temporal level, we use an LBP-based representation to capture

the relations between a point and its neighbours. The idea is to capture the inter-

trajectory relations among a beam of trajectories. We combine the LBP-based self-

similarity operator [18] and the appearance invariance of patch matching method

inspired by [25]. This operator, called Spatial Motion Pattern (SMP), is presented

below.

Consider a (super) particle p that moves from position P1 at frame t to position

P2 at frame t + δ, provided by the semi dense tracker. The similarity of motion

between this particle and its surrounding neighbours is assessed by considering the

2 × n patches sampled on the circles of radius r centred at P1 and P2 in their

corresponding frames (see Fig. 4). Every index i ∈ {0, . . . , n − 1} represents a

neighbour, which is encoded by 0 if its motion is similar to the motion of the

centre particle, and by 1 otherwise. Because semi-dense point tracking is applied

instead of dense optical flow, the velocity information is not available everywhere.

Following [25], SSD (sum of square difference) score is used as similarity measure

to check the consistency of motion.

Let {∆(p, t)i}n−1
i=0 be the set of n patches surrounding particle p on the circle

of radius r, at frame t. The corresponding SMPn,r codeword (b0, b1, . . . , bn−1) is

calculated as follows:

bi =

{
1 If SSD

(
∆(p, t)i,∆(p, t+ δ)i

)
≥ τ

0 otherwise
,

where δ is the time interval between two frames, τ is the SSD threshold. Overall,

there are 2n different possible values for a SMP, and only n(n − 1) + 3 different

values for SMPu2, i.e. if non uniform patterns are discarded and grouped in a unique

symbol [18].
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SSD

t + δ

t

P1

P2

∆(p, t + δ)1

∆(p, t + δ)0

∆(p, t)0

∆(p, t)1

Fig. 4. The SMP descriptor is calculated for each

tracked particle along its trajectory. The consis-
tency of motion in every direction is checked by

computing the SSD between the corresponding

image patches.

Fig. 5. Action modelling by SMP his-

togram concatenation.

4.3. Regional to global spatio-temporal level

To represent the action as a whole, while preserving the main trends of the spatio-

temporal relations between its different components, a hierarchical bag of feature

(BoF) model [29] is used.

An action is represented by histograms of codewords formed by the two previous

primitives (motion code and spatial motion patterns) on spatio-temporal volumes.

Note that unlike many BoF approaches, no vector quantisation is performed, and

the number of codewords simply corresponds to the number of different motion

code multiplied by the number of different SMPu2, i.e. 48× (n(n− 1) + 3). In the

hierarchical approach, the considered volumes can be the entire sequence, or a set of

sub-sequences defined by a spatio-temporal grid. All histograms are concatenated

into one vector that is then normalised to form the action descriptor. Fig. 5 shows

an exemple of hierarchical BoF descriptor constructed using three different grids:

1× 1× 1, 2× 2× 2 and 4× 4× 4.

4.4. Properties of Spatial Motion Patterns

Spatial Motion Patterns have attractive properties, most of which are inherited

from [18,25], :

• Efficient computation. They use SSD scores on small image patches, calcu-

lated on tracked keypoints only, thus avoiding many irrelevant calculations.

• Appearance invariance. This property is due to: (1) the LBP based encod-

ing and (2) the input data itself, which only relates to the trajectory, not

to the appearance.

• Robustness against complex background. Unlike many methods, SMP works

better when the background is more complex. Indeed, in that case the SSD

is more significant, and then the SMP will also better describe the local
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Fig. 6. SMPu2 configurations allow to determine the shape of the rigid parts of the moving object

around the keypoints (in red points). In the neighbouring circles, image patches in green (resp.
blue) indicates that they belong to the same rigid part of the moving object as the keypoint (resp.

another rigid part or the background).

motion information.

4.4.1. SMP uniform patterns and primitive actions

An important property of SMPs is the interpretation of the corresponding uni-

form patterns. In an analog manner as LBPu2 (see Fig. 1), SMP uniform patterns

(SMPu2) capture local action primitives. They characterise the motion between

foreground objects and the background in videos, and more generally, between two

rigid parts of a moving object. The interpretation of SMPu2 as action primitives

can be done as follows (see Fig. 6, and refer to Fig. 1 for the name of primitives):

• Spot: Small foreground object moving on the background.

