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Modal approach for nonlinear vibrations of damped impacted
plates: application to sound synthesis of gongs and cymbals

M. Ducceschi, C. Touzé∗

Unité de Mécanique (UME), ENSTA-ParisTech, 828 Boulevard des Maréchaux, 91762 Palaiseau Cedex, France

Abstract

This paper presents a modal, time-domain scheme for the nonlinear vibrations of perfect and
imperfect plates. The scheme can take into account a large number of degrees-of-freedom and
is energy-conserving. The targeted application is the sound synthesis of cymbals and gong-like
musical instruments, which are known for displaying a strongly nonlinear vibrating behaviour.
This behaviour is typical of a wave turbulence regime, in which the wide-band spectrum of
excited modes is observable in the form of an energy cascade. The modal method is selected
for its versatility in handling complex damping laws that can be implemented easily by select-
ing appropriate damping values in each one of the modal equations. In the first part of the
paper, the modal method is explained in its generality, and it will be seen that the method is
valid for plates with arbitrary geometry and boundary conditions as long as the eigenmodes
are known. Secondly, a time-integration, energy-conserving scheme for perfect and imperfect
plates is presented, and implementation comments are given in order to treat efficiently the
high-dimensionality of the resulting dynamical system. The scheme is run with appropriate
parameters in order to produce sound samples. A simple impact law is considered for the exci-
tation, whereas the flexibility of the method is highlighted by showing simulations for free-edge
circular plates and simply-supported rectangular plates, together with various damping laws.

Keywords: nonlinear vibrations, thin plate and shells, modal synthesis, conservative scheme

1. Introduction

Geometrically nonlinear vibrations of plates can exhibit a very rich and complex phe-
nomenology when the vibration amplitude is larger than the thickness [1, 2, 3]. In a strongly
nonlinear range, a wave turbulence regime can be excited with thousands of modes involved
in an energy cascade from large to small wavelengths [4, 5, 6, 7]. The energy cascade may be
produced by shaking a large plate vigorously: this technique was used in the past in theaters to
simulate the sound of thunders. Striking a large gong (in particular the Chinese tam-tam) results
in a build-up of energy to the high-frequency range occurring a few milliseconds after the strike
[8]: the bright, shimmering sound produced is another perceptual trace of the energy cascade
[9, 8, 10] which is the phenomenon at the core of the wave turbulence theory.

The goal of the work presented here is the time-domain resolution of strongly nonlinear
vibrations of plates, and the targeted application is the sound synthesis of gongs and cymbal-
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like instruments. The scheme is constructed in order to meet a number of salient features.
Firstly, the numerical setup should be capable of simulating a complex damping mechanism,
as loss effects are key in order to produce realistic sounds. Secondly, the scheme should be
capable of calculating the linear (eigenfrequencies) as well as the nonlinear parameters with a
high degree of accuracy. Finally, the method should be able to take into account thousands of
modes interacting together in a strongly nonlinear regime.

From the numerical point of view, the dynamics is stiff and needs ad-hoc time-stepping
methods with robust stability. Within this field, finite difference methods have already been
used with success, see e.g. [11, 12, 3]. However, temporal models for damping laws are difficult
to implement in a finite-difference scheme, so that one usually resorts to a simplified loss model
within this framework. Moreover, convergence of the eigenfrequencies and nonlinear terms is
slow, so that, for increased accuracy, one needs to use very refined grids. A higher accuracy,
in turn, is obtained at the expense of an increased computational burden that could quickly get
out of reach. Another scheme has been developed in [13], based on a simplified shell model
together with a modal approach and cubature schemes aimed at improving the computational
time; despite being able to produce nonlinear sounds, such schemes do not produce a strongly
nonlinear regime with an energy cascade, which - as it was pointed out - is the most desirable
feature of gong and cymbals from an auditory perspective.

The aim of the present paper is to show that a modal method can be used to simulate effi-
ciently the complex vibratory response of vibrating plates at large amplitudes. One advantage
of the proposed method relies in the fact that modal damping can be tuned at will to fit specific
damping laws (obtained from measurements or otherwise). As the perception of losses is key
in order to retrieve realistic sounds, this feature is essential in the choice of the method. The
equations to be solved are the von Kármán equations for plates. The numerical challenge in this
context resides in the very large number of modes involved in the vibrations. A key point in
the proposed method is to use a conservative scheme for the time integration, where stability is
obtained as a direct consequence of energy conservation.

The paper is organized as follows. In section 2, the von Kármán plate model is recalled.
Then the modal approach is developed in a general framework, without referring to a particular
geometry, nor to specific boundary conditions. It is only assumed that the eigenproblem has
been solved and that the modes are known in some manner (by analytic or numerical methods).
The conservative scheme for the resulting set of Ordinary Differential Equations (ODEs) is then
given, and it is shown that discrete numerical energy is conserved. Section 3 shows how the
method can be applied to synthesize the sound of gongs and cymbals. The cases of two plates
with different geometries and boundary conditions are proposed as illustrative examples. The
first of such cases is that of a circular plate with a free edge, for which the modes are analytic.
The second case is that of a rectangular plate with simply supported, in-plane movable edges:
this is a more difficult case because the in-plane modes do not have an analytic solution and thus
a numerical strategy is required. The versatility of the method is illustrated by synthesizing real-
istic sounds of gongs and cymbal-like instruments. The method, being completely general, can
be extended to any other type of boundary conditions and geometry for plates whose nonlinear
dynamics is described by the von Kármán equations. Thanks to this method - with reasonable
computational resources - simulations of strongly nonlinear regimes with up to a thousand in-
teracting modes are possible. It is hoped that this result will give new impetus to modal methods
for time-domain simulations in nonlinear regimes.
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2. Models and methods

2.1. The von Kármán equations for perfect plates
The model equations for strongly nonlinear vibrations of plates considered in this paper

are the von Kármán equations [14, 15, 16, 17]. The basic assumptions for such system can be
found in many textbooks and articles, see e.g. [18, 19, 17], and they are briefly recalled here:
the material of the plate is supposed to behave according to the linear elasticity theory; the
kinematics is of Kirchoff-Love type and thus transverse shear is neglected; the in-plane Green-
Lagrange strain tensor is truncated so to keep a single second-order correction to the linear
part. When in-plane external forcing is not present, an Airy stress function can be used in order
to describe longitudinal motions. The equations of motion are then expressed in terms of the
transverse displacement w(x, t) and the Airy stress function F(x, t), where x denotes the (two-
dimensional) space variable and t the time, and are often referred to as the Föppl-von Kármán
equations [18]. They read for perfect isotropic plates:

ρhẅ + D∆∆w = L(w, F) + p(x, t) − R(ẇ), (1a)

∆∆F = −Eh
2
L(w,w), (1b)

where ρ is the material volume density, h the plate thickness, and D stands for flexural rigidity:
D = Eh3/12(1 − ν2), with E and ν respectively Young modulus and Poisson ratio. ∆ represents
the two-dimensional Laplacian operator, while p(x, t) stands for the normal external forcing,
and R(ẇ) is a generic expression for the viscous damping depending on the velocity field. Both
p and R functions will be given when needed. The operatorL is generally referred to as the ”von
Kármán operator” or ”Monge-Ampère form” in the literature [17, 20] and may be expressed in
intrinsic coordinates, for two functions f (x) and g(x), as:

L( f , g) = ∆ f ∆g − ∇∇ f : ∇∇g, (2)

where : denotes the doubly contracted product of two tensors.

