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Abstract  

Filaments produced in air by intense femtosecond laser pulses emit UV luminescence from excited 

N2 and 

2N molecules. We report on a strong dependence at high intensities (I ≥ 1.4×1014 W/cm2) of 

this luminescence with the polarization state of the incident laser pulses. We attribute this effect to 

the onset of new impact excitation channels from energetic electrons produced with circularly 
polarized laser pulses above a threshold laser intensity.  
 

PACS numbers: 33.50. Dq, 34.80. GS, 33.80. Rv  
 

 

Intense femtosecond laser pulses launched in transparent media experience filamentary propagation, a generic 

phenomenon in solid, liquids, and gases [1, 2]. A distinctive signature of filamentation in air is the formation of a 

long, bright channel of under dense plasma in the wake of the propagating laser pulses. The length over which the 

plasma column is formed can vary between a few millimeters to hundreds of meters, depending on laser 

characteristics, although its length is limited to a few meters at any instant, because of the fast plasma recombination 

[1, 2]. Much interest has been devoted to the study of the luminescence of this plasma in air. As shown first by the 

group at Laval University, it differs from that obtained with laser pulses of longer duration [3]. Instead of Nitrogen 

and Oxygen atomic lines superimposed on a broad continuum, it consists of discrete lines due to excited nitrogen 

molecules. These lines correspond to transitions between excited triplet states uC3  and  gB3 of neutral nitrogen 

molecules (2nd positive system of N2) and between second excited state uB2  and ground state gX 2 of nitrogen 

molecular ions (1st negative system of 

2N )  [3, 4]. A detailed understanding of the process leading to this filament 

luminescence is important for several reasons. Filament luminescence has been used as a tool to characterize the 

length and width of the plasma column and to extract the electron temperature and laser intensity inside filaments 
[5-8]. Due to its dependence on an external electric field, it has found application in the remote measurement of DC 

electric field or intense Terahertz radiation [9, 10]. A good understanding of its excitation process is also central to 

an interpretation of the recently discovered laser action from either neutral or ionized nitrogen molecules inside 

filament plasmas [11-17].  

 

In this letter, we measure and discuss the dependence of the luminescence from both N2 and 

2N  molecules on 

polarization of the incident femtosecond laser pulse. It reveals new non radiative routes to populate excited neutral 

and ionic molecular levels through electron collisions. A minimum electron kinetic energy is necessary in order to 

achieve impact excitation of neutral or ionized molecules. In the range of laser intensities of this study, numerical 
simulations predict that this threshold kinetic energy is only obtained with circular polarization, in good agreement 

with our experimental observations. 

 

In the experiment, femtosecond laser pulses with pulse energy up to 10 mJ (45 fs, 800 nm) from a commercial laser 

system(Thales Laser, Alpha 100) were focused by an f = 1000 mm convex lens in ambient air. A quarter-wave plate 

() was installed before the focal lens to change the laser polarization from linear to circular. Plasma channels with 
length varying from a few millimeters to several centimeters were created, depending on the incident pulse energy. 

In order to detect the spontaneous luminescence, a lens of focal distance f = 25 mm was employed to collimate the 

luminescence emitted in the direction orthogonal to the laser propagation axis and a second lens with  f = 100 mm 

was used to focus the collected emission onto the entrance slit of a monochromator (Jobin-Yvon H-20 UV). The two 

lenses used were made of fused silica. The luminescence signal from the monochromator was measured by a 

photomultiplier tube (Hamamatsu, model: H10722). In order to resolve longitudinally the luminescence signal along 
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the filament axis, a rectangular diaphragm (1 mm × 6 mm) was placed 1 mm away from the filament axis. More 

details about the detection method can be found in ref [17]. 