• Flat: Rigid part of an object (or background).

• Line end: End of a thin rigid part of a moving object.

• Edge: Frontier object/background, or between two parts of an object.

• Corner: Corner of a rigid part of a moving object.

4.4.2. Comparison with Local Trinary Patterns

Although inspired by them, the Spatial Motion Patterns (SMP) differ from Local

Trinary Patterns (LTP) [25] in several aspects. Let us first recall the LTP princi-

ples. They use sum of squared differences (SSD) between patches centred at different

space and time locations in order to capture the motion effect on the local struc-

tures. Let SSD∆x

∆t
be the SSD between the patch centred at pixel x at frame t and

the patch centred at pixel x + ∆x at frame t + ∆t. One ternary code {−1, 0, 1} is

obtained for each shift direction ∆x, by comparing SSD∆x

−∆t
and SSD∆x

+∆t
. Figure 7

illustrates this principle.

We list hereunder the main differences between SMP and LTP:
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Fig. 7. Local Trinary Patterns [25].

• Encoding process. Unlike LTP, SMP use only 2 bits. The encoding of LTP

is done by comparing SSD scores between neighbouring patches of past and

future frames, and the centre patch of the middle frame. For SMP, SSD

scores between two corresponding patches are calculated in two consecutive

frames and the binary code is deduced by thresholding.

• Neighbouring configuration. LTP used three circles centred at the same

position in 2D space. For SMP, the two neighbouring circles are centred

at the tracked position of each particle. Then these circles are not always

located at the same position.

• Interpretation. LTP aims to represent motion information at a given posi-

tion, whereas for SMP, the motion information is already known, the SMP

is interpreted as a local disparity map of velocities around each trajectory.

It describes the relative similarity between the small patch in the middle

frame and its neighbouring patches in the previous and next frames.

5. Experimentation on Human Action Classification

To perform action classification, we apply SVM classifier to action descriptors (made

by concatenation of different SMP histograms). We choose the method of Vedaldi et

al. [30] which approximates a large scale support vector machines using an explicit

feature map for the additive class of kernels. Generally, it is much faster than

classic kernel based SVMs and it can be used in large scale problems. We evaluate

our descriptor on several well-known datasets. The first one (KTH) [12] is a classic

dataset, used to evaluate many action recognition methods. The second and third

ones are UCF Youtube [13] and UCF Sport [31], which are more realistic and

challenging datasets.

5.1. Parameter settings

5.1.1. SMP configuration

There are several parameters concerning the construction of SMP. Like [25], we

compute SSD score on image patch of size 3 × 3 with threshold τ = 1000 that

represents 0.17% of the maximal value of SSD. The time interval δ is set to 1.

In addition, because every tracked keypoint already represents a certain spatial
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structure, the radius of SMP must be sufficiently large to better capture the geo-

metric shape of rigid parts of moving object surrounding the keypoints. This differs

from the typical LBP operator that uses small radius of spatial support (from 1 to

3) in order to capture “micro” structure of textured images. In our implementa-

tion, we consider 16 neighbours sampled on a circle of radius 9, as this configuration

proved to obtain good results. To reduce the feature vector size, only uniform pat-

terns (SMPu2
16,9) were considered. Due to the intrinsic anisotropy of motion in real

scenes, the rotation invariant uniform patterns (riu2) were not considered.

5.1.2. BoF configuration

Bag of Feature is a popular approach to build descriptor from local features in

videos. Lazebnik et al. [29] showed that a hierarchical BoF still enhances the per-

formance by capturing spatial relations in the distribution of codewords in sub-

volumes at different scales. They used 3 different grids (scales): 1× 1× 1, 2× 2× 2

and 4 × 4 × 4. To reduce the dimensionality of feature vector, we used the 3 spa-

tiotemporal grids: 1× 1× 1, 2× 2× 2 and 3× 3× 3 to construct the histograms of

codewords.