2.2. Modal approach
In this section the main steps of the discretization, using the linear normal modes as basis

functions in the Galerkin procedure, are briefly recalled. The derivation is provided in a general
manner, hence no specific boundary conditions are given and the explicit form of the eigen-
functions are not stated. It is only assumed that the linear problem is solved by a given method,
analytical or numerical. Let {Φk(x)}k≥1 be the eigenmodes of the transverse displacement. These
functions are the solutions of the Sturm-Liouville eigenvalue problem:

∆∆Φk(x) =
ρh
D
ω2

kΦk(x), (3)

together with the associated boundary conditions. In Eq. (3), ωk stands for the kth radian eigen-
frequency. The linear modes are defined up to a constant of normalisation that can be chosen
arbitrarily. For the sake of generality, S w denotes the constant of normalisation of the function
Φ̄ = S w

Φk(x)
‖Φk‖ . The norm is obtained from a scalar product < α, β > between two functions α(x)

and β(x), defined as

< α, β >=

∫
S
α β dS −→ ‖Φk‖2 =< Φk,Φk >, (4)
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where S represents the area of the plate. The eigenmodes for the Airy stress function are also
considered and denoted as {Ψk(x)}k≥1. They are solutions of the following eigenvalue problem:

∆∆Ψk(x) = ζ4
k Ψk(x), (5)

together with the associated boundary conditions for F. The linear modes so defined are or-
thogonal with respect to the scalar product, and are therefore a suitable function basis [21].
Orthogonality between two functions Λm(x, y),Λn(x, y) is expressed as

< Λm,Λn >= δm,n‖Λm‖2, (6)

where δm,n is Kronecker’s delta.
The Partial Differential Equations (1) for the perfect plate are discretized by expanding the

two unknowns w and F along their respective eigenmodes

w(x, t) = S w

NΦ∑
k=1

Φk(x)
‖Φk‖ qk(t), (7a)

F(x, t) = S F

NΨ∑
k=1

Ψk(x)
‖Ψk‖ ηk(t), (7b)

where qk(t) and ηk(t) represent respectively the modal transverse displacement and the modal
coordinate for the Airy stress function. The integers NΦ and NΨ represent respectively the num-
ber of transverse and in-plane modes that will be kept in the truncations to ensure convergence.
Using a standard Galerkin procedure, Eqs. (7) are first introduced in Eq. (1b), which is then mul-
tiplied by Ψk. Integrating over the surface of the plate and using the orthogonality relationship
one obtains

ηk = − Eh
2ζ4

k

S 2
w

S F

NΦ∑
i, j

qiq j

∫
S

ΨkL(Φi,Φ j)dS

‖Ψk‖ ‖Φi‖ ‖Φ j‖ . (8)

The coefficient appearing in Eq. (8) can be rewritten as

Hk
i, j =

∫
S

ΨkL(Φi,Φ j)dS

‖Ψk‖ ‖Φi‖ ‖Φ j‖ , (9)

and expresses the nonlinear coupling between in-plane and transverse motions. Following the
same procedure, Eqs. (7) are introduced in Eq. (1a). Multiplying by Φs and integrating over the
surface leads to

q̈s + ω2
sqs + 2ξsωsq̇s =

S F

ρh

NΦ∑
i=1

NΨ∑
j=1

qiη j

∫
S

ΦsL(Φi,Ψ j)dS

‖Φs‖ ‖Φi‖ ‖Ψ j‖ + ps(t). (10)

The coefficient appearing in Eq. (10) is rewritten as

E s
i, j =

∫
S

ΦsL(Φi,Ψ j)dS

‖Φs‖ ‖Φi‖ ‖Ψ j‖ . (11)

Note that in Eq. (10), the modal external force has been expressed as

ps(t) =
1

ρhS w‖Φs‖
∫

S
p(x, t)Φs(x)dS . (12)
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Note also that a modal damping term has been introduced as 2ξsωsq̇s in Eq. (10). This modal
damping ratio can be tuned at will by selecting appropriate values for each ξs. Such values may
be derived from experiments, see e.g. [22, 23], and thus they will be used in the remainder of
this article for describing losses in the system.

Grouping together Eqs. (10) and (8) gives the temporal system of Ordinary Differential
Equations (ODEs) to solve as

q̈s + ω2
sqs + 2ξsωsq̇s =

S F

ρh

NΦ∑
k=1

NΨ∑
l=1

E s
k,lqkηl + ps(t), (13a)

ηl = − Eh
2ζ4

l

S 2
w

S F

NΦ∑
m,n

Hl
m,nqmqn. (13b)

Elimination of the auxiliary variable ηl from Eqs.(13) is generally performed (see e.g. [24, 15,
25, 26, 2]) by substituting (13b) in (13a), resulting in a closed system for the transverse modal
displacements

q̈s + ω2
sqs + 2ξsωsq̇s = −ES 2

w

ρ

NΦ∑
k,m,n

 NΨ∑
l=1

Hl
m,nE s

k,l

2ζ4
l

 qkqmqn + ps(t), (14)

where the fourth-order tensor Γs
k,m,n may be introduced [17, 27] as

Γs
k,m,n =

NΨ∑
l=1

Hl
m,nE s

k,l

2ζ4
l

. (15)

In the present study, both the quadratic and cubic formulations will be used: the quadratic (q, η)
formulation expressed in Eqs. (13) will be the basis for the numerical scheme shown in section
2.5; however, in order to assess the accuracy of the scheme, convergence of a few values of the
cubic coupling coefficients Γs

k,m,n appearing in will be discussed in some detail in later sections.

2.3. Symmetry properties
This section is intended to recall some important symmetry properties of the presented ten-

sors (Hk
i, j, E

l
m,n). These properties will be of some importance in the remainder of the paper, as

they enable the derivation of the stable conservative scheme. Moreover, the same properties can
be employed in order to reduce the memory and computational burden of the scheme.

The first obvious symmetry is for Hk
i, j, and states that

Hk
i, j = Hk

j,i, (16)

as a direct consequence of the bilinear symmetry of the von Kármán operator L(·, ·).
The second property links Hk

i, j and El
m,n using the so-called triple self-adjointness property

(TSA) of the von Kármán operator L(·, ·), fully studied in [17, 28]. The TSA stems from the
following identity, for three given functions f , g, h,∫

S
fL(g, h)dS =

∫
S
L( f , g)hdS + C, (17)

where C is a contour integral, the complete expression of which may be found in [17]. In most
cases, this contour integral C vanishes, giving rise to a straightforward relationship between the
coefficients as

El
m,n = Hn

m,l. (18)
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An exhaustive list where the contour integral vanishes, depending on the classical boundary
conditions, is given in [17]. Note that this property is assumed to be fulfilled in the remainder
of the paper; as a consequence, the conservative scheme presented after cannot be applied to
the cases for which (18) does not hold.

2.4. Continuous and discrete modal energies
In this section, the kinetic and potential energies for the von Kármán thin plate equations

are recalled, as they are needed for identification when deriving the conservative scheme. The
continuous expressions of the energies can be found in [15, 29, 3, 28] and read

T =

∫
S

ρh
2

ẇ2 dS , (19a)

V =

∫
S

D
2

(∆w)2 dS , (19b)

U =

∫
S

1
2Eh

(∆F)2 dS , (19c)

for, respectively, the kinetic energy T , the flexural stored energy V and the membrane energy U.
Note that the in-plane energy term U has been here expressed with respect to the Airy stress
function F.

The modal counterparts of the energies are derived by introducing the modal expansions (7)
and using the properties of the eigenmodes together with integration by parts. One finally gets:

T =
ρh
2

S 2
w

NΦ∑
k=1

q̇2
k(t), (20a)

V =
ρh
2

S 2
w

NΦ∑
k=1

ω2
kq2

k(t), (20b)

U =
S 2

F

2Eh

NΨ∑
k=1

ζ4
kη

2
k(t). (20c)

When damping and forcing are not considered, the total energy E = T + V + U is conserved,
and reads:

d
dt

(T + V + U) = 0. (21)

2.5. Energy-conserving scheme
In this section, a stable scheme for the perfect plate is presented. This scheme is taken

from [29], where a full finite-difference method for the von Kármán equations is presented.
The temporal part of such scheme is here applied to the modal equations. The conservation of
energy for the modal equations and its specific arguments are here presented for the first time.
The scheme is applicable for the undamped and unforced perfect plate in the modal description
given by Eqs. (13), i.e. in the quadratic (q, η) formulation. Let us first introduce a list of discrete
time operators acting on a state vector q(n) defined at time step n. The backward and forward
shift operators are, respectively,

et−q(n) = q(n − 1); et+q(n) = q(n + 1). (22)
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Backward, centered, forward approximations to first time derivatives are defined as

δt− ≡ 1
k

(1 − et−); δt· ≡ 1
2k

(et+ − et−); δt+ ≡ 1
k

(et+ − 1), (23)

where k = 1/ fS refers to the timestep, fS being the sampling frequency. An approximation to
the second time derivative can be constructed by combining the previous operators,

δtt ≡ δt+δt− =
1
k2 (et+ − 2 + et−). (24)

Backward, centered, forward averaging operators are introduced as

µt− ≡ 1
2

(1 + et−); µt· ≡ 1
2

(et+ + et−); µt+ ≡ 1
2

(et+ + 1). (25)

The temporal conservative scheme for the case of the perfect, undamped and unforced plate
reads

δttqs(n) + ω2
sqs(n) =

S F

ρh

NΦ∑
k=1

NΨ∑
l=1

E s
k,lqk(n)[µt·ηl(n)]; (26a)

µt−ηl(n) = − Eh
2ζ4

l

S 2
w

S F

NΦ∑
i, j=1

Hl
i, jqi(n)[et−q j(n)]. (26b)

This scheme is second-order accurate and implicit: due to the presence of the centered averaging
operator in Eq. (26a), the coefficient multiplying the vector q(n + 1) depends on the timestep.