 

We first measured the luminescence spectrum for linearly and circularly polarized laser pulses at two representative 

incident laser pulse energies Ein. Detection was performed at the middle position of the plasma in each case. Figure 1 

shows the results for Ein = 250 J, just below the threshold for filamentation (Fig. 1(a)) and at 8.3 mJ, where the 
peak power is 30 times higher than the critical power for filamentation (Fig. 1(b)). The corresponding peak laser 

intensities were determined by measuring the laser flux and pulse duration transmitted through a circular diaphragms 
of 80 µm diameter placed in the middle of the plasma string.  It yields I = 3 × 1013 W/cm2 in case (a) and a value  I ≥ 

1.4 × 1014 W/cm2 for incident pulse energies above 1 mJ, when filaments are formed [17]. No significant difference 

of laser intensity was observed for linear and circular laser polarization. The luminescence lines visible in Figure 1 

belong to two categories, as already mentioned: transitions between excited triplet states of the neutral nitrogen 

molecules or transitions between different ionic states 

2N  of the nitrogen molecule [3]. Their precise identification 

in terms of rotational levels is given Fig. 1. As can be seen, upon increase of laser intensity, there is a reversal in the 

relative intensity of luminescence between linear and circular pump laser polarization. At lower intensities, linearly 

polarized pump light is more efficient. At higher laser intensity, a circularly polarized pump becomes more 

effective.  
 

The same trend is better observed in the dependence of the 337 nm (representative of luminescence from neutral 

molecules) and 391 nm signals (due to molecular ion emission) as a function of pump laser ellipticity. The ellipticity 

of the laser can be changed continuously from linear () to elliptical (0 < ), and circular (by rotating 
the quarter-wave plate. In Fig. 2, results are presented for 4 different pulse energies as a function of rotation angle of 

the waveplate. The angles φ = 90º × mcorrespond to linearly polarized laser, with m = 0, 1, 2, 3. The angles φ = 

45º + 90º × m correspond to circular laser polarization. All measurements were performed around the center of the 

plasma. With a laser pulse energy of 250 J, the dominance of linear laser polarization over elliptical and circular is 

observed for both 337 nm and 391 nm emission lines (Fig. 2(a) and 2(a')). With a pulse energy of 600 J, the 
intensity of the triplet luminescence line at 337 nm becomes independent of the pump polarization (Fig. 2(b)). Upon 

a further increase of the pump pulse energy, the signal at 337 nm becomes more intense with a circularly polarized 

pump (Fig. 2(c) and 2(d)). Concerning the emission of 

2N  at 391 nm, its relative intensity increases with circularly 

polarized laser pulses (see Fig. 2(b') and 2(c')), until almost no dependence on ellipticity is observed for pulses of 10 

mJ (Fig. 2(d')). 

 
In Fig. 3, we present the evolution of luminescence lines at 337 nm and 391 nm along the filament axis z for both 

linear and circular laser polarization, again for three different incident laser pulse energies. Below the threshold for 

filamentation (Fig. 3(a) and (a')), the length of the plasma corresponds to the Rayleigh distance calculated by 

assuming a linear laser pulse propagation. As expected for such a case, the plasma luminescence peaks at the 

geometric focus. Both lines are more intense along the ~ 25 mm plasma string with linearly polarized pump. At 

higher laser energies (Ein = 1.1 mJ), the plasma string moves towards the laser, a signature of filamentation (Fig. 

3(b) and 3(b')). The luminescence obtained with circularly polarized light increases and becomes equal or even 

predominant at still higher energies (Ein = 10 mJ), (Fig. 3(c) and 3(c')). We verified that other emission lines at 357 

nm and 428 nm exhibit a similar behavior.   

 

How should we understand the dependence of the luminescence with pump laser polarization? Populating excited 

ionic state   uBN 2

2
 during filamentation in air is generally accepted as being due to direct high-field photon-

ionization of inner-valence electrons of the nitrogen molecules [18, 19]. Linear laser polarization is known to be 

more efficient [18, 19]. Direct high-field photonic excitation of the triplet state  uCN 3

2
 is a spin forbidden 

process and therefore unlikely. Two indirect excitation processes have been proposed. A first scheme consists in a 

dissociative recombination through the processes: 
24222 NNNNN    followed by

  2

3

24 NCNeN u    [20].   Another more recent scenario proposes that collision-assisted intersystem 

crossing from excited singlet states is the dominant path to produce the triplet state, while the dissociative 

recombination would be a minor contributor [21]. In any case, both processes should generate a larger signal with a 

linearly polarized pump. In the case of dissociative recombination, the final density of N2 )( 3 uC molecules depends 

on the density of 

2N , which is more effectively produced by linearly polarized laser in the laser regime of 1013 
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W/cm2 - 1015 W/cm2 [18, 19]. With the intersystem crossing mechanism, one expects a similar dependence on laser 

polarization, because the transition from the fundamental singlet state of N2 to an intermediate singlet state is more 

effective with linearly polarized laser pulses. So the question is why circularly polarized laser pulses become more 

efficient at higher laser intensity? 

