Local minimization algorithms for dynamic programming equations - ENSTA Paris - École nationale supérieure de techniques avancées Paris Access content directly
Journal Articles SIAM Journal on Scientific Computing Year : 2016

Local minimization algorithms for dynamic programming equations

Abstract

The numerical realization of the dynamic programming principle for continuous-time optimal control leads to nonlinear Hamilton-Jacobi-Bellman equations which require the minimization of a nonlinear mapping over the set of admissible controls. This minimization is often performed by comparison over a finite number of elements of the control set. In this paper we demonstrate the importance of an accurate realization of these minimization problems and propose algorithms by which this can be achieved effectively. The considered class of equations includes nonsmooth control problems with l1-penalization which lead to sparse controls.
Fichier principal
Vignette du fichier
KaliseKroenerKunisch2015.pdf (4.04 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01120450 , version 1 (25-02-2015)

Identifiers

  • HAL Id : hal-01120450 , version 1

Cite

Dante Kalise, Axel Kröner, Karl Kunisch. Local minimization algorithms for dynamic programming equations . SIAM Journal on Scientific Computing, 2016, 38 (3). ⟨hal-01120450⟩
577 View
165 Download

Share

Gmail Facebook Twitter LinkedIn More