Let us now demonstrate that the proposed scheme is energy-conserving. The idea is to
retrieve a counterpart of Eq. (21) at the discrete level. To that purpose, Eq. (26a) is multiplied
by ρh δt· qs(n) and then summed over the index s. In addition, Eq. (26b) is multiplied by δt+, so
that

ρh
NΦ∑
s=1

(δt·qs(n)) δtt qs(n) + ρh
NΦ∑
s=1

(δt·qs(n))ω2
sqs(n) = S F

NΦ∑
k,s=1

NΨ∑
l=1

E s
k,l (δt·qs(n)) qk(n)(µt· ηl(n))

(27a)

µt− (δt+ηl(n)) = − EhS 2
w

2ζ4
l S F

NΦ∑
k,s=1

1
k

Hl
k,s (qk(n + 1)qs(n) − qk(n)qs(n − 1)) (27b)

Now, owing to the symmetry property of the H tensor, see Eq. (16), the indices of the first term
in the right hand side of Eq. (27b) can be swapped to give

1
k

Hl
k,s (qk(n + 1)qs(n) − qk(n)qs(n − 1)) = 2Hl

k,sqk(n)δt·qs(n) (28)

Hence, Eq.(27b) can be rewritten as

− ζ
4
l S F

EhS 2
w
µt− (δt+ηl(n)) =

NΦ∑
k,s=1

Hl
k,sqk(n)δt·qs(n) (29)
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Owing to the triple self-adjointness property, one may use Eq. (18) stating that E s
k,l = Hl

k,s, and
insert the left hand side of Eq. (29) into the right hand side of Eq. (27a), yielding

S F

NΦ∑
k,s=1

NΨ∑
l=1

Hl
k,s(δt·qs(n))qk(n)(µt·ηl(n))) = − S 2

F

EhS 2
w

NΨ∑
l=1

ζ4
l [µt−(δt+ηl(n))](µt·ηl(n)),

= − S 2
F

2EhS 2
w
δt+

NΨ∑
l=1

ζ4
l µt−(ηl(n)2). (30)

The left hand side of Eq. (27a) can be rewritten as

ρh
NΦ∑
s=1

(δt·qs(n)) δtt qs(n) +ρh
NΦ∑
s=1

(δt·qs(n))ω2
sqs(n) =

ρh
2
δt+

NΦ∑
s=1

(
(δt−qs(n))2 + ω2

sqs(n) (et−qs(n))
)

(31)
Putting together Eq. (30) and (31) gives

δt+

 NΦ∑
s=1

S 2
w
ρh
2

[
(δt−qs(n))2 + ω2

sqs(n) (et−qs(n))
]

+
S 2

F

2Eh

NΨ∑
l=1

ζ4
l (µt− (ηl(n)ηl(n)))

 = 0. (32)

The discrete counterparts of kinetic and potential energies defined by Eqs. (19) can now be
identifed from Eq. (32) as

t =

NΦ∑
m=1

τm(n) =
ρh
2

S 2
w

NΦ∑
m=1

(δt−qm(n))2 , (33a)

v =

NΦ∑
m=1

νm(n) =
ρh
2

S 2
w

NΦ∑
m=1

ω2
mqm(n) (et−qm(n)) , (33b)

u =

NΨ∑
l=1

υl(n) =
S 2

F

2Eh

NΨ∑
l=1

ζ4
l (µt− (ηl(n)ηl(n))) , (33c)

where the modal contributions to kinetic and potential energies, τm(n), νm(n) and υl(n) have also
been introduced. With these notations, Eq. (32) is a discrete counterpart to Eq. (21), as it reads
δt+(t + v + u) = 0.

To conclude the proof, let us show that the discrete energy is positive definite. The in-plane
discrete potential energy u is positive definite, being the sum of squared numbers. Let us now
consider the remaining term, ε l

m(n) = τm(n)+νm(n), which is the contribution to the linear energy
of the transverse mode m at the time n. Developing the operators in the definition of ε l

m(n) gives

ε l
m(n) =

ρh
2

S 2
w

(
qm(n)qm(n) + qm(n − 1)qm(n − 1) − 2qm(n)qm(n − 1)

k2 + ω2
m qm(n) qm(n − 1)

)
.

(34)
This last expression can be written as the equation of a conic in the x−y space, where x = qm(n)
and y = qm(n − 1). This gives

x2 + y2 + 2αxy =
2k2ε l

m(n)
ρhS 2

w
, with α =

k2ω2
m

2
− 1. (35)
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A closed conic (ellipse or circle) is obtained when |α| < 1, in which case one obtains the two
following relationships:

2k2ε l
m(n)

ρhS 2
w

> 0 (36)

|x|, |y| ≤
√

2k2ε l
m(n)

ρh(1 − α2)S 2
w
. (37)

Eq. (36) shows that ε l
m(n) > 0, so that the discrete energies introduced are positive definite.

Eq. (37) is the bound on the solution size. Note that the stability condition |α| < 1 is obtained
when

k <
2
ωm

, (38)

which gives the bound on the step size k for ensuring stability. This relationship must be fulfilled
for all m=1, ... NΦ; thus the most restrictive case is obtained when m = NΦ. Hence the associated
sampling rate fS = 1/k is directly related to the largest eigenfrequency retained in the truncation:
fNΦ

= ωNΦ
/2π, through the simple relationship: fS > π fNΦ

. In practice, for a given modal
truncation at NΦ the minimum step size is immediately calculated. The associated sampling
frequency appears to be small, as only 3 points per period discretize the highest frequency of
the system. This is another appealing property of the energy-conserving scheme. Note finally
that the conservative scheme has been introduced here for the case of perfect plates. The scheme
is extended to the case of the von Kármán plate equations with a static, geometric imperfection,
in Appendix A.
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Figure 1: Numerical demonstration of energy conservation. Rectangular undamped plate of lateral dimensions
Lx=0.4 m, Ly=0.6 m, thickness h=1 mm, excited by a Dirac delta function of amplitude 1000 N (duration of one
sample). (a) : displacement of the plate at x0=[0.51 ∗ Lx0.11 ∗ Ly], normalized by the thickness. (b) black :
total discrete energy h = t + v + u, blue : kinetic energy t, magenta : transverse potential energy v, red : in-plane
potential energy u.
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Figure 2: Impact force model used for the simulations, centered at t0=50 ms. Soft impact with Twid = 5 ms, pm =

20 N, hard impact with Twid = 1 ms and pm = 100 N.
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Figure 1: Numerical demonstration of energy conservation. Rectangular undamped plate of lateral dimensions
Lx=0.4 m, Ly=0.6 m, thickness h=1 mm, excited by a Dirac delta function of amplitude 1000 N (duration of one
sample). (a) : displacement of the plate at x0=[0.51Lx 0.11Ly], normalized by the thickness. (b) Energies. The
black continuous and constant thin line is the total discrete energy h = t + v + u. Blue thin line (black in BW
printing): kinetic energy t, magenta thin oscillating line (grey in BW printing) : flexural stored energy v. The red
thin line oscillating near 0 is the membrane (in-plane) energy u.

The conservation of energy is shown on a particular example and illustrated in Fig. 1. A
rectangular plate of lateral dimensions Lx=0.4 m, Ly=0.6 m, thickness h=1 mm, and made of
steel with material parameters E=200 GPa, ν=0.3 and density ρ=7860 kg.m−3 is selected. The
boundary conditions are simply supported for the transverse motions and free for the in-plane
motions. This particular case will be used again in section 3.3 where more details will be
given on the computational framework for the eigenmodes. For this illustrative example, the
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plate is undamped and excited by a Dirac delta function in space and time, located at excita-
tion point xin=[0.45Lx 0.45Ly], and with an amplitude of 1000 N. The number of transverse
modes retained for the simulation is NΦ=100, and NΨ=200 for the in-plane modes. The eigen-
frequency of the 100th transverse mode is 1400 Hz, and the minimum sampling rate according
to Eq. (38) is 4400 Hz. The sampling frequency has been selected as fS = 10000 Hz for the
simulation. With that set-up, computation of the H coefficients lasts 16 seconds while comput-
ing one second of simulation lasts 55 seconds. Fig. 1(a) shows the output displacement at point
x0=[0.51Lx 0.11Ly], which is of the order of the thickness h so that geometric nonlinearities
are excited. Fig. 1(b) shows the three components t, v, u of the energy and the sum is found to
be perfectly conserved up to machine accuracy.