 

An important difference between linear and circular laser polarization in gas plasma generation is the kinetic energy 
of free electrons remaining after the passage of the intense laser field [22, 23]. With linearly polarized laser pulses, 

free electrons are left with low kinetic energy because they experience alternative acceleration and deceleration by 

the laser field during each optical cycle of the pulse. By contrast, with a circularly polarized laser, electrons are 

always accelerated away from the molecular ion. As discussed below, free electrons acquire an average energy of ~ 

2Up at the end of the laser pulse, where 2

00

2 2 ImceU ep   is the ponderomotive energy of the electron in the 

laser field with , me, I, being the vacuum permittivity, the mass of the electron, the intensity and frequency of 
the laser field. Therefore, a large number of electrons with a kinetic energy around 2Up  ≥ 16.7 eV are produced 

inside a filament.  

 

The distribution of transverse electron kinetic energies can be predicted by semi-analytical laws: integration of 

Newton’s equations for electron motion leads to a transverse momentum                   
       , where       

denotes the vector potential at instant t and   
      denotes its counterpart when the electron is liberated, at rest. After the 

passage of the pulse,       vanishes. The transverse momentum becomes          , and the transverse kinetic 

energy reads              
    , where    indicates that the electron was liberated at instant    within the pulse. 

We can infer the vector potential by integration of             by using an analytical form for the electric field 
with a cosine envelope 

             for –T/2 < t < T/2 

For t < -T/2 and t > T/2                                                  (1) 

where denotes an arbitrary carrier envelope phase. The 
kinetic energy of an electron, born at time t0 when the electric field phase 

  00   tc , after acceleration by the pulse can therefore found to be  

.                                                                                             (2) 

Here 
2

0

2

0

2 4 mEeU p  is the ponderomotive 

potential. Therefore, all electrons generated between    and        with probability                     , 

where       denotes the electron density calculated from the rate equations and      denotes the total electron 

density generated by the pulse, will have a kinetic energy between          and            . We retrieve that the 

maximum kinetic energy of the electrons is 2Up for a circularly polarized pulse () when it is born at the peak of 
the field envelope (t = 0). A parametric representation of the distribution of kinetic energies is presented as a 

continuous curve in Fig. 4. In the case of linear laser polarization most electrons are left with energy below 1 eV, as 

shown in Fig.  4 (a). By contrast, an almost monoenergetic distribution around 16.7 eV is achieved for circular laser 

polarization (Fig. 4(b)) [24].  We also calculated the electron energy distribution after the passage of the laser pulses 

by numerical simulations. In the simulations, we assume that electrons are generated by optical field ionization of 

oxygen and nitrogen molecules, described by a set of coupled rate equations. At the intensity level considered, we 

also computed second ionization processes so as to accurately determine the fraction of oxygen and nitrogen ions 

which liberate a second electron and found them negligible. Liberated electrons are assumed at rest and are 

accelerated by the electromagnetic (Lorentz) force mainly in the polarization plane. The acceleration in the 

longitudinal (propagation) direction is negligible compared to the transverse acceleration. We calculated the 

classical motion of a set of electrons under the action of the Lorentz force and then performed statistics by weighting 
each electron by its probability to be liberated at a given instant during the pulse. The results of these numerical 

simulations are presented by the bars in Fig. (4) and agree very well with that of  the semi-analytical analysis. 