5.2. Experiments on KTH dataset

The dataset contains 25 people for 6 actions (running, walking, jogging, boxing,

hand clapping and hand waving) in 4 different scenarios (indoors, outdoors, out-

doors with scale change and outdoors with different clothes). It contains 599 a

videos, of which 399 are used for training, and the rest for testing. As designed

by [12], the test set contains the actions of 9 people, and the training set corre-

sponds to the 16 remaining persons. Table 3 shows the confusion matrix obtained

by our method on the KTH dataset. The ground truth is read by row. The average

recognition rate is 93.33 % which is comparable to the state-of-the-art of LBP-based

approaches (see Table 4). The main error factor comes from confusion between jog-

ging and running, which is a typical problem in reported methods. We remark that

unlike [21,22] that work on segmented box, our results are obtained directly on un-

segmented videos. Applying the same pre-processing step would probably improve

our result.

aIt should contain 600 videos but one is missing
bOurs 1: with particle trajectories; Ours 2: with super particle trajectories.
cOurs 1: with particle trajectories; Ours 2: with super particle trajectories.
dThis result is obtained combining several local descriptors: TD, HOG, HOF, MBH. Using one
descriptor, the result may vary from 58.2 % to 72.9% on KLT trajectories, from 67.2 % to 83.9 %
on dense trajectories.
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Table 3. Confusion matrix on KTH dataset.

Box. Clap. Wav. Jog. Run. Walk.
Box. 97.5 2.5 0 0 0 0
Clap. 2.5 97.5 0 0 0 0
Wav. 2.5 0 97.5 0 0 0
Jog. 0 0 0 95.0 0 5.0
Run. 0 0 0 12.5 82.5 5.0
Walk. 0 0 0 10.0 0 90.0

Table 4. Comparison on KTH dataset.

Method b Result Method Result
Ours 1 93.33 [25] 90.17
Ours 2 92.08 [26] 93.0
[23] 88.38 [21] 93.8
[32] 82.36 [22] 90.8
[27] 94.2 [33] 97.1

Table 5. Comparison on UCF Youtube.

Method c Result Method Result Method Result

Ours 1 72.07 [34] 64 [13] 71.2

Ours 2 70.85 [35] 64 [27] 84.2d

Table 6. Confusion matrix on UCF Youtube dataset.

Walk. Volley. Tramp. Tennis Swing Soccer. Horse. Golf. Div. Biking Bask.
Walk. 38.64 0 6.82 2.27 6.82 4.55 18.18 4.55 0 18.18 0
Volley. 0 74.36 0 2.56 7.69 2.56 0 2.56 0 0 10.26
Tramp. 0 2.33 88.37 0 0 4.65 0 0 0 4.65 0
Tennis 1.59 0 1.59 79.37 0 0 4.76 3.17 3.17 4.76 1.59
Swing 5.36 0 8.93 0 78.57 0 0 0 0 7.14 0
Soccer. 5.56 3.7 1.85 16.67 0 55.56 1.85 7.41 0 0 7.41
Horse. 1.29 0 0 4.84 0 0 70.97 0 0 9.68 1.61
Golf. 1.85 0 0 0 0 0 0 92.59 3.7 0 1.85
Diving 5 1.67 1.67 1.67 0 0 0 1.67 88.33 0 0
Biking 0 0 6.25 0 0 12.5 6.25 2.08 0 72.92 0
Bask. 0 2.34 4.26 6.38 2.13 0 4.26 2.13 4.26 0 53.19

5.3. Experiments on UCF Youtube dataset

The UCF Youtube dataset records 11 categories (basketball shooting, cycling, div-

ing, golf swinging, horse back riding, soccer juggling, swinging, tennis swinging,

trampoline jumping, volleyball spiking and walking with a dog), and contains 1 600

video sequences. Each category is divided into 25 groups sharing common appear-

ance properties (actors, background, or other). It is much more challenging than

KTH because of its large variability in terms of viewpoints, backgrounds and cam-

era motions. Following the experimental protocol proposed by the authors [13], we

used 9 groups out of the 25 as test and the 16 remaining groups as training data.

Table 5 presents our results compared to other recent methods while Table 6 shows

the confusion matrix of our method (Ours 1) on this dataset. The worst classifi-

cation rate corresponds to confusions of “walking with dog” action with “biking”

and “horse riding” actions. Our mean recognition rate on UCF Youtube dataset is

72.07 %, which is comparable to recent methods.

5.4. Experiments on UCF Sport

The UCF Sport dataset [31] contains a set of action clips from different sport videos,

including 9 categories (diving, golf swing, kicking, lifting, riding, running, skate-
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Table 7. Comparison on UCF Sport dataset.