2.6. Note on implementation details
Now that the theoretical aspects of the modal approach have been presented, it is worth

outlining a brief discussion regarding practical implementation details. As a rule of thumb,
one should implement the modal code in two parts, the first being the offline calculation of
the eigenmodes and coupling coefficients, and the second being the actual time integration. It
is worth stressing the fact that circular plates and rectangular plates of the same aspect ratio
have the same eigenmodes and coupling coefficients (up to a multiplicative constant) and so the
offline calculation can be done once and for all for a whole family of plates.
A second observation considers the memory requirements for the fourth-order coefficient tensor
Γs

n,p,q. Because the simulations comprise usually a large number of modes (say, NΦ ∼ 500), the
physical memory occupied by the tensor is enormous (for 5004 double precision entries, this is
of the order of 500Gb). This problem can be circumvented in two ways:

• by making use of the symmetry properties detailed in section 2.3, which yield families
of indices (s, n, p, q) which correspond to the same numerical value. This value can be
calculated once and applied to the whole family;

• by storing the sole tensor Hk
i, j of considerable smaller size.

The latter choice is particularly useful for memory savings: with NΦ = 500, NΨ = 200, a
double-precision tensor file occupies about 0.4Gb of physical memory. Note that, when using a
numerical computing environment such as Matlab, nested loops should be avoided at all times,
and replaced by convenient tensor multiplications. Matlab implementation of the modal code
are possible and yield reasonable calculation times, as a few examples in the next section will
demonstrate. In particular, products appearing in e.g. the right-hand sides of Eqs. (26a)-(26b)
can be vectorized with proper matrix representations, so that no loops are needed to compute
them, see [28] for more details.

3. Applications to sound synthesis of cymbal and gong-like instruments

This section is concerned with application of the conservative modal scheme to the case of
damped impacted plates, with the purpose of synthesizing the sound of gongs and cymbal-like
instruments. The performance of the method will be highlighted by demonstrating its ability
in producing strongly nonlinear dynamics with a large number of modes involved in a regime
of wave turbulence. Two different cases will be shown: a circular plate with a free edge, and a
rectangular plate with simply supported and in-plane movable edges. First, the excitation force
used for both simulation set-ups is briefly explained.
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3.1. Excitation
The excitation is assumed to represent the case of an impact (such that of a mallet in the

case of the gong or a drumstick in the case of a cymbal) on a given point x0 on the surface of
the plate. In the simplest case, the force model is in the form of a pointwise contact

p(x, t) = δ(x − x0)g(t) (39)

together with a temporal distribution having the form of a raised cosine [11]:

g(t) =

{ pm
2 [1 + cos (π(t − t0)/Twid)] if |t − t0| ≤ Twid;

0 if |t − t0| > Twid.
(40)
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Figure 1: Numerical demonstration of energy conservation. Rectangular undamped plate of lateral dimensions
Lx=0.4 m, Ly=0.6 m, thickness h=1 mm, excited by a Dirac delta function of amplitude 1000 N (duration of one
sample). (a) : displacement of the plate at x0=[0.51 ∗ Lx0.11 ∗ Ly], normalized by the thickness. (b) black :
total discrete energy h = t + v + u, blue : kinetic energy t, magenta : transverse potential energy v, red : in-plane
potential energy u.
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Figure 2: Impact force model used for the simulations, centered at t0=50 ms. Soft impact with Twid = 5 ms, pm =

20 N, hard impact with Twid = 1 ms and pm = 100 N.
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for (a) p=846, axisymmetric mode (0,18); (b) p=715, mode (50,0); (c) p=881, mode (24,8).

1

Figure 2: Impact force model used for the simulations, centered at t0=50 ms. Blue line: soft impact with Twid = 5
ms, pm = 20 N. Black line : hard impact with Twid = 1 ms and pm = 100 N.

The temporal distribution is represented in Fig. 2. Two input parameters can be selected
so as to mimic the force interaction produced by the impact of a drumstick (hard impact with a
short time interaction of the order of 1 ms) or a mallet (soft impact with a longer time interaction
of the order of 5-10 ms): half the interaction time Twid, and the maximum of the force amplitude
pm. Fig. 2 shows two different examples for a rather soft impact (Twid = 5 ms, pm = 20 N), and
a hard one (Twid = 1 ms, pm = 100 N).

3.2. A circular plate with a free edge
3.2.1. Geometry and Boundary conditions

A circular plate of radius a and thickness h, with a free edge, is first considered. The
boundary conditions then read, for the two unknowns w(r, θ, t) and F(r, θ, t) [25]:

∀t, ∀θ ∈ [0, 2π], w,rr +
ν

a
w,r +

ν

a2 w,θθ = 0 , at r = a, (41a)

w,rrr +
1
a

w,rr − 1
a2 w,r +

2 − ν
a2 w,rθθ − 3 − ν

a3 w,θθ = 0 , at r = a, (41b)

F,r +
1
a

F,θθ = 0 , F,rθ +
1
a

F,θ = 0 , at r = a. (41c)
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Besides the advantage of simulating a geometry which is close to that of a gong or a cymbal,
there are two mathematical advantages of the circular geometry with a free edge. First the
eigenmodes for both the transverse displacement and the Airy stress function are analytic, and
can thus be easily tabulated in order to compute the nonlinear coupling coefficients Hp

i, j. The
eigenfunctions are combinations of Bessel functions. They are given in [25], and recalled in
Appendix B for the sake of completeness. The eigenfunctions are here denoted by either a
single integer number p - sorting the frequencies from small to large - or by a pair (k, n), where
k denotes the number of nodal diameters and n the number of nodal circles. As it is usual with
circular symmetry, asymmetric modes with k , 0 are degenerated so that two eigenvectors are
found for the same eigenfrequency. The second advantage is that the von Kármán equations can
be made nondimensional with respect to the radius a and thickness h, following e.g. [25]. Hence
all the data for the model (eigenfrequencies, coupling coefficients) can be computed once and
for all, since changing the radius or the thickness does not change the nondimensional equations.
This case is very different from that of a rectangular plate for instance, where the aspect ratio
between the lengths is a parameter that appears in the nondimensional equations. One can take
advantage of these two specific features in order to greatly simplify the implementation details
and speed up the calculations.

3.2.2. Coupling coefficients
For the circular plate, eigenfrequencies for both the transverse and in-plane problems are

analytic so that the numerical values of {ωk, ζp}k,p≥1 used to feed the model can be considered
exact. In the truncation process, the number of in-plane modes NΨ should be evaluated by
looking at the convergence of the cubic coupling coefficient Γ

p
p,p,p defined in Eq. (15), see e.g.

[25, 27, 30]. As explained in [25], some specific rules exist, so that, for a given transverse mode
p, only a few in-plane modes participate with a non-vanishing contribution to the summation in
Eq. (15). The rules are as follows:

• For a purely axisymmetric mode Φ(0,n), only the axisymmetric in-plane modes {Ψ(0,i)}i≥1

participate to the summation.

• For an asymmetric mode Φ(k,n) with k , 0, then the coupling involve only axisymmetric
in-plane modes {Ψ(0,i)}i≥1 as well as asymmetric in-plane modes having twice the number
of nodal diameters {Ψ(2k,i)}i≥1.

Hence for a given mode p, the convergence of the summation for Γ
p
p,p,p is achieved within a

small subset of all the possible in-plane modes. Let us denote by Nconv
Ψ

the cardinal of this
subset of admissible modes. The convergence of three coefficients Γ

p
p,p,p is shown in Fig. 3, for

three different modes of high frequencies. As simulations with a thousand modes are in view,
the convergence of high-frequency modes have been selected for illustration. An axisymmetric
mode with a large number of nodal circle, mode (0,18) has been selected together with a purely
asymmetric one, mode (50,0), and a mixed mode : (24,8). Table 1 recalls the values of the first
three modes and shows the order of appearance of the selected ones for illustration (nondimen-
sional numbers are given for all numerical values). For asymmetric modes (k, n) with k ,0, the
label p takes into account the two preferential configurations.