 

Electrons with high kinetic energy can populate excited states of N2 and 

2N  via a collision process. Process 

    
   

         
   

      populating the triplet molecular state opens up if the electron energy exceeds a 

rather sharp threshold energy of ~ 11 eV, with a cross section peaking at 14.5 eV with a value of 0.58 Å2 [25]. In a 
traditional nitrogen laser pumped by electric discharge, it is actually this inelastic collision that gives rise to 

population inversion between the uC 3  and  gB3 states [26]. In our case, the energetic electrons produced inside 
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the filament plasma with circularly polarized laser pulse lead to efficient population build-up in the uC 3 state, and 

thus stronger luminescence at 337 nm, as observed in Fig. 2(d) and Fig. 3(c). They experience collisions with neutral 

air molecules at frequency vc ~ 1012 Hz for standard temperature and pressure conditions. In the presence of 

abundant energetic free electrons, electron collision excitation of the excited ionic state uB2 is also possible through 

the process     eBNeXN ug 22

2

1

2   . The corresponding threshold electron energy is 18.75 eV with a 

maximum effective collision section of ~ 0.01 Å2 at [25, 27, 28].  With circularly polarized laser pulses of intensity I 

= 1.4 × 1014 W/cm², energetic electrons just reach the required energy.  

 

We have verified the interpretation of new collision-induced excitation routes by repeating at low air pressure the 

ellipticity measurements shown in Fig. 2. Low gas pressure effectively suppresses collisions and therefore is also 

expected to suppress the corresponding excitation routes. Result is shown in Fig. 5 for line at 337 nm at a gas 

pressure of 10 mbar and a laser pulse energy of 350 µJ. Since the propagation of the pulse is linear at such a low 

pressure, the intensity at the focus can be readily estimated from diffraction to be 1.45 × 1014 W/cm², of same order 

of magnitude as in a filament at normal pressure.  As can be seen, the response to ellipticity is the same as that 

observed at lower intensities (Fig. 2(a)) although the reason is different. At normal pressure, collisions are present, 
but the electron energy is insufficient to excite the molecules (Fig. 2(a)); at low pressure (Fig. 5), electrons have the 

required kinetic energy but collisions are suppressed. A similar result is obtained for line at 391nm when the laser 

pulse energy is varied between 250 and 500 µJ.  

 

In conclusion, we have demonstrated that the luminescence emitted by neutral and singly ionized N2 molecules 

inside femtosecond laser filaments in air depends strongly on the polarization state of the incident laser pulses. At 

lower laser pump energies, the predominance of the luminescence from both species with linearly polarized pump is 

simply explained by the higher optical field ionization rate that constitutes the prime excitation route. At higher laser 

intensity, new excitation routes become available, due to the presence of electrons with high kinetic energy left after 

the laser pulse. A collision-assisted mechanism populates the excited triplet state of N2 and the excited ionic 

molecular state of nitrogen directly from the ground state of neutral molecules. These findings are important for the 
understanding of the stimulated radiation from filaments and may find applications in remote sensing of electric 

field and THz radiation. We believe that these findings are not just restricted to laser filamentation process 

and they should intervene in other laser-gas interaction phenomenon, such as laser-induced gas 

breakdown and its relevant applications. 
 

 

References: 

 

1. A. Couairon, A. Mysyrowicz, Phys. Rep. 441, 47 (2007).   

2. S. L. Chin, S. A. Hosseini, W. Liu, Q. Luo, F. Théberge, N. Aközbek, A. Becker, V. P. Kandidov, O. G. 

Kosareva, and H. Schroeder, Can. J. Phys. 83, 863 (2005). 

3. A. Talebpour, S. Petit, S. L. Chin, Opt. Commun. 171, 285 (1999). 

4. F. Martin, R. Mawassi. F. Vidal, I. Gallimberti, D. Comtois, H. Pepin, J. C. Kieffer, H. P. Mercure, Appl. 

Spectrosc. 56, 1444 (2002). 

5. S. A. Hosseini, Q. Luo, B. Ferland, W. Liu, N. Aközbek, G. Roy, and S. L. Chin, Appl. Phys. B 77, 697 (2003). 

6. A. Filin, R. Compton, D. A. Romanov, and R. J. Levis, Phys. Rev. Lett. 102, 155004 (2009). 

7. L. Shi, W. Li, Y. Wang, X. Lu, L. Ding, and H. Zeng, Phys. Rev. Lett. 107, 095004 (2011).  

8. S. Xu, X. Sun, B. Zeng, W. Chu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, and S. L. Chin, Opt. Express 20, 299 
(2012). 

9. J. Liu, J. Dai, S. L. Chin, X.-C. Zhang, Nat. Photon. 4, 627 (2010). 

10. K. Sugiyama, T. Fujii, M. Miki, M. Yamaguchi, A. Zhidkov, E. Hotta, and K. Nemoto, Opt. Lett. 34, 2964 

(2009). 