Method Result Remark

Ours 81.3 Super particle trajectories

Ours 80.7 Particle trajectories

Rodriguez et al. [31] 69.2

Hessian [7] + ESURF [36] 77.3 From [37]

Harris3D [3] + HOG/HOF [36] 78.1 From [37]

Yeffet and Wolf [25] 79.1

Hessian [7] + HOG/HOF [36] 79.3 From [37]

Dense + HOF [36] 82.6 From [37]

Cuboids [4] + HOG3D [6] 82.9 From [37]

Wang et al. [27] 88.2 e

boading, swing and walking). Testing is based on Leave One Out cross validation,

selecting one video at a time for testing, and the others for training. Following [6],

a horizontally flipped version of each video was added to increase the number of

training samples. UCF Sport is a challenging dataset, because it contains a wide

range of scenes and viewpoints. Compared with UCF Youtube, the resolution is

higher and the actions are shot from closer. This results in a much larger number

of trajectories, which implies higher computation time. Then, we chose this dataset

to evaluate the super particle based enhanced trajectories.

Table 7 presents the results of our descriptors on this dataset using the two

types of trajectories as input (particles or super particles), compared with existing

methods. Working with super particles gives a comparable result as original parti-

cles. However the super particule strategy accelerates dramatically the computation

time of the descriptor. Indeed, the tracking of particles or super particles takes ap-

proximately the same time, whereas the computation cost of the action descriptor

essentially depends on the total length of tracked trajectories. As a typical example,

it can be deduced from the figures of Tab. 2 that the super particle approach should

imply more than 8 times fewer SMPs to compute.

5.5. Discussions

From the above experiments on three datasets, we can do the following remarks.

• For low resolution videos like KTH or UCF Youtube datasets, the super

particles do not improve the performance. This is due to the loss of activity

information when the number of trajectories is limited

eThis result is obtained combining several local descriptors: trajectory, HOG, HOF, MBH. Using
one descriptor, the result may vary from 72.7 % to 80.2 % on KLT trajectories and from 75.2 %

to 84.8 % on dense trajectories.
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• For high resolution videos like UCF Sport dataset, the super particles are

a good way to accelerate the computation of descriptors without reducing

the discrimination capability of the method.

• The proposed method outperforms LBP-based methods and is comparable

to other recent methods.

• Two trajectory-based methods [27,33] have better results than ours. How-

ever their computation time is much higher, due to their combination of a

large number of different descriptors such as TD, MBH, HOF and HOG,

and, in the case of [27], their use of dense trajectories, whose computation

cost is higher than (semi-dense) VideoExtruder.

The comparison with [27, 33] leads to different remarks. The performance of

trajectory-based methods depends on the type of trajectories. For example, chang-

ing KLT for dense trajectories improves for more than 6% on UCF Sport. Also, a

combination of different descriptors can improve the performance. So experiment-

ing on different kinds of trajectories and combining with other descriptors can be

considered in future works.

Due to the difficulty in re-implementing existing methods, we did not quan-

titatively compare the computation time for the different methods. However, the

efficiency of the proposed method can be justified by its components:

• The extraction of trajectories is very fast thanks to VideoExtruder

• The computation of SMP is simple like other LBP-based variants. More-

over, SMP code is not calculated at each voxel of the video. It is only

calculated along the tracked trajectories, whose number can be adjusted

using the super particle framework.

6. Conclusions

We have presented a new method for action recognition based on semi-dense trajec-

tory beams and a LBP based local motion pattern, which captures spatial relations

of moving parts, along their trajectories. It inherits good properties of invariance

and computational efficiency from Video Extruder and LBPs, and it is designed to

work in unconstrained videos with complex background. To enhance the robustness

of the trajectories, and to reduce the computation time of the action descriptors,

the new concept of super particles was introduced, leading to fewer trajectories,

but longer, more stable and better space distributed. In the future, we are inter-

ested in several perspectives related to this method, such as multi-scale SMPs, and

improving the results in the case of moving backgrounds.
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19. Zhao, G., Pietikäinen, M.: Dynamic texture recognition using volume local binary
patterns. In: Dynamical Vision. Volume 4358 of LNCS. (2007) 165–177

20. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns
with an application to facial expressions. PAMI 29 (2007) 915–928
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