Fig. 3 reveals that, within the subset of admissible in-plane modes, the convergence is rather
fast so that a number of 60 in-plane modes is enough to ensure the good convergence of all
nonlinear coupling coefficients up to the 1000th transverse mode. For the purely axisymmetric
modes, a simple rule of thumb is applicable, since the convergence is always obtained as soon

12



(a)

0 0.2 0.4 0.6 0.8 1
−1

0

1

t [s]

w
/h

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

t [s]

E
ne

rg
y

[J
]

Figure 1: Numerical demonstration of energy conservation. Rectangular undamped plate of lateral dimensions
Lx=0.4 m, Ly=0.6 m, thickness h=1 mm, excited by a Dirac delta function of amplitude 1000 N (duration of one
sample). (a) : displacement of the plate at x0=[0.51 ∗ Lx0.11 ∗ Ly], normalized by the thickness. (b) black :
total discrete energy h = t + v + u, blue : kinetic energy t, magenta : transverse potential energy v, red : in-plane
potential energy u.
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Figure 2: Impact force model used for the simulations, centered at t0=50 ms. Soft impact with Twid = 5 ms, pm =

20 N, hard impact with Twid = 1 ms and pm = 100 N.
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for (a) p=846, axisymmetric mode (0,18); (b) p=715, mode (50,0); (c) p=881, mode (24,8).
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Figure 3: Convergence of nondimensional coupling coefficient Γ
p
p,p,p as function of the number of in-plane admis-

sible modes Nconv
Ψ

, for (a) p=846, axisymmetric mode (0,18); (b) p=715, mode (50,0); (c) p=881, mode (24,8).

mode label p Mode (k,n) ωkn ωkn/ω(2,0) Γ
p
p,p,p Nconv

Ψ

1,2 (2,0) 5.093 1 1.898 3
3 (0,1) 9.175 1.8 8.575 4

4,5 (3,0) 11.90 2.3 17.03 4
715,716 (50,0) 2687.9 527.7 8.436·106 65

846 (0,18) 3196.8 627.6 2.846·106 36
881,882 (24,8) 3352.1 658.1 1.783·106 50

Table 1: Nondimensional values of eigenfrequencies ωkn and coupling coefficients Γ
p
p,p,p for some modes of the

circular plate with a free edge. The modes are sorted with respect to increasing eigenfrequencies.

as in-plane modes with twice the number of nodal circles than the selected transverse mode are
taken into account. For asymmetric modes no such simple rule seems to exist. Note that for
purely asymmetric modes such as the (50,0) used as an example, the convergence is faster at
the beginning but then very slow so that it appears difficult to achieve a four digits accuracy.
However, for the given example, mode (50,0), a three-digits accuracy is obtained with Nconv

Ψ
=33

only, in line with the results for the other coefficients. For the remainder of the study, a com-
putation with 1000 transverse and 60 in-plane modes has been realized and stored for all the
subsequent calculations. This computation, made offline, is lengthy but valid for all circular
plates.

3.2.3. Results of simulations
Two different cases are tested to show the versatility of the method. First the sound of a

large gong (or Chinese tam-tam), with a bright, shimmering sound together with an audible
cascade resulting in a build-up of energy to higher frequencies a few milliseconds after the
strike is looked for. Second, the case of a strongly impacted thin crash cymbal, with a very
large amount of energy to very high frequencies from the strike and a pronounced decay of
energy is investigated. The parameters for these two cases are very different but both show a
strongly nonlinear regime, giving a proof of the ability and flexibility of the numerical scheme
to produce an extremely rich variety of realistic sounds.

The case of a large gong is obtained with the following parameters : radius a=0.4 m, thick-
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ness h=1 mm. The material parameters are selected (for all cases) as: E=2.1011 Pa, ν=0.3 and
ρ=7860 kg.m−3. The first eigenfrequency is 7.7 Hz and the 1000th is 5747 Hz. The stability
condition (38) for the sampling frequency fS = 1/k reads fS > π f1000 as 1000 modes will be
used in the simulations, hence fS > 18055 Hz. For the first set of simulations, the sampling
frequency has been selected as 40 kHz. The input point where the strike excites the plate is
located near the edge at r = 0.92a and with an angle of π/4. For the output of the simulation,
the displacement at r = 0.896a is selected, with an angle of 0.519 radians in order to avoid a
radius with too many modes having a nodal point.
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Figure 4: Numerical simulation for the sound synthesis of a gong, fs=40 kHz. Circular plate of radius a=0.4 m and
thickness h=1 mm. (a)-(c): Displacement and (b)-(d): spectrograms of the output point w located at r = 0.896 ∗ a.
Soft strike with Twid=6ms and (a)-(b): pm=40 N, (c)-(d): 80 N.

2

Figure 4: Numerical simulation for the sound synthesis of a gong, fS =40 kHz. Circular plate of radius a=0.4 m and
thickness h=1 mm. (a)-(c): Displacement and (b)-(d): spectrograms of the output point w located at r = 0.896a.
Soft strike with Twid=6ms and (a)-(b): pm=40 N, (c)-(d): 80 N.

The damping law is given mode by mode and can be chosen as desired. The generic term
for mode p is of the form cpq̇p. For the present case, the damping law is selected to follow a
power-law: cp = 0.005ω0.6

p in dimensional form. This power-law has been selected as being
representative of the damping in large metallic plates as measured in [31] and is used here to
show how a complex frequency dependence can be easily used in the context of modal repre-
sentation. Finally to simulate the impact of a soft mallet, the interaction time Twid is selected
as 6 ms. Figure 4 shows the displacement of the output w and the spectrograms of the velocity,
for two different amplitudes of the striking force: pm=40 N and pm=80 N. One can first remark
that the amplitude of the displacement is larger than the thickness at the edge, with a maximum
amplitude at 5h for the strike at 40N and 7h for 80 N. An obvious build-up of energy, signature
of the cascade, is observed for the two cases. While the spectrum of the input force contains
frequencies up to around 1000 Hz, energy flows to the higher frequencies, up to 2500 Hz for the
first strike, and 5000 Hz for the second. This property allows us to illustrate the optimal choice
of the number of transverse modes NΦ, which should be chosen as the maximal frequency
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present in the simulations. For the first case, one could have chosen to restrain the truncation to
500 modes as f500 = 2840 Hz, in order to speed up the calculations. The choice of 1000 modes
is large for the first case but optimal for the second case where the energy flows near the highest
frequency available. One can also observe that the slope of the build-up of energies through
frequencies increases with the amplitude of the strike. As demonstrated in [32], when damping
is not present the increase of energy in the cascade should behave as t1/3. Here the power-law
behaviour is slightly discernable but mostly hidden by the damping, as discussed for example
in [31, 32]. The sounds are given as supplementary material in the companion web-page of the
paper1. They have been obtained from the velocity of the output point. One can remark that
they are very realistic with an excellent timber richness.

The simulation times for these cases are indicatory given. The simulations are run on a
standard desktop with single processor with a CPU clock at 2.4 GHz. The time needed for one
seconds of sound is about 3h at 40 kHz. Note that with respect to the stability condition, the
sampling frequency fS can be set to 20 kHz, resulting in a simulation time of 1h30 per second,
without losing any quality in the sound produced. Finally, one could obtain better simulation
times for the first case by selecting NΦ=500, resulting in a simulation time of 35 mins per sec-
ond. By parallelizing the code or using better machine performance as e.g. GPU, there is no
doubt that the proposed method allows one to obtain rich and realistic sounds for a reasonable
computational cost.

The case of a crash cymbal is now investigated. The idea is to use the same framework
and set the parameters so as to obtain the crashing sound of a small cymbal vigorously beaten
by a woodstick. The radius is selected as a=0.2 m and the thickness as h=0.5 mm. With the
material parameters unchanged, the first eigenfrequency is 15.5 Hz while the 1000th is 11495
Hz. The minimum sampling frequency for ensuring stability is 36100 Hz; it has thus been
selected as 80 kHz in the simulations shown below. The strike parameters have been set to a
small interaction time, thus Twid=1 ms so as to excite a large bandwidth from the input, together
with a larger amplitude pm. The damping has been adjusted to larger values as compared to the
gongs, and the law cp = 0.007ω0.7

p has been selected. The result of a simulation with a strike
of amplitude pm=120 N is shown in Fig. 5. During the first milliseconds after the strike, the
vibration amplitude reaches 1 cm, 20 times the thickness. This results in a very quick build-up
of energy with very high frequencies up to 20 kHz, which are evidenced in the zoom on the time
domain together with the spectrogram. This case is thus very different from the previous one,
where 1000 modes were enough to represent the frequency content of the strongly nonlinear
regime. Here with 1000 modes the model contains modal components up to 11500 Hz and the
modal truncation is clearly seen in the spectrogram. However for sound synthesis purposes,
the brilliance of the sound is very well represented with the modes up to 11500 Hz, so that the
truncation has no dramatic influence on the sound produced. Indeed, once again the sounds
obtained are very realistic with a very rich spectrum and a particular brilliance, typical of a
crashing sound.

1The sounds for all the cases presented are given as wave files in the compan-
ion web-page of the paper hosted by Elsevier as well as in the following URL:
http://www.ensta-paristech.fr/∼touze/modalsynthesis.html. The reader is invited to listen to
them for a perceptual comparison.
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Figure 5: Numerical simulation for the sound synthesis of a cymbal, fs=80 kHz. Circular plate of radius a=0.2 m
and thickness h=0.5 mm.