11. A. Dogariu, J. B. Michael, M. O. Scully, and R. B. Miles, Science 331, 442 (2011). 

12. J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S. L. Chin, Y. Cheng, and Z. Xu,  Phys. Rev. A 84, 

051802(R) (2011). 

13. Q. Luo, W. Liu, and S. L. Chin, Appl. Phys. B 76, 337 (2003). 

14. D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S. L. Chin, and A. 

Baltuška,  Phys. Rev. A 86, 033831 (2012). 



5 

 

15. G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, and A. Mysyrowicz, Opt. Lett. 39, 1725 

(2014). 

16. Y. Liu, Y. Brelet, G. Point, A. Houard, and A. Mysyrowicz, Opt. Express, 21, 22791 (2013). 

17. S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard and A. Mysyrowicz, Opt. Express 22, 12750 (2014). 

18. A. Talebpour, A. Bandrauk, and S. L. Chin, in: L. F. Dimauro, R. R. Freeman, K. C. Kulander (Eds.), 

Multiphoton Processes, AIP, New York,  508 (2000).  
19. A. Becker, A. D. Bandrauk, and S. L. Chin, Chem. Phys. Let. 343, 345 (2001). 

20. H. L. Xu, A. Azarm, J. Bernhardt, Y. Kamali, and S. L. Chin, Chem. Phys. 360, 171 (2009).  

21. B. R. Arnold, S. Roberson, and P. M. Pellegrino, Chem. Phys. 405, 9 (2012). 

22. P. H. Bucksbaum, M. Bashkansky, R. R. Freeman and T. J. McIlrath, and L. F. DiMauro, Phys. Rev. Lett. 56, 

2590 (1986). 

23. P. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev. Lett. 62, 1259 (1989). 

24. See our supplementary materials.   

25. Y. Itikawa, J. Phys. Chem. Ref. Data. 35, 31 (2006). 

26. R. S. Kunabenchi, M. R. Gorbal, and M. I. Savadatt, Prog. Quantum Electron. 9, 259 (1984). 

27. D. H. Crandall, et al, Phys. Rev. A 9, 2545 (1974).  

28. O. Nagy, Chem. Phys. 286, 109 (2003). 

 

 

 
 

 

 

 

 

 

Figure captions: 

 

Fig. 1. Luminescence spectrum of the air plasma filaments for linearly and circularly polarized laser pulses of 250 

J (a) and 8.3 mJ (b). In (a), the signal obtained with circular laser polarization is multiplied by a factor of 2 for 
visibility. The measurements in (a) and (b) were performed at z = - 2 mm and - 45 mm respectively (see Fig. 3(a)). 

The vibration quantum numbers related to the second positive system of the N2 and the first negative system of 

2N  

are denoted.  

 

Fig. 2. Luminescence at 337 nm ((a)-(d)) and 391 nm ((a')-(d')) as a function of the rotation angle of the quarter- 

wave plate. The incident pulse energy was 250 J, 600 J, 2.7 mJ and 10 mJ for (a) and (a'), (b) and (b'), (c) and (c'), 
(d) and (d'), respectively. All the measurements were performed around the center of the filament. Angle 0º 

corresponds to linearly polarized light. 

 

Fig. 3. Intensity of the 337 nm ((a)-(c)) and the 391 nm ((a')-(c')) luminescence signal measured along the filaments 

for linearly and circularly polarized laser pulses. The incident pulse energy was 250 J for (a) and (a'), 1.1 mJ for (b) 
and (b'), and 10 mJ for (c) and (c'). 

 

Fig. 4. Calculated electron energy distribution in the case of linearly (a) and circularly (b) polarized laser pulses. The 

laser intensity used in the calculation was 1.4 × 1014 W/cm2. The red lines represent analytic results and the bars 
numerical simulation. 

 

Fig. 5. Luminescence at 337 nm as a function of the rotation angle of the quarter-wave plate for air pressure of 10 

mbar. The incident pulse energy was 350 J and the calculated laser intensity is 1.45× 1014 W/cm2. 
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Figure 1 
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Figure 2 
 

 
 

 

 

 

 

 

 

 

 

Figure 3 
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Figure 4  
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