3

Figure 5: Numerical simulation for the sound synthesis of a cymbal, fS =80 kHz. Circular plate of radius a=0.2 m
and thickness h=0.5 mm, hard impact with Twid=1 ms and amplitude pm=120 N. (a): time series of displacement
at r = 0.896a, with a close-up to observe the high frequencies in the first milliseconds. (b) spectrogram of the
velocity at output point.

3.3. A rectangular, simply-supported plate
3.3.1. Geometry and boundary conditions

In this section a rectangular plate with transverse simply-supported boundary conditions is
chosen. The plate, with boundary δS , is supposed to have lateral dimension Lx, Ly. For the
in-plane directions, a distinction is made in the literature between a movable and an immovable
edge (see, for example, [33, 2]). For the present work, a movable edge is selected, for which
the conditions read (the subscripts n, t refer, respectively, to the normal and tangent directions
to δS )

w = 0 ∀x ∈ δS (42a)
w,nn + νw,tt = 0 ∀x ∈ δS (42b)

F,nt = F,tt = 0 ∀x ∈ δS (42c)

Such conditions, despite not describing a load-free edge (a desirable case for sound synthesis),
have the advantage of being particularly simple. The solution for the transverse modes, in fact,
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is given in terms of sine functions [21]

Φk(x) = sin
k1πx
Lx

sin
k2πy
Ly

for integers k1, k2. (43)

The eigenfrequencies are then easily obtained as

ω2
k =

D
ρh

(k1π

Lx

)2

+

(
k2π

Ly

)22

. (44)

The conditions for the in-plane function, on the other hand, can be worked out to yield a sim-
plified form. Consider in fact the following conditions

F = F,n = 0 ∀x ∈ δS ;

it is clear that these conditions are sufficient (but not necessary) to satisfy (42c) [17]. Such
conditions, along with Eq. (5), reduce the quest for the eigenmodes Ψk to the clamped plate
problem. Despite not having a closed-form solution, this problem was recently shown to have
a semi-analytical solution based on the Rayleigh-Ritz method, yielding a few hundred eigen-
modes and associated frequencies with precision to, at least, four significant digits [27]. In
short, such method allows one to transform the continuous eigenvalue problem (Eq. (5)) to a
discrete eigenvalue problem, easily treated by any eigenvalue routines in many programming
languages (C, Matlab, ...). For that, a generic eigenfunction Ψk is written as a weighted sum of
expansion functions, in the following way

Ψk(x) =

NΛ∑
n=1

anΛn(x), (45)

for some carefully chosen functions Λn and unknown weights an. These weights, along with
the eigenvalues ζ4

k , are given by solving the eigenproblem

K a = ζ4 M a, (46)

where K, M are NΛ × NΛ matrices, obtained following the procedure detailed in [27]. The
form of these matrices is given in Appendix C. Note that, as pointed out in section 3.2.1, the
weights and frequencies depend on the aspect-ratio of the plate, but they are invariant (up to a
multiplying constant) for plates sharing the same aspect ratio.

3.3.2. Coupling coefficients
In this section, the convergence for some coupling coefficients is shown, and coupling rules

given. The plate considered in this section has an aspect ratio Lx/Ly = 2/3. Note that nondi-
mensional coefficients are obtained by multiplying Γs

k,m,n as in Eq. (15) by (LxLy)3 (these are the
values plotted in the figures and considered in the table of this section).

As opposed to the circular case, it is difficult to have an a priori knowledge on the coupling
rules. This is because the form of the in-plane eigenfunctions is not known analytically, and
thus only a numerical investigation can help in laying out coupling rules. As for the circular
case, coefficients of the kind Γ

p
p,p,p are investigated. For p . 50, the coefficients converge quite

rapidly with a number of in-plane modes NΨ ∼ 50. Fig. 6 and table 2 detail the convergence for
some selected (k1, k2) modes, (k1, k2) being defined in Eq. (44). A ”staircase”-like behaviour,
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where the value seems to be converging before stepping in a discontinuous way to a higher
value, is observed, as a reflection of the fact that numerous in-plane modes do not participate
to the convergence of the Γ

p
p,p,p coefficient. Hence, in order to obtain convergence, all in-plane

modes must be retained. The convergence is found to be rapid when at least one between k1

and k2 is small. On the other hand, when both k1 and k2 are large, Fig. 6 shows that about
400 in-plane modes are necessary for the convergence of the ∼500th transverse mode. Note
that the numerical method for the clamped case, detailed in Appendix B.2, was shown to yield
robust solutions up to the 400-500th mode, so that convergence of high-range nonlinear coeffi-
cients becomes only approximate when considering a set of ∼ 1000 modes. Nonetheless, sound
synthesis is still possible with the stable scheme and approximate nonlinear couplings.
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Figure 6: Plots of a few nondimensional values of coupling coefficients, Γ̄
p
p,p,p = Γ

p
p,p,p(LxLy)3 for some modes of

the rectangular plate with simply-supported edges. (a)-(c): high-order modes with a small modal index k1, showing
convergence. (d)-(f): high-order modes (adjacent to top ones) with large modal indices k1, k2, not converged.
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Figure 7: Null coupling coefficients (black squares) for a simply-supported rectangular plate with aspect ratio
Lx/Ly = 2/3.
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Figure 6: Plots of a few nondimensional values of coupling coefficients, Γ̄
p
p,p,p = Γ

p
p,p,p(LxLy)3 for some modes of

the rectangular plate with simply-supported edges. (a)-(c): high-order modes with a small modal index k1, showing
convergence. (d)-(f): high-order modes (adjacent to top ones) with large modal indices k1, k2.

3.3.3. Simulation results
In this section simulation results from a plate of aspect ratio Lx/Ly = 2/3 are presented. To

simulate a steel plate, the physical parameters are chosen as E = 2 · 1011 Pa, ρ = 7860 kg/m3,
ν = 0.3. The geometrical parameters are chosen as Lx = 0.4 m, Ly = 0.6 m, h = 1.2 mm. To
discuss the effects of damping, two simulations are presented in fig. 7. For both simulations,
the idea is to strike the plate at high amplitudes in order to maximise the nonlinear effects.
For that, the forcing parameters are chosen as Twid = 7ms, pm = 300N. The input is located at
[0.31Lx 0.43Ly], and the output is recorded at [0.52Lx 0.37Ly]. For figures (a)-(b), the damping
law is selected as c = 0.004ω0.75 + 0.08kg/m2/s. As opposed to the circular case, this damping
law presents an added constant which dissipates energy at equal rates at all scales. This choice
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mode label p Mode (k1,k2) ωk ωk/ω1 Γ
p
p,p,p(LxLy)3 NΨ

1 (1,1) 89.101 1 2.00·101 12
20 (3,5) 1240.6 13.9 9.50·103 286
72 (5,10) 4283.7 48.1 1.07·105 239
336 (1,26) 18595 208.7 2.50·106 25
422 (2,29) 23303 261.5 5.88·106 103
589 (3,34) 32248 361.9 1.23·107 132

Table 2: Nondimensional values of radian eigenfrequencies ωk and coupling coefficients Γ
p
p,p,p(LxLy)3 for some

modes of the rectangular plate with simply-supported edges. The modes are sorted with respect to increasing
eigenfrequencies. NΨ gives the number of modes needed to get the displayed (converged) value for the coupling
coefficients (up to three significant figures). The indices k1, k2 are as in Eq. (44).

can be useful in order to dissipate the lowest frequencies in a reasonable time, so to avoid a low-
frequency modulation (especially at the end of the time series) which may result unpleasant to
the ear. For figures (c)-(d), all the parameters are kept unchanged except for the damping, which
now reads c = 0.04ω0.75 + 0.08kg/m2/s. Cases (a)-(b) simulate a hard contact (such as that of
a wooden drumstick) which gives rise to a cascade of energy up to about 9000Hz, and after
which the damping effects start to dominate leaving a long queue typical of a gong. For this
simulation, the number of retained modes is NΦ = 500, for which the highest eigenfrequency is
8034.6Hz. The limiting sampling rate for stability according to Eq.(38) is 25241 Hz, and for the
current simulation the sampling rate is chosen as fS = 50482 Hz. The time series (a) reveals that
the amplitude of vibrations after the strike reaches almost 6 times the thickness, corresponding
to a rich sound including pitch-glides and crashes. Comparing with figures (c)-(d), it is seen
that the amplitude of vibrations remains unchanged. However, because of the increased loss
effects, the cascade reaches its peak at about 4500Hz. A comparison between the time series
(a) and (c) reveals that the high frequency modulations are dissipated almost instantly for the
high-loss case, leaving only a few frequencies in the queue. However, because of the nonlinear
effects at the start of the simulation, the sound remains rich: such a set of parameters may
be used to simulate the sound of a gong held firmly at one point by the player. Very natural
pitch-glides effects are prominent in this case. Because of the reduced number of eigenmodes
activated, a sensible choice for this simulation is NΦ = 250, giving a largest eigenfrequency
at 4078.3Hz. The sampling rate is chosen again at twice as much the limiting frequency for
stability, fS = 25624 Hz. Indicative simulation times may be given as 28 mins per second for
(a)-(b) and 4 minutes per second for (c)-(d), in a fully optimised modal code in Matlab.

Another case of interest is depicted in fig. 8, showing the case of a soft strike on the plate,
and giving rise to a small cascade of energy with perceptually interesting loss effects. The
plate is now hit using Twid = 8 ms, pm = 80 N, and the damping law is again of the form
c = 0.004ω0.75 + 0.08 kg/m2/s. The time series (a) reveals that these parameters are sufficient
to give rise to nonlinear effects, as the amplitude of vibrations attains 2-3 times the thickness.
However, the cascade reaches its peak at about 1500 Hz, suggesting that only a small number of
modes may be employed for the current simulation. In fact, NΦ = 100 for figure 8. The limiting
sampling frequency for stability would be in this case f lim

S = 10559 Hz, but in order to resolve
accurately all the modes the sampling rate was chosen at fS = 40 kHz. The interesting thing
about this simulation is that with such a small number of modes a relatively short calculation
time is needed: this is (indicatively) 1 minute per second in Matlab. This can be viewed as
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Figure 6: Plots of a few nondimensional values of coupling coefficients, Γ
p
p,p,p(LxLy)3 for some modes of the

rectangular plate with simply-supported edges. (a)-(c): high-order modes with a small modal index k1, showing
convergence. (d)-(f): high-order modes (adjacent to top ones) with large modal indices k1, k2, not converged.
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Figure 7: Numerical simulations of a rectangular plate with Lx = 0.4m, Ly = 0.6m, h = 1.2mm. Time series of
displacement at output point, spectrograms of velocity at output point. (a)-(b): Twid = 7ms, pm = 300N, NΦ =500,
fs = 50482Hz, c = 0.004ω0.75 + 0.08kg/m2/s. (c)-(d): Twid = 0.007s, pm = 300N, NΦ =500, fs = 50482Hz,
c = 0.04ω0.75 + 0.08kg/m2/s.

4

Figure 7: Numerical simulations of a rectangular plate with Lx = 0.4 m, Ly = 0.6 m, h = 1.2 mm. Time series
of displacement at output point, spectrograms of velocity at output point, for Twid = 7 ms, pm = 300 N. Damping
law: c = 0.04ω0.75 + 0.08 kg/m2/s. (a)-(b): NΦ =500, NΨ =60, fS = 50482 Hz. (c)-(d): NΦ =250, NΨ =150,
fS = 25624 Hz.

an advantage of the modal approach with respect to other numerical techniques, namely Finite
Differences: for weakly nonlinear vibrations (as in the present case), a few number of modes
may be retained so to achieve faster calculation times. Despite the small number of retained
modes, the sound is still surprisingly rich, as one may appreciate by listening to the sound
sample in the companion page.

4. Conclusion

A general strategy for time-integrating nonlinear equations of motions for perfect and imper-
fect plates based on the von Kármán model has been derived in this paper. It relies on a modal
approach coupled with an ad-hoc energy-conserving scheme. Simulations with up to a thou-
sand modes interacting nonlinearly are possible, and the stability of the scheme is guaranteed
by selecting an appropriate timestep defined by the highest eigenfrequency of the discretized
system. The method is completely general and can be applied to a large number of cases where
the nonlinear dynamics is dominating, and where accuracy is needed together with a reasonable
computational burden. The main advantages of the method are the following:

• The linear and nonlinear parameters appearing in the modal equations can be calculated
with any degree of accuracy during an offline calculation. For the cases where the modes
are known analytically, the values of the linear coefficients are exact, while the conver-
gence of the nonlinear coefficients are obtained within a reasonable computational time.

• The generality of the proposed method can be extended to more difficult cases where the
modes are not known analytically: such consideration is quite remarkable considering
the diffused misconception according to which modal methods are only applicable in the
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Figure 8: Numerical simulation of a rectangular plate with Lx = 0.4m, Ly = 0.6m, h = 1.2mm, soft strike. (a):
Time series of displacement at output point, (b): spectrograms of velocity at output point. Twid = 8ms, pm = 80N,
NΦ =100, fs = 40000Hz, c = 0.004ω0.75 + 0.08kg/m2/s.
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Figure 8: Numerical simulation of a rectangular plate with Lx = 0.4m, Ly = 0.6m, h = 1.2mm, soft strike. (a):
Time series of displacement at output point, (b): spectrograms of velocity at output point. Twid = 8ms, pm = 80N,
NΦ =100, NΨ =150, fS = 40kHz, c = 0.004ω0.75 + 0.08kg/m2/s.

few cases where the modes present a closed-form solution. A first example of a rectan-
gular plate where the in-plane modes are not analytic is treated here by the Rayleigh-Ritz
method. Different techniques may be employed for different cases, for instance finite-
element techniques for the calculation of the nonlinear coefficients, as shown in [30].

• The stability condition derived from the analysis of the energy-conserving scheme shows
that the sampling frequency fS needs to be larger than π fNΦ

, where fNΦ
refers to the largest

eigenfrequency contained in the truncation, hence resulting in a large timestep enabling
faster simulations.

• A salient feature of the modal approach is the possibility of selecting ad-hoc viscous
damping laws effortlessly. Such feature is neglected in a finite element or finite difference
context, where a temporal evolution operator describing the damping law has to be made
explicit and global. This feature is a great advantage of the present method, allowing one
to take into account very complex damping mechanisms.

The modal framework has been used here for the sound synthesis of cymbals and gong-like
instruments. This example was chosen because it is a challenging one, with a strongly nonlinear
dynamics involving hundreds of modes interacting in a turbulent manner. Perceptual accuracy
is achieved thanks to the refined loss model implemented in the current flexible scheme. The
sound examples have shown the ability of the method to compute very realistic sounds. It has
been also shown how the tuning of the truncation coefficient can be selected in order to speed
up the computations without loss in accuracy.

The results presented in this contribution show undoubtedly that the modal method is able to
treat the cases of strongly nonlinear systems, with a huge number of modes interacting together.
The authors believe that this should give new impetus in favour of modal schemes for nonlinear
systems: because of its specific advantages - like those highlighted in this paper - the modal
approach offers an attractive alternative to other numerical schemes.
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Appendix A. Energy-conserving modal scheme for imperfect plates

This appendix is devoted to extend the conservative scheme in modal coordinates for the
case of an imperfect plate. Let w0(x) be the static deflection of the imperfect plate at rest, and
w(x, t) the transverse displacement with respect to the static position w0, then the von Kármán
equations for imperfect plates simply read [34, 35]:

ρhẅ + D∆∆w = L(w + w0, F) + p(x, t) − R(x, t), (A.1a)

∆∆F = −Eh
2
L(w,w + 2w0), (A.1b)

The presence of an imperfection introduces quadratic nonlinear terms in the equations of
motion (A.1). An interesting strategy for solving out the PDEs without recalculating the eigen-
modes for each possible imperfection w0(x), consists in using the eigenmodes of the perfect
plate as functional basis [35]. Within this framework, the continuous energies are found to have
the same expressions as those given in Eqs (19).

The framework of section 2.2 is adapted by projecting also the imperfection on the modes
of the transverse motion as:

w0(x) = S w

NΦ∑
k=1

Φk(x)
‖Φk‖ ak. (A.2)

Following the same lines of calculation as for the perfect plate, the modal equations are obtained
in the quadratic (q, η) formulation as:

q̈s + ω2
sqs + 2ξsωsq̇s =

S F

ρh

NΦ∑
k=1

NΨ∑
l=1

E s
k,l(qk + ak)ηl + ps(t), (A.3a)

ηl = − Eh
2ζ4

l

S 2
w

S F

NΦ∑
m,n

Hl
m,n(qmqn + 2qman). (A.3b)

Using the property E s
k,l = Hl

k,s, The associated conservative scheme is introduced for the un-
damped and unforced problem as

δttqs(n) + ω2
sqs(n) =

S F

ρh

NΦ∑
k=1

NΨ∑
l=1

Hl
k,s (qk(n) + ak) µt·ηl(n), (A.4a)

µt−ηl(n) = − Eh
2ζ4

l

S 2
w

S F

NΦ∑
i, j=1

Hl
i, j

(
qi(n)et−q j(n) + 2a j µt−qi(n)

)
. (A.4b)

The proof that such a scheme is energy conserving follows the lines of the previous demon-
stration. The second equation (A.4b) is multiplied by δt+. Using the symmetry property of the
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tensor Hl
i, j together with the following identity on the discrete operators : δt+(µt−qi(n)) = δt·qi(n),

one obtains, similarly to Eq. (29),
NΦ∑

k,s=1

Hl
k,s(qk(n) + ak)δt·qs(n) = − ζ

4
l S F

EhS 2
w
µt− (δt+ηl(n)) (A.5)

Then, Eq. (A.4a) is multiplied by ρh δt· qs(n) and then summed over the index s. Using (A.5),
the same substitutions as in the previous case can be realized, leading to Eq. (32), from which
the discrete energies can be identified as in Eqs. (33).

Appendix B. Mode shapes for the circular plate with free edge

Appendix B.1. Transverse modes Φp

The presentation of the results for the eigenproblem of a circular plate follows strictly refer-
ence [25]. Note that the results are given here, for the sake of generality, for the nondimensional
problem. The eigenmodes Φ with a free boundary condition shall satisfy, for all θ and t:

(∆∆ − ξ4)Φ = 0 , (B.1a)
Φ,rr + νΦ,r + νΦ,θθ = 0 , at r = 1 (B.1b)
Φ,rrr + Φ,rr − Φ,r + (2 − ν)Φ,rθθ − (3 − ν)Φ,θθ = 0 , at r = 1, (B.1c)
Φ(r = 0) is bounded, (B.1d)

with ξ4 = ω2. The solutions of the previous set are separated in r and θ, and write:

Φ0n(r, θ) = R0n(r) for k = 0 (B.2a)

Φkn1(r, θ)
Φkn2(r, θ)

∣∣∣∣∣∣ = Rkn(r)

∣∣∣∣∣∣ cos kθ
sin kθ for k > 0 (B.2b)

with

Rkn(r) = κkn

[
Jk(ξknr) − J̃k(ξkn)

Ĩk(ξkn)
Ik(ξknr)

]
(B.3)

where Jk is the Bessel functions of order k of the first kind, Ik(x) = Jk(ix) with i =
√−1, and J̃k

and Ĩk are defined as follows:

J̃k(x) = x2Jk−2(x) + x(ν − 2k + 1)Jk−1(x) + k(k + 1)(1 − ν)Jk(x), (B.4a)

Ĩk(x) = x2Ik−2(x) + x(ν − 2k + 1)Ik−1(x) + k(k + 1)(1 − ν)Ik(x). (B.4b)

κkn is a normalisation constant which can be chosen such that
∫

(S)

Φ2
kn dS = 1.

ξkn is the ñ-th solution of the following equation:

Ĩk(ξ)
[
ξ3Jk−3(ξ) + ξ2(4 − 3k)Jk−2(ξ) + ξk

(
k(1 + ν) − 2

)
Jk−1(ξ) + k2(1 − ν)(1 + k)Jk(ξ)

]
− J̃k(ξ)

[
ξ3Ik−3(ξ) + ξ2(4 − 3k)Ik−2(ξ) + ξk

(
k(1 + ν) − 2

)
Ik−1(ξ) + k2(1 − ν)(1 + k)Ik(ξ)

]
= 0.
(B.5)

k is found to be the number of nodal radii. Because of the free edge boundary condition, the
edge of the plate is not a nodal circle, and mode Φ10 is a rigid body mode. So, the number n
of nodal circles is not equal to ñ. In fact, for k = 1, n = ñ and for k , 1, n = ñ − 1 [25, 36].
Numerical solutions for the zeros of Eq. (B.5) gives the eigenfrequencies for the transverse
problem since ωkn = ξ2

kn.
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Appendix B.2. In-plane modes Ψs

The boundary conditions for the plate with a free edge correspond to a free boundary for
the in-plane displacements. Expressing these conditions in terms of the Airy stress function F
leads to consider, due to the relationship between F and the in-plane displacements, a clamped
edge condition [25, 27]. The nondimensional eigenproblem to be solved for the in-plane modes
Ψ thus reads, for all θ and t:

(∆∆ − ζ4)Ψ = 0 , (B.6a)
Ψ = 0 , at r = 1 (B.6b)
Ψ,r = 0 , at r = 1, (B.6c)
Ψ(r = 0) is finite. (B.6d)

The solutions of the previous set are separated in r and θ:

Ψ0m(r, θ) = S 0m(r) for l = 0 (B.7a)

Ψlm1(r, θ)
Ψlm2(r, θ)

∣∣∣∣∣∣ = S lm(r)

∣∣∣∣∣∣ cos lθ
sin lθ for l > 0 (B.7b)

with

S lm(r) = λlm

[
Jl(ζlmr) − Jl(ζlm)

Il(ζlm)
Il(ζlmr)

]
(B.8)

where the ζlm is the m-th solution of the following equation:

Jl−1(ζ)Il(ζ) − Il−1(ζ)Jl(ζ) = 0. (B.9)

The normalization constant λlm is generally chosen so that
∫

(S)

Ψ2
lm dS = 1. In this case, l,m

correspond to the numbers of nodal radii and circles, respectively.

Appendix C. Modes for rectangular plate with clamped edges

The method described here for computing efficiently the eigenmodes of a rectangular plate
with clamped edges has been derived first in [27, 28], where it was shown to be a fast-converging,
accurate and stable method up to the 400-500th mode. The problem is solved using the Rayleigh-
Ritz method with appropriate expansion functions. For a generic mode Ψ(x), consider then the
following expansion

Ψ(x) =

NΛ∑
n=1

anΛn(x).

The functions Λn are written as
Λn(x) = Xn1(x)Yn2(y), (C.1)

where

Xn1(x) = cos
(
n1πx
Lx

)
+

15(1 + (−1)n1)
L4

x
x4 − 4(8 + 7(−1)n1)

L3
x

x3 +
6(3 + 2(−1)n1)

L2
x

x2 − 1, (C.2)

and similarly for Yn2(y)
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The algebraic eigenvalue problem is written as

K a = ζ4 M a, (C.3)

and gives the expansion weights a along with the eigenvalues ζ4. The stiffness and mass matri-
ces for the clamped plate problem are set up as follows (primes indicate derivatives):

K(i, j) = K(mn, pq) = ∫ Lx

0
X′′m(x)X′′p (x)dx

∫ Ly

0
Yn(y)Yq(y)dy +

∫ Lx

0
Xm(x)Xp(x)dx

∫ Ly

0
Y ′′n (y)Y ′′q (y)dy+

2
∫ Lx

0
X′m(x)X′p(x)dx

∫ Ly

0
Y ′n(y)Y ′q(y)dy

M(i, j) = M(mn, pq) =

∫ Lx

0
Xm(x)Xp(x)dx

∫ Ly

0
Yn(y)Yq(y)dy

The integrals can be calculated analytically, and are∫ Lx

0
X′′m(x)X′′p (x)dx =



720/L3
x; if m = p = 0

(π4m4 − 672(−1)m − 768)/(2L3
x); if m = p , 0

0 if m or p = 0 and m , p

−24(7(−1)m + 7(−1)p + 8(−1)m(−1)p + 8)/L3
x; otherwise∫ Lx

0
Xm(x)Xp(x)dx =

10Lx/7; if m = p = 0

67Lx/70 − (−1)mLx/35 − 768Lx/(π4m4) − 672(−1)mLx/(π4m4); if m = p , 0

3Lx((−1)p + 1)(π4 p4 − 1680))/(14π4 p4); if m = 0 and p , 0

3Lx((−1)m + 1)(π4m4 − 1680))/(14π4m4); if p = 0 and m , 0

−(Lx(11760(−1)m + 11760(−1)p − 16π4m4 + 13440(−1)m(−1)p+

(−1)mπ4m4 + (−1)pπ4m4 − 16(−1)m(−1)pπ4m4 + 13440))/(70π4m4)
−(Lx(13440m4 + 11760(−1)mm4 + 11760(−1)pm4 + 13440(−1)m(−1)pm4))/(70π4m4 p4); otherwise∫ Lx

0
X′′m(x)Xp(x)dx =

25





−120/(7L); if m = p = 0

−(768π2m2 − 47040(−1)m + 35π4m4 + 432(−1)mπ2m2 − 53760)/(70Lxπ
2m2); if m = p , 0

−(60((−1)p + 1)(π2 p2 − 42))/(7Lxπ
2 p2); if m = 0 and p , 0

−(60((−1)m + 1)(π2m2 − 42))/(7Lxπ
2m2); if p = 0 and m , 0

(24(m2 + p2)(7(−1)m + 7(−1)p + 8(−1)m(−1)p + 8))/(Lxπ
2m2 p2)

−((108(−1)m + 108(−1)p + 192(−1)m(−1)p + 192))/(35Lx); otherwise

and similarly for the integrals involving the functions Y